中考數(shù)學(xué)的知識點 (15篇)
在日常過程學(xué)習(xí)中,是不是聽到知識點,就立刻清醒了?知識點是傳遞信息的基本單位,知識點對提高學(xué)習(xí)導(dǎo)航具有重要的作用。想要一份整理好的知識點嗎?以下是小編幫大家整理的中考數(shù)學(xué)的知識點 ,僅供參考,大家一起來看看吧。
中考數(shù)學(xué)的知識點 1
逆定理的內(nèi)容:
如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,其中c為斜邊。
說明:
(1)勾股定理的逆定理是判定一個三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運用這一定理時,可用兩小邊的平方和與較長邊的平方作比較,若它們相等時,以a,b,c為三邊的三角形是直角三角形;
(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時的斜邊是b.
2.利用勾股定理的逆定理判斷一個三角形是否為直角三角形的一般步驟:
(1)確定最大邊;
(2)算出最大邊的平方與另兩邊的平方和;
(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。
中考數(shù)學(xué)的知識點 2
橢圓知識:平面內(nèi)與兩定點F1、F2的距離的和等于常數(shù)2a(2a>|F1F2|)的動點P的軌跡叫做橢圓。
橢圓的第一定義
即:│PF1│+│PF2│=2a
其中兩定點F1、F2叫做橢圓的焦點,兩焦點的距離│F1F2│=2c<2a叫做橢圓的焦距。P 為橢圓的動點。
長軸為 2a; 短軸為 2b。
橢圓的第二定義
平面內(nèi)到定點F的距離與到定直線的距離之比為常數(shù)e(即橢圓的離心率,e=c/a)的點的集合(定點F不在定直線上,該常數(shù)為小于1的正數(shù)) 其中定點F為橢圓的焦點,定直線稱為橢圓的準(zhǔn)線(該定直線的方程是x=±a^2/c[焦點在X軸上];或者y=±a^2/c[焦點在Y軸上])。
橢圓的其他定義
根據(jù)橢圓的一條重要性質(zhì),也就是橢圓上的點與橢圓短軸兩端點連線的斜率之積是定值 定值為e^2-1 可以得出:平面內(nèi)與兩定點的連線的斜率之積是常數(shù)k的動點的軌跡是橢圓,此時k應(yīng)滿足一定的條件,也就是排除斜率不存在的情況,還有K應(yīng)滿足<0且不等于-1。
簡單幾何性質(zhì)
1、范圍
2、對稱性:關(guān)于X軸對稱,Y軸對稱,關(guān)于原點中心對稱。
3、頂點:(當(dāng)中心為原點時)(a,0)(-a,0)(0,b)(0,-b)
4、離心率:e=c/a
5、離心率范圍 0
知識歸納:離心率越大橢圓就越扁,越小則越接近于圓。
初中數(shù)學(xué)知識點總結(jié):平面直角坐標(biāo)系
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成
平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。
初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)
點的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。
一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。
希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點:因式分解的一般步驟
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
初中數(shù)學(xué)知識點:因式分解
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
、芙Y(jié)果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉椮(fù)號放括號外
、呃ㄌ杻(nèi)同類項合并。
中考數(shù)學(xué)的知識點 3
一、數(shù)與代數(shù)
、、數(shù)與式
1.有理數(shù)的加法、乘法運算
同號相加一邊倒,異號相加“大”減“小”;符號跟著大的跑,絕對值相等“零”正好。
同號得正異號負(fù),一項為零積是零!咀ⅰ俊按蟆睖p“小”是指絕對值的大小。
2.合并同類項
合并同類項,法則不能忘;只求系數(shù)代數(shù)和,字母、指數(shù)不變樣。
3.去、添括號法則
去括號、添括號,關(guān)鍵看符號;括號前面是正號,去、添括號不變號;
括號前面是負(fù)號,去、添括號都變號。
4.單項式運算
加、減、乘、除、乘(開)方,三級運算分得清;系數(shù)進(jìn)行同級(運)算,指數(shù)運算降級(進(jìn))行。
5.分式混合運算法則
分式四則運算,順序乘除加減;乘除同級運算,除法符號須變(乘);乘法進(jìn)行化簡,因式分解在先;分子分母相約,然后再行運算;加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;
變號必須兩處,結(jié)果要求最簡。
6.平方差公式
兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差;積化和差變兩項,完全平方不是它。
7.完全平方公式
首平方又末平方,二倍首末在中央;和的平方加再加,先減后加差平方。
8.因式分解
一提二套三分組,十字相乘也上數(shù);四種方法都不行,拆項添項去重組;重組無望試求根,
換元或者算余數(shù);多種方法靈活選,連乘結(jié)果是基礎(chǔ);同式相乘若出現(xiàn),乘方表示要記住。
【注】一提(提公因式)二套(套公式)
9.二次三項式的因式分解
先想完全平方式,十字相乘是其次;兩種方法行不通,求根分解去嘗試。
10.比和比例
兩數(shù)相除也叫比,兩比相等叫比例;基本性質(zhì)第一條,外項積等內(nèi)項積;
前后項和比后項,組成比例叫合比;前后項差比后項,組成比例是分比;
兩項和比兩項差,比值相等合分比;前項和比后項和,比值不變叫等比;
商定變量成正比,積定變量成反比;判斷四數(shù)成比例,兩端積等中間積。
11.根式和無理式
表示方根代數(shù)式,都可稱其為根式;根式異于無理式,被開方式無限制;
無理式都是根式,區(qū)分它們有標(biāo)志;被開方式有字母,才能稱為無理式。
12.最簡根式的條件
最簡根式三條件:號內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點。
中考數(shù)學(xué)的知識點 4
1、矩形的概念
有一個角是直角的平行四邊形叫做矩形。
2、矩形的性質(zhì)
(1)具有平行四邊形的一切性質(zhì)(2)矩形的四個角都是直角
(3)矩形的對角線相等(4)矩形是軸對稱圖形
3、矩形的判定
(1)定義:有一個角是直角的平行四邊形是矩形(2)定理1:有三個角是直角的四邊形是矩形
(3)定理2:對角線相等的平行四邊形是矩形
4、矩形的面積S矩形=長×寬=ab
二次函數(shù)概念
二次函數(shù)的概念:一般地,形如ax^2+bx+c = 0的函數(shù),叫做二次函數(shù)。
這里需要強調(diào):和一元二次方程類似,二次項系數(shù)a≠0,而b,c可以為零.二次函數(shù)的定義域是全體實數(shù).
二次函數(shù)圖像與性質(zhì)口訣
二次函數(shù)拋物線,圖象對稱是關(guān)鍵;
開口、頂點和交點,它們確定圖象限;
開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關(guān)聯(lián);頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對稱軸,縱標(biāo)函數(shù)最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達(dá)能互換。
一、目標(biāo)與要求
1、感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過解決簡單的實際問題,使學(xué)生自發(fā)地尋找不等式的解,會把不等式的解集正確地表示到數(shù)軸上;
2、經(jīng)歷由具體實例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結(jié)合思想;
3、通過對不等式、不等式解與解集的探究,引導(dǎo)學(xué)生在獨立思考的基礎(chǔ)上積極參與對數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識;讓學(xué)生充分體會到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個領(lǐng)域。
二、重點
理解并掌握不等式的性質(zhì);
正確運用不等式的性質(zhì);
建立方程解決實際問題,會解"ax+b=cx+d"類型的一元一次方程;
尋找實際問題中的不等關(guān)系,建立數(shù)學(xué)模型;
一元一次不等式組的解集和解法。
三、難點
一元一次不等式組解集的理解;
弄清列不等式解決實際問題的思想方法,用去括號法解一元一次不等式;
正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。
中考數(shù)學(xué)的知識點 5
一、數(shù)與式
易錯點1:有理數(shù)、無理數(shù)以及實數(shù)的有關(guān)概念理解錯誤,相反數(shù)、倒數(shù)、絕對值的意義概念混淆。以及絕對值與數(shù)的分類。每年選擇必考。
易錯點2:實數(shù)的運算要掌握好與實數(shù)有關(guān)的概念、性質(zhì),靈活地運用各種運算律,關(guān)鍵是把好符號關(guān);在較復(fù)雜的運算中,不注意運算順序或者不合理使用運算律,從而使運算出現(xiàn)錯誤。
易錯點3:平方根、算術(shù)平方根、立方根的區(qū)別。填空題必考。
易錯點4:求分式值為零時學(xué)生易忽略分母不能為零。
易錯點5:分式運算時要注意運算法則和符號的變化。當(dāng)分式的分子分母是多項式時要先因式分解,因式分解要分解到不能再分解為止,注意計算方法,不能去分母,把分式化為最簡分式。填空題必考。
易錯點6:非負(fù)數(shù)的性質(zhì):幾個非負(fù)數(shù)的和為0,每個式子都為0;整體代入法;完全平方式。
易錯點7:計算第一題必考。五個基本數(shù)的計算:0指數(shù),三角函數(shù),絕對值,負(fù)指數(shù),二次根式的化簡。
易錯點8:科學(xué)記數(shù)法。精確度,有效數(shù)字。這個上海還沒有考過,知道就好!
易錯點9:代入求值要使式子有意義。各種數(shù)式的計算方法要掌握,一定要注意計算順序。
二、方程(組)與不等式(組)
易錯點1:各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。
易錯點2:運用等式性質(zhì)時,兩邊同除以一個數(shù)必須要注意不能為0的情況,還要關(guān)注解方程與方程組的基本思想。(消元降次)主要陷阱是消除了一個帶X公因式要回頭檢驗!
易錯點3:運用不等式的性質(zhì)3時,容易忘記改不改變符號的方向而導(dǎo)致結(jié)果出錯。
易錯點4:關(guān)于一元二次方程的取值范圍的題目易忽視二次項系數(shù)不為0導(dǎo)致出錯。
易錯點5:關(guān)于一元一次不等式組有解無解的條件易忽視相等的情況。
易錯點6:解分式方程時首要步驟去分母,分?jǐn)?shù)相相當(dāng)于括號,易忘記根檢驗,導(dǎo)致運算結(jié)果出錯。
易錯點7:不等式(組)的解得問題要先確定解集,確定解集的方法運用數(shù)軸。
易錯點8:利用函數(shù)圖象求不等式的解集和方程的解
易錯點6:與坐標(biāo)軸交點坐標(biāo)一定要會求。面積最大值的求解方法,距離之和的最小值的求解方法,距離之差最大值的求解方法。
易錯點7:數(shù)形結(jié)合思想方法的運用,還應(yīng)注意結(jié)合圖像性質(zhì)解題。函數(shù)圖象與圖形結(jié)合學(xué)會從復(fù)雜圖形分解為簡單圖形的方法,圖形為圖像提供數(shù)據(jù)或者圖像為圖形提供數(shù)據(jù)。
易錯點8:自變量的取值范圍有:二次根式的被開方數(shù)是非負(fù)數(shù),分式的分母不為0,0指數(shù)底數(shù)不為0,其它都是全體實數(shù)。
三、三角形
易錯點1:三角形的概念以及三角形的角平分線,中線,高線的特征與區(qū)別。
易錯點2:三角形三邊之間的不等關(guān)系,注意其中的“任何兩邊”。最短距離的方法。
易錯點3:三角形的內(nèi)角和,三角形的分類與三角形內(nèi)外角性質(zhì),特別關(guān)注外角性質(zhì)中的“不相鄰”。
易錯點4:全等形,全等三角形及其性質(zhì),三角形全等判定。著重學(xué)會論證三角形全等,三角形相似與全等的綜合運用以及線段相等是全等的特征,線段的倍分是相似的特征以及相似與三角函數(shù)的結(jié)合。邊邊角兩個三角形不一定全等。
易錯點5:兩個角相等和平行經(jīng)常是相似的基本構(gòu)成要素,以及相似三角形對應(yīng)高之比等于相似比,對應(yīng)線段成比例,面積之比等于相似比的平方。
易錯點6:等腰(等邊)三角形的定義以及等腰(等邊)三角形的判定與性質(zhì),運用等腰(等邊)三角形的判定與性質(zhì)解決有關(guān)計算與證明問題,這里需注意分類討論思想的滲入。
易錯點7:運用勾股定理及其逆定理計算線段的長,證明線段的數(shù)量關(guān)系,解決與面積有關(guān)的問題以及簡單的實際問題。
易錯點8:將直角三角形,平面直角坐標(biāo)系,函數(shù),開放性問題,探索性問題結(jié)合在一起綜合運用探究各種解題方法。
易錯點9:中點,中線,中位線,一半定理的歸納以及各自的性質(zhì)。
易錯點10:直角三角形判定方法:三角形面積的確定與底上的高(特別是鈍角三角形)。
易錯點11:三角函數(shù)的定義中對應(yīng)線段的比經(jīng)常出錯以及特殊角的三角函數(shù)值。
中考數(shù)學(xué)的知識點 6
基于質(zhì)數(shù)定義的基礎(chǔ)之上而建立的問題有很多世界級的難題,如哥德巴赫猜想等。
質(zhì)數(shù)
質(zhì)數(shù)又稱素數(shù)。指在一個大于1的自然數(shù)中,除了1和此整數(shù)自身外,不能被其他自然數(shù)整除的數(shù)。
素數(shù)在數(shù)論中有著很重要的地位。比1大但不是素數(shù)的數(shù)稱為合數(shù)。1和0既非素數(shù)也非合數(shù)。質(zhì)數(shù)是與合數(shù)相對立的兩個概念,二者構(gòu)成了數(shù)論當(dāng)中最基礎(chǔ)的定義之一。
算術(shù)基本定理證明每個大于1的正整數(shù)都可以寫成素數(shù)的乘積,并且這種乘積的形式是唯一的。這個定理的重要一點是,將1排斥在素數(shù)集合以外。如果1被認(rèn)為是素數(shù),那么這些嚴(yán)格的闡述就不得不加上一些限制條件。
概念
只有1和它本身兩個約數(shù)的自然數(shù),叫質(zhì)數(shù)(Prime Number)。(如:由2÷1=2,2÷2=1,可知2的約數(shù)只有1和它本身2這兩個約數(shù),所以2就是質(zhì)數(shù)。與之相對立的是合數(shù):“除了1和它本身兩個約數(shù)外,還有其它約數(shù)的數(shù),叫合數(shù)!比纾4÷1=4,4÷2=2,4÷4=1,很顯然,4的約數(shù)除了1和它本身4這兩個約數(shù)以外,還有約數(shù)2,所以4是合數(shù)。)
100以內(nèi)的質(zhì)數(shù)有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100內(nèi)共有25個質(zhì)數(shù)。
注:1既不是質(zhì)數(shù)也不是合數(shù)。因為它的約數(shù)有且只有1這一個約數(shù)。
中考數(shù)學(xué)的知識點 7
自然數(shù)的分類包括了奇數(shù)和偶數(shù),質(zhì)數(shù)與合數(shù)、1和0。
自然數(shù)的分類
①按能否被2整除分
可分為奇數(shù)和偶數(shù)。
1、奇 數(shù):不能被2整除的數(shù)叫奇數(shù)。
2、偶 數(shù):能被2整除的數(shù)叫偶數(shù)。
注:0是偶數(shù)。(20xx年國際數(shù)學(xué)協(xié)會規(guī)定,零為偶數(shù).我國20xx年也規(guī)定零為偶數(shù)。偶數(shù)可以被2整除,0照樣可以,只不過得數(shù)依然是0而已)。
、诎匆驍(shù)個數(shù)分
可分為質(zhì)數(shù)、合數(shù)、1和0。
1、質(zhì) 數(shù):只有1和它本身這兩個因數(shù)的自然數(shù)叫做質(zhì)數(shù)。也稱作素數(shù)。
2、合 數(shù):除了1和它本身還有其它的因數(shù)的自然數(shù)叫做合數(shù)。
3、1:只有1個因數(shù)。它既不是質(zhì)數(shù)也不是合數(shù)。
4、當(dāng)然0不能計算因數(shù),和1一樣,也不是質(zhì)數(shù)也不是合數(shù)。
備注:這里是因數(shù)不是約數(shù)。
同學(xué)們對于“0”,它是否包括在自然數(shù)之內(nèi)存在爭議,其實學(xué)術(shù)界目前關(guān)于這個問題尚無一致意見。
中考數(shù)學(xué)的知識點 8
同學(xué)面對新問題準(zhǔn)備的不好,掉下隊來,同時,也有些同學(xué)方法得當(dāng),后來居上。為什么會這樣呢?在這里,編輯了中考數(shù)學(xué)知識點復(fù)習(xí),以備借鑒。
一、代數(shù)式
1. 概念:用基本的運算符號(加、減、乘、除、乘方、開方)把數(shù)與字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或字母也是代數(shù)式。
2. 代數(shù)式的值:用數(shù)代替代數(shù)式里的字母,按照代數(shù)式的運算關(guān)系,計算得出的結(jié)果。
二、整式
單項式和多項式統(tǒng)稱為整式。
1. 單項式:1)數(shù)與字母的乘積這樣的代數(shù)式叫做單項式。單獨的一個數(shù)或字母(可以是兩個數(shù)字或字母相乘)也是單項式。
2) 單項式的系數(shù):單項式中的 數(shù)字因數(shù)及性質(zhì)符號叫做單項式的系數(shù)。
3) 單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。
2. 多項式:1)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數(shù)項。一個多項式有幾項就叫做幾項式。
2)多項式的次數(shù):多項式中,次數(shù)最高的項的次數(shù),就是這個多項式的次數(shù)。
3. 多項式的排列:
1).把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。
2).把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。
由于單項式的項,包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符號看作是這一項的一部分,一起移動。
三、整式的運算
1. 同類項——所含字母相同,并且相同字母的次數(shù)也相同的項叫做同類項,幾個常數(shù)項也叫同類項。同類項與系數(shù)無關(guān),與字母排列的順序也無關(guān)。
2. 合并同類項:把多項式中的同類項合并成一項叫做合并同類項。即同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。
3. 整式的加減:有括號的先算括號里面的,然后再合并同類項。
中考數(shù)學(xué)的知識點 9
初中數(shù)學(xué)多項式的加法中考知識點
多項式和單項式一起被稱為整式,整式的運算離不開加法,多項式也是如此。
多項式的加法
有限個單項式之和稱為多元多項式,簡稱多項式。不同類的單項式之和表示的多項式,其中系數(shù)不為零的單項式的最高次數(shù),稱為此多項式的次數(shù)。
多項式的加法,是指多項式中同類項的系數(shù)相加,字母保持不變(即合并同類項)。多項式的乘法,是指把一個多項式中的每個單項式與另一個多項式中的每個單項式相乘之后合并同類項。
F上x1,x2,…,xn的多項式全體所成的集合F[x1,x2,…,xn],對于多項式的加法和乘法成為一個環(huán),是具有單位元素的整環(huán)。 域上的多元多項式也有因式分解惟一性定理。
關(guān)于多項式的加法計算的中考知識要領(lǐng)已經(jīng)為大家整合出來了,請同學(xué)們相應(yīng)做好筆記了。
中考數(shù)學(xué)的知識點 10
相似形
重點相似三角形的判定和性質(zhì)
☆內(nèi)容提要☆
一、本章的兩套定理
第一套(比例的有關(guān)性質(zhì)):
涉及概念:①第四比例項②比例中項③比的前項、后項,比的內(nèi)項、外項④黃金分割等。
第二套:
注意:①定理中“對應(yīng)”二字的含義;
、谄叫邢嗨(比例線段)平行。
二、相似三角形性質(zhì)
1.對應(yīng)線段…;2.對應(yīng)周長…;3.對應(yīng)面積…。
三、相關(guān)作圖
、僮鞯谒谋壤;②作比例中項。
四、證(解)題規(guī)律、輔助線
1.“等積”變“比例”,“比例”找“相似”。
2.找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來。
3.添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。
4.對比例問題,常用處理方法是將“一份”看著k;對于等比問題,常用處理辦法是設(shè)“公比”為k。
5.對于復(fù)雜的幾何圖形,采用將部分需要的圖形(或基本圖形)“抽”出來的辦法處理。
中考數(shù)學(xué)的知識點 11
對某些知識點概念理解不清,很容易造成做題時拿不定主意,模棱兩可而造成錯誤。在中考數(shù)學(xué)的復(fù)習(xí)中怎么有效改善這種問題呢?
自己應(yīng)該先分析自己。自己對自己最了解,知道自己的學(xué)習(xí)中哪個環(huán)節(jié)最薄弱最需要幫助,只要把這個環(huán)節(jié)打通了剩下的工作就可事半功倍了。
其次,制定學(xué)習(xí)計劃。包括時間計劃、學(xué)習(xí)內(nèi)容和形式等等。因為中學(xué)生已經(jīng)經(jīng)過了多年的學(xué)習(xí)過程,有些問題累積的過多,需要系統(tǒng)的來解決,不能只是頭疼醫(yī)頭腳疼醫(yī)腳,只是解決了表面問題,真到綜合訓(xùn)練和考試的時候,問題依然會存在。
最后,要從思想上下定決心,努力實施。解決自己沉積的'問題,不是一朝一夕的事情,需要有恒心、耐心,切忌耍小聰明,敷衍了事。無論采取什么方案,都要扎扎實實的去做。
中考數(shù)學(xué)的知識點 12
一概述
列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實際的一個重要方面。其具體步驟是:
⑴審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。
、圃O(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。
、怯煤粗獢(shù)的代數(shù)式表示相關(guān)的量。
、葘ふ蚁嗟汝P(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個數(shù)與方程個數(shù)是相同的。
、山夥匠碳皺z驗。
、蚀鸢浮
綜上所述,列方程(組)解應(yīng)用題實質(zhì)是先把實際問題轉(zhuǎn)化為數(shù)學(xué)問題(設(shè)元、列方程),在由數(shù)學(xué)問題的解決而導(dǎo)致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。
二常用的相等關(guān)系
1.行程問題(勻速運動)
基本關(guān)系:s=vt
、畔嘤鰡栴}(同時出發(fā)):
、谱芳皢栴}(同時出發(fā)):
若甲出發(fā)t小時后,乙才出發(fā),而后在B處追上甲,則
、撬泻叫校;
2.配料問題:溶質(zhì)=溶液濃度
溶液=溶質(zhì)+溶劑
3.增長率問題:
4.工程問題:基本關(guān)系:工作量=工作效率工作時間(常把工作量看著單位“1”)。
5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關(guān)比例性質(zhì)等。
三注意語言與解析式的互化
如,“多”、“少”、“增加了”、“增加為(到)”、“同時”、“擴(kuò)大為(到)”、“擴(kuò)大了”、……
又如,一個三位數(shù),百位數(shù)字為a,十位數(shù)字為b,個位數(shù)字為c,則這個三位數(shù)為:100a+10b+c,而不是abc。
四注意從語言敘述中寫出相等關(guān)系。
如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。五注意單位換算
如,“小時”“分鐘”的換算;s、v、t單位的一致等。
中考數(shù)學(xué)的知識點 13
1、加法:
(1)同號兩數(shù)相加,取原來的符號,并把它們的絕對值相加;
(2)異號兩數(shù)相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。可使用加法交換律、結(jié)合律。
2、減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù)。
3、乘法:
(1)兩數(shù)相乘,同號取正,異號取負(fù),并把絕對值相乘。
(2)n個實數(shù)相乘,有一個因數(shù)為0,積就為0;若n個非0的實數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正;當(dāng)負(fù)因數(shù)為奇數(shù)個時,積為負(fù)。
(3)乘法可使用乘法交換律、乘法結(jié)合律、乘法分配律。
4、除法:
(1)兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。
(2)除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。
(3)0除以任何數(shù)都等于0,0不能做被除數(shù)。
5、乘方與開方:乘方與開方互為逆運算。
6、實數(shù)的運算順序:乘方、開方為三級運算,乘、除為二級運算,加、減是一級運算,如果沒有括號,在同一級運算中要從左到右依次運算,不同級的運算,先算高級的運算再算低級的運算,有括號的先算括號里的運算。無論何種運算,都要注意先定符號后運算。
中考數(shù)學(xué)的知識點 14
知識點1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常數(shù)項是-2.
2.一元二次方程3x2+4x-2=0的一次項系數(shù)為4,常數(shù)項是-2.
3.一元二次方程3x2-5x-7=0的二次項系數(shù)為3,常數(shù)項是-7.
4.把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.
知識點2:直角坐標(biāo)系與點的位置
1.直角坐標(biāo)系中,點A(3,0)在軸上。
2.直角坐標(biāo)系中,x軸上的任意點的橫坐標(biāo)為0.
3.直角坐標(biāo)系中,點A(1,1)在第一象限。
4.直角坐標(biāo)系中,點A(-2,3)在第四象限。
5.直角坐標(biāo)系中,點A(-2,1)在第二象限。
知識點3:已知自變量的值求函數(shù)值
1.當(dāng)x=2時,函數(shù)=的值為1.
2.當(dāng)x=3時,函數(shù)=的值為1.
3.當(dāng)x=-1時,函數(shù)=的值為1.
知識點4:基本函數(shù)的概念及性質(zhì)
1.函數(shù)=-8x是一次函數(shù)。
2.函數(shù)=4x+1是正比例函數(shù)。
3.函數(shù)是反比例函數(shù)。
4.拋物線=-3(x-2)2-5的開口向下。
5.拋物線=4(x-3)2-10的對稱軸是x=3.
6.拋物線的頂點坐標(biāo)是(1,2)。
7.反比例函數(shù)的圖象在第一、三象限
知識點5:特殊的數(shù)據(jù)
1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.
2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.
3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.
知識點6:特殊三角函數(shù)值
1.cs30°=。
2.sin260°+cs260°=1.
3.2sin30°+tan45°=2.
4.tan45°=1.
5.cs60°+sin30°=1.
知識點7:圓的基本性質(zhì)
1.半圓或直徑所對的圓周角是直角。
2.任意一個三角形一定有一個外接圓。
3.在同一平面內(nèi),到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
4.在同圓或等圓中,相等的圓心角所對的弧相等。
5.同弧所對的圓周角等于圓心角的一半。
6.同圓或等圓的半徑相等。
7.過三個點一定可以作一個圓。
8.長度相等的兩條弧是等弧。
9.在同圓或等圓中,相等的圓心角所對的弧相等。
10.經(jīng)過圓心平分弦的直徑垂直于弦。
知識點8:直線與圓的位置關(guān)系
1.直線與圓有唯一公共點時,叫做直線與圓相切。
2.三角形的外接圓的圓心叫做三角形的外心。
3.弦切角等于所夾的弧所對的圓心角。
4.三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心。
5.垂直于半徑的直線必為圓的切線。
6.過半徑的外端點并且垂直于半徑的直線是圓的切線。
7.垂直于半徑的直線是圓的切線。
8.圓的切線垂直于過切點的半徑。
中考數(shù)學(xué)的知識點 15
初中數(shù)學(xué)集合的運算中考知識點集錦
集合的運算知識:它包括有交換律、結(jié)合律、分配對偶律、對偶律、同一律等。
集合的運算定律
交換律:A∩B=B∩A
A∪B=B∪A
結(jié)合律:A∪(B∪C)=(A∪B)∪C
A∩(B∩C)=(A∩B)∩C
分配對偶律:A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
對偶律:(A∪B)^C=A^C∩B^C
(A∩B)^C=A^C∪B^C
同一律:A∪Φ=A
A∩U=A
求補律:A∪A'=U
A∩A'=Φ
對合律:(A')'=A
等冪律:A∪A=A
A∩A=A
零一律:A∪U=U
A∩U=A
吸收律:A∪(A∩B)=A
A∩(A∪B)=A
德·摩根定律(反演律):(A∪B)'=A'∩B'
(A∩B)'=A'∪B'
知識拓展:容斥原理(特殊情況):card(A∪B)=card(A)+card(B)-card(A∩B)
【中考數(shù)學(xué)的知識點 (15篇)】相關(guān)文章:
中考數(shù)學(xué)的知識點02-22
數(shù)學(xué)中考的知識點01-25
數(shù)學(xué)中考的知識點11-22
數(shù)學(xué)中考知識點02-17
中考數(shù)學(xué)最熱的知識點11-19
數(shù)學(xué)中考知識點集錦11-02
中考數(shù)學(xué)知識點10-31
數(shù)學(xué)中考知識點匯總10-26