初一下冊(cè)數(shù)學(xué)證明
應(yīng)該還有這兩個(gè)條件吧:點(diǎn)E是CD的中點(diǎn),點(diǎn)G是BF的中點(diǎn)。
如果有,證明如下:
證明:連接BE、FE,
因?yàn)镈B⊥AC,點(diǎn)E是CD的中點(diǎn),
所以在Rt△CBD中,BE=CE=DE,
又因?yàn)镃F⊥AD,點(diǎn)E是CD的中點(diǎn),
所以在Rt△CFD中,EF=CE=DE,
則BE=EF,則△BEF為等腰三角形,
又因?yàn)辄c(diǎn)G為BF的中點(diǎn),
所以 EG⊥BF,
即EG是BF上的垂線。
2
∠A +10=∠1,∠B=42,∵∠A+∠B+1=180 ∴∠A+42+∠A+10=180 ∴∠A=64 ∠1=74 又∵∠ACD=64 ∴延長(zhǎng)DC到E,∴∠BCE=180-∠ACD-∠1=42=∠ABC ∴AB‖CD
3學(xué)校將若干個(gè)宿舍分別配給七年級(jí)一班的女生宿舍,已知該班女生少于35人,若每個(gè)房間住5人,則剩下5人沒(méi)處住;若每個(gè)房間住8人,則空一間房,并且還有一間房也不滿,有多少間宿舍,多少名女生?
設(shè)有x間宿舍,y名女生。 5x+5=y ① 8(x-1)>y ② 把y=5x+5代入②中,8(x-1)>5x+5 即3x>13 x>4.3當(dāng)x=5時(shí),y=30,符合題意。當(dāng)x=6時(shí),y=35,已知該班女生少于35人,不符合題意。x>5都不符合題意。所以有5間宿舍,6名女生
4
一.選擇題 (本大題共 24 分)
1. 以下列各組數(shù)為三角形的三條邊,其中能構(gòu)成直角三角形的是( )
(A)17,15,8 (B)1/3,1/4,1/5 (C) 4,5,6 (D) 3,7,11
2. 如果三角形的一個(gè)角的度數(shù)等于另兩個(gè)角的度數(shù)之和,那么這個(gè)三角形一定是( )
(A)銳角三角形 (B)直角三角形 (C)鈍角三角形 (D)等腰三角形
3. 下列給出的各組線段中,能構(gòu)成三角形的是( )
(A)5,12,13 (B)5,12,7 (C)8,18,7 (D)3,4,8
4. 如圖已知:Rt△ABC中,∠C=90°,AD平分∠BAC,AE=AC,連接DE,則下列結(jié)論中,不正確的是( )
(A) DC=DE (B) ∠ADC=∠ADE (C) ∠DEB=90° (D) ∠BDE=∠DAE
5. 一個(gè)三角形的三邊長(zhǎng)分別是15,20和25,則它的最大邊上的高為( )
(A)12 (B)10 (C) 8 (D) 5
6. 下列說(shuō)法不正確的是( )
(A) 全等三角形的對(duì)應(yīng)角相等
(B) 全等三角形的對(duì)應(yīng)角的平分線相等
(C) 角平分線相等的三角形一定全等
(D) 角平分線是到角的兩邊距離相等的所有點(diǎn)的集合
7. 兩條邊長(zhǎng)分別為2和8,第三邊長(zhǎng)是整數(shù)的三角形一共有( )
(A)3個(gè) (B)4個(gè) (C)5個(gè) (D)無(wú)數(shù)個(gè)
8. 下列圖形中,不是軸對(duì)稱圖形的是( )
(A)線段 MN (B)等邊三角形 (C) 直角三角形 (D) 鈍角∠AOB
9. 如圖已知:△ABC中,AB=AC, BE=CF, AD⊥BC于D,此圖中全等的三角形共有( )
(A)2對(duì) (B)3對(duì) (C)4對(duì) (D)5對(duì)
10. 直角三角形兩銳角的平分線相交所夾的鈍角為( )
(A)125° (B)135° (C)145° (D)150°
11. 直角三角形兩銳角的平分線相交所夾的鈍角為( )
(A)125° (B)135° (C)145° (D)150°
12. 如圖已知:∠A=∠D,∠C=∠F,如果△ABC≌△DEF,那么還應(yīng)給出的條件是( )
(A) AC=DE (B) AB=DF (C) BF=CE (D) ∠ABC=∠DEF
二.填空題 (本大題共 40 分)
1. 在Rt△ABC中,∠C=90°,如果AB=13,BC=12,那么AC= ;如果AB=10,AC:BC=3:4,那么BC=
2. 如果三角形的兩邊長(zhǎng)分別為5和9,那么第三邊x的取值范圍是 。
3. 有一個(gè)三角形的兩邊長(zhǎng)為3和5,要使這個(gè)三角形是直角三角形,它的第三邊等于
4. 如圖已知:等腰△ABC中,AB=AC,∠A=50°,BO、CO分別是∠ABC和∠ACB的平分線,BO、CO相交于O。則:∠BOC=
5. 設(shè)α是等腰三角形的一個(gè)底角,則α的取值范圍是( )
(A)0<α<90° (B) α<90° (C) 0<α≤90° (D) 0≤α<90°
6. 如圖已知:△ABC≌△DBE,∠A=50°,∠E=30°
則∠ADB= 度,∠DBC= 度
7. 在△ABC中,下列推理過(guò)程正確的是( )
(A)如果∠A=∠B,那么AB=AC
(B)如果∠A=∠B,那么AB=BC
(C) 如果CA=CB ,那么 ∠A=∠B
(D) 如果AB=BC ,那么∠B=∠A
8. 如果三角形的一個(gè)外角小于與它相鄰的內(nèi)角,那么這個(gè)三角形一定是 三角形。
9. 等腰△ABC中,AB=2BC,其周長(zhǎng)為45,則AB長(zhǎng)為
10. 命題“對(duì)應(yīng)角相等的三角形是全等三角形”的逆命題是:
其中:原命題是 命題,逆命題是 命題。
11. 如圖已知:AB‖DC,AD‖BC,AC、BD,EF相交于O,且AE=CF,圖中△AOE≌△ ,△ABC≌△ ,全等的三角形一共有 對(duì)。
12. 如圖已知:在Rt△ABC和Rt△DEF中
∵AB=DE(已知)
= (已知)
∴Rt△ABC≌Rt△DEF (________)
13. 如果三角形的一個(gè)外角小于與它相鄰的內(nèi)角,那么這個(gè)三角形一定是 三角形。
14. 如圖,BO、CO分別是∠ABC和∠ACB的平分線,∠BOC=136°,則= 度。
15. 如果等腰三角形的一個(gè)外角為80°,那么它的底角為 度
16. 在等腰Rt△ABC中,CD是底邊的中線,AD=1,則AC= 。如果等邊三角形的邊長(zhǎng)為2,那么它的高為 。
17. 等腰三角形的腰長(zhǎng)為4,腰上的高為2,則此等腰三角形的.頂角為( )
(A)30° (B) 120° (C) 40° (D)30°或150°
18. 如圖已知:AD是△ABC的對(duì)稱軸,如果∠DAC=30˚,DC=4cm,那么△ABC的周長(zhǎng)為 cm。
19. 如圖已知:△ABC中,AB=AC,AB的垂直平分線DE交AC于E,垂足為D,如果∠A=40˚,那么∠BEC= ;如果△BEC的周長(zhǎng)為20cm,那么底邊BC= 。
20. 如圖已知:Rt△ABC中,∠ACB=90˚˚,DE是BC的垂直平分線,交AB于E,垂足為D,如果AC=√3,BC=3,那么,∠A= 度!鰿DE的周長(zhǎng)為 。
三.判斷題 (本大題共 5 分)
1. 有一邊對(duì)應(yīng)相等的兩個(gè)等邊三角形全等。( )
2. 關(guān)于軸對(duì)稱的兩個(gè)三角形面積相等 ( )
3. 有一角和兩邊對(duì)應(yīng)相等的兩個(gè)三角形全等。 ( )
4. 以線段a、b、c為邊組成的三角形的條件是a+b>c ( )
5. 兩邊和其中一邊上的中線對(duì)應(yīng)相等的兩個(gè)三角形全等。( )
四.計(jì)算題 (本大題共 5 分)
1. 如圖已知,△ABC中,∠B=40°,∠C=62°,AD是BC邊上的高,AE是∠BAC的平分線。
求:∠DAE的度數(shù)。
五.作圖題 (本大題共 6 分)
1. 如圖已知△ABC,用刻度尺和量角器畫(huà)出:∠A的平分線;AC邊上的中線;AB邊上的高。
2. 如圖已知:∠α和線段α。 求作:等腰△ABC,使得∠A=∠α, AB=AC,BC邊上的高AD=α。
3. 在鐵路的同旁有A、B兩個(gè)工廠,要在鐵路旁邊修建一個(gè)倉(cāng)庫(kù),使與A、B兩廠的距離相等,畫(huà)出倉(cāng)庫(kù)的位置。
【初一下冊(cè)數(shù)學(xué)證明】相關(guān)文章:
初一下冊(cè)幾何證明04-16
初一數(shù)學(xué)補(bǔ)充下冊(cè)答案04-09
初一數(shù)學(xué)下冊(cè)的教學(xué)反思06-23
初一數(shù)學(xué)下冊(cè)教學(xué)總結(jié)07-05
初一數(shù)學(xué)下冊(cè)練習(xí)題01-19