- 相關(guān)推薦
正數(shù)和負(fù)數(shù)
負(fù)數(shù)
負(fù)數(shù)的簡(jiǎn)介
比零小(<0)的數(shù).用負(fù)號(hào)(即減號(hào))“-”標(biāo)記.
如-2, -5.33, -45/77, -π.
參見:非負(fù)數(shù)(Nonnegative), 正數(shù)(Positive), 零(Zero),負(fù)號(hào)/減號(hào)(Minus Sign).
例1、我們?cè)谛W(xué)學(xué)過(guò)自然數(shù)1,2,3,...;一個(gè)物體也沒(méi)有,就用0來(lái)表示,測(cè)量和計(jì)算有時(shí)不能得到整數(shù)的
結(jié)果,這就要用分?jǐn)?shù)和小數(shù)表示.同學(xué)們還見過(guò)其他種類的數(shù)嗎?
現(xiàn)在有兩個(gè)溫度計(jì),溫度計(jì)液面指在0以上第6刻度,它表示的溫度是6℃,那么溫度計(jì)液面指在0以下第6
刻度,這時(shí)的溫度如何表示呢?
提示:
如果還用6℃來(lái)表示,那么就無(wú)法區(qū)分是零上6℃還是零下6℃,因此我們就引入一種新數(shù)——負(fù)數(shù).
參考答案:
記作-6℃.
說(shuō)明:
我們?yōu)榱藚^(qū)分零上6℃與零下6℃這一組具有相反意義的量,因而引入了負(fù)數(shù)的概念.
例2、下面我們?cè)倏匆粋(gè)例子,從中國(guó)地形圖上可以看到,有一座世界最高峰——珠穆朗瑪峰,圖上標(biāo)著8844;
還有一個(gè)吐魯番盆地,圖上標(biāo)著-155.你能說(shuō)出它們的高度各是多少嗎?
提示:
中國(guó)地形圖上可以看到,上述兩處都標(biāo)有它們的高度的數(shù),圖上標(biāo)的數(shù)表示的高度是相對(duì)海平面說(shuō)的,
通常稱為海拔高度.8844表示珠穆朗瑪峰比海平面高8844米,-155表示吐魯番盆地比海平面低155米.
參考答案:
珠穆朗瑪峰的高度是海拔8844米;
吐魯番盆地的高度是海拔-155米.
說(shuō)明:
這個(gè)例子也說(shuō)明了我們?yōu)榱藢?shí)際需要引入負(fù)數(shù),是為了區(qū)分海平面以上與海平面以下高度,它們也表示
具有相反意義的量.
例3、甲地海拔高度是35米 乙地海拔高度是15米,丙地海拔高度是-20米,請(qǐng)問(wèn)哪個(gè)地方最高,哪個(gè)地方
最低?最高的地方比最低的地方高多少?
提示:
35米,15米,-20米分別表示什么意義?
參考答案:
甲地最高,丙地最低,最高的地方比最低的'地方高55米。
說(shuō)明:
35米表示高出海平面35米,15米表示高出海平面15米,-20米表示低于海平面20米,所以甲地最高,
丙地最低,且甲地比丙地高55米。
例4、我們已經(jīng)知道,具有相反意義的量可以用正,負(fù)數(shù)表示。例如:零上5℃和零下6℃可記為+5℃和
-6℃;高出海平面10米和低于海平面8米可記為+10米和-8米;收入200元和支出300元可記為
+200元和-300元;前進(jìn)30米和后退40米可記為+30米和-40米,請(qǐng)問(wèn)上升7米和向東運(yùn)動(dòng)9米可記為
+7米和-9米嗎?
提示:
上升和向東運(yùn)動(dòng)是具有相反意義的量嗎?
參考答案:
不可以記為+7米和-9米。
說(shuō)明:
具有相反意義的量必須滿足兩個(gè)條件:(1)它們必須是同一屬性的量;(2)它們的意義相反。上升
和下降;向東運(yùn)動(dòng)和向西運(yùn)動(dòng)才是相反意義的量,因?yàn)樯仙拖驏|運(yùn)動(dòng)不是具有相反意義的量,所以不可
以記為+7米和-9米。
-π是超越數(shù),不是有理數(shù)
復(fù)數(shù)的由來(lái)
人們?cè)谏钪薪?jīng)常會(huì)遇到各種相反意義的量。比如,在記帳時(shí)有余有虧;在計(jì)算糧倉(cāng)存米時(shí),有時(shí)要記進(jìn)糧食,有時(shí)要記出糧食。為了方便,人們就考慮了相反意義的數(shù)來(lái)表示。于是人們引入了正負(fù)數(shù)這個(gè)概念,把余錢進(jìn)糧食記為正,把虧錢、出糧食記為負(fù)。可見正負(fù)數(shù)是生產(chǎn)實(shí)踐中產(chǎn)生的。
據(jù)史料記載,早在兩千多年前,我國(guó)就有了正負(fù)數(shù)的概念,掌握了正負(fù)數(shù)的運(yùn)算法則。人們計(jì)算的時(shí)候用一些小竹棍擺出各種數(shù)字來(lái)進(jìn)行計(jì)算。比如,356擺成||| ,3056擺成等等。這些小竹棍叫做“算籌”算籌也可以用骨頭和象牙來(lái)制作。
我國(guó)三國(guó)時(shí)期的學(xué)者劉徽在建立負(fù)數(shù)的概念上有重大貢獻(xiàn)。劉徽首先給出了正負(fù)數(shù)的定義,他說(shuō):“今兩算得失相反,要令正負(fù)以名之。”意思是說(shuō),在計(jì)算過(guò)程中遇到具有相反意義的量,要用正數(shù)和負(fù)數(shù)來(lái)區(qū)分它們。
劉徽第一次給出了正負(fù)區(qū)分正負(fù)數(shù)的方法。他說(shuō):“正算赤,負(fù)算黑;否則以邪正為異”意思是說(shuō),用紅色的小棍擺出的數(shù)表示正數(shù),用黑色的小棍擺出的數(shù)表示負(fù)數(shù);也可以用斜擺的小棍表示負(fù)數(shù),用正擺的小棍表示正數(shù)。
我國(guó)古代著名的數(shù)學(xué)專著《九章算術(shù)》(成書于公元一世紀(jì))中,最早提出了正負(fù)數(shù)加減法的法則:“正負(fù)數(shù)曰:同名相除,異名相益,正無(wú)入負(fù)之,負(fù)無(wú)入正之;其異名相除,同名相益,正無(wú)入正之,負(fù)無(wú)入負(fù)之!边@里的“名”就是“號(hào)”,“除”就是“減”,“相益”、“相除”就是兩數(shù)的絕對(duì)值“相加”、“相減”,“無(wú)”就是“零”。
用現(xiàn)在的話說(shuō)就是:“正負(fù)數(shù)的加減法則是:同符號(hào)兩數(shù)相減,等于其絕對(duì)值相減,異號(hào)兩數(shù)相減,等于其絕對(duì)值相加。零減正數(shù)得負(fù)數(shù),零減負(fù)數(shù)得正數(shù)。異號(hào)兩數(shù)相加,等于其絕對(duì)值相減,同號(hào)兩數(shù)相加,等于其絕對(duì)值相加。零加正數(shù)等于正數(shù),零加負(fù)數(shù)等于負(fù)數(shù)!
這段關(guān)于正負(fù)數(shù)的運(yùn)算法則的敘述是完全正確的,與現(xiàn)在的法則完全一致!負(fù)數(shù)的引入是我國(guó)數(shù)學(xué)家杰出的貢獻(xiàn)之一。
用不同顏色的數(shù)表示正負(fù)數(shù)的習(xí)慣,一直保留到現(xiàn)在。現(xiàn)在一般用紅色表示負(fù)數(shù),報(bào)紙上登載某國(guó)經(jīng)濟(jì)上出現(xiàn)赤字,表明支出大于收入,財(cái)政上虧了錢。
負(fù)數(shù)是正數(shù)的相反數(shù)。在實(shí)際生活中,我們經(jīng)常用正數(shù)和負(fù)數(shù)來(lái)表示意義相反的兩個(gè)量。夏天武漢氣溫高達(dá)42°C,你會(huì)想到武漢的確象火爐,冬天哈爾濱氣溫-32°C一個(gè)負(fù)號(hào)讓你感到北方冬天的寒冷。
【正數(shù)和負(fù)數(shù)】相關(guān)文章:
正數(shù)和負(fù)數(shù)教案及教學(xué)設(shè)計(jì)11-24
正數(shù)和負(fù)數(shù)優(yōu)質(zhì)課教案12-05
正數(shù)與負(fù)數(shù)教學(xué)設(shè)計(jì)11-23
正數(shù)和負(fù)數(shù)的實(shí)際意義學(xué)案09-02
正數(shù)與負(fù)數(shù)的教案內(nèi)容02-17