亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

范文資料網(wǎng)>書(shū)稿范文>總結(jié)>《高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié)

時(shí)間:2022-06-08 17:41:17 總結(jié) 我要投稿
  • 相關(guān)推薦

高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié)

  總結(jié)是事后對(duì)某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析的一種書(shū)面材料,它能幫我們理順知識(shí)結(jié)構(gòu),突出重點(diǎn),突破難點(diǎn),為此我們要做好回顧,寫(xiě)好總結(jié)。我們?cè)撛趺慈?xiě)總結(jié)呢?下面是小編為大家收集的高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié),僅供參考,大家一起來(lái)看看吧。

高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié)

  sinα=∠α的對(duì)邊/斜邊

  cosα=∠α的鄰邊/斜邊

  tanα=∠α的對(duì)邊/∠α的鄰邊

  cotα=∠α的鄰邊/∠α的對(duì)邊

  倍角公式

  sin2a=2sina?cosa

  cos2a=cosa^2-sina^2=1-2sina^2=2cosa^2-1

  tan2a=(2tana)/(1-tana^2)

  (注:sina^2是sina的平方sin2(a))

  高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a=tana·tan(π/3+a)·tan(π/3-a)

  高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):三倍角公式推導(dǎo)

  sin3a

  =sin(2a+a)

  =sin2acosa+cos2asina

  高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):輔助角公式

  asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中

  sint=b/(a^2+b^2)^(1/2)

  cost=a/(a^2+b^2)^(1/2)

  tant=b/a

  asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b降冪公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):推導(dǎo)公式

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  =2sina(1-sin2a)+(1-2sin2a)sina

  =3sina-4sin3a

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cos2a-1)cosa-2(1-sin2a)cosa

  =4cos3a-3cosa

  sin3a=3sina-4sin3a

  =4sina(3/4-sin2a)

  =4sina[(√3/2)2-sin2a]

  =4sina(sin260°-sin2a)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a=4cos3a-3cosa

  =4cosa(cos2a-3/4)

  =4cosa[cos2a-(√3/2)2]

  =4cosa(cos2a-cos230°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述兩式相比可得

  tan3a=tanatan(60°-a)tan(60°+a)

  高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):半角公式

  tan(a/2)=(1-cosa)/sina=sina/(1+cosa);

  cot(a/2)=sina/(1-cosa)=(1+cosa)/sina.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):兩角和差

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):和差化積

  sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]

  sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]

  cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]

  cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]

  tana+tanb=sin(a+b)/cosacosb=tan(a+b)(1-tanatanb)

  tana-tanb=sin(a-b)/cosacosb=tan(a-b)(1+tanatanb)

  高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):積化和差

  sinαsinβ=[cos(α-β)-cos(α+β)]/2

  cosαcosβ=[cos(α+β)+cos(α-β)]/2

  sinαcosβ=[sin(α+β)+sin(α-β)]/2

  cosαsinβ=[sin(α+β)-sin(α-β)]/2

  高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):誘導(dǎo)公式

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(—a)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  sin(π-α)=sinα

  cos(π-α)=-cosα

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tana=sina/cosa

  tan(π/2+α)=-cotα

  tan(π/2-α)=cotα

  tan(π-α)=-tanα

  tan(π+α)=tanα

  誘導(dǎo)公式記背訣竅:奇變偶不變,符號(hào)看象限

  萬(wàn)能公式

  sinα=2tan(α/2)/[1+tan^(α/2)]

  cosα=[1-tan^(α/2)]/1+tan^(α/2)]

  tanα=2tan(α/2)/[1-tan^(α/2)]

  高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):其它公式

  (1)(sinα)^2+(cosα)^2=1

  (2)1+(tanα)^2=(secα)^2

  (3)1+(cotα)^2=(cscα)^2

  證明下面兩式,只需將一式,左右同除(sinα)^2,第二個(gè)除(cosα)^2即可

  (4)對(duì)于任意非直角三角形,總有

  tana+tanb+tanc=tanatanbtanc

  證:

  a+b=π-c

  tan(a+b)=tan(π-c)

  (tana+tanb)/(1-tanatanb)=(tanπ-tanc)/(1+tanπtanc)

  整理可得

  tana+tanb+tanc=tanatanbtanc

  得證

  同樣可以得證,當(dāng)x+y+z=nπ(n∈z)時(shí),該關(guān)系式也成立

  由tana+tanb+tanc=tanatanbtanc可得出以下結(jié)論

  (5)cotacotb+cotacotc+cotbcotc=1

  (6)cot(a/2)+cot(b/2)+cot(c/2)=cot(a/2)cot(b/2)cot(c/2)

  (7)(cosa)^2+(cosb)^2+(cosc)^2=1-2cosacosbcosc

  (8)(sina)^2+(sinb)^2+(sinc)^2=2+2cosacosbcosc

  (9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及

  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

  tanatanbtan(a+b)+tana+tanb-tan(a+b)=0

【高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-30

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(15篇)02-20

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇02-20

高中數(shù)學(xué)總結(jié)05-16

高中數(shù)學(xué)教學(xué)總結(jié)02-17

月考總結(jié)高中數(shù)學(xué)12-27

高中數(shù)學(xué)研修總結(jié)07-22

生物知識(shí)點(diǎn)總結(jié)03-03

物理知識(shí)點(diǎn)總結(jié)03-01