高中數(shù)學(xué)知識點(diǎn)總結(jié)(15篇)
總結(jié)是事后對某一階段的學(xué)習(xí)或工作情況作加以回顧檢查并分析評價的書面材料,寫總結(jié)有利于我們學(xué)習(xí)和工作能力的提高,讓我們一起來學(xué)習(xí)寫總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?以下是小編幫大家整理的高中數(shù)學(xué)知識點(diǎn)總結(jié),僅供參考,大家一起來看看吧。
高中數(shù)學(xué)知識點(diǎn)總結(jié)1
一、平面的基本性質(zhì)與推論
1、平面的基本性質(zhì):
公理1如果一條直線的兩點(diǎn)在一個平面內(nèi),那么這條直線在這個平面內(nèi);
公理2過不在一條直線上的三點(diǎn),有且只有一個平面;
公理3如果兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。
2、空間點(diǎn)、直線、平面之間的位置關(guān)系:
直線與直線—平行、相交、異面;
直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);
平面與平面—平行、相交。
3、異面直線:
平面外一點(diǎn)A與平面一點(diǎn)B的連線和平面內(nèi)不經(jīng)過點(diǎn)B的直線是異面直線(判定);
所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補(bǔ)角);
兩條直線不是異面直線,則兩條直線平行或相交(反證);
異面直線不同在任何一個平面內(nèi)。
求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角
二、空間中的平行關(guān)系
1、直線與平面平行(核心)
定義:直線和平面沒有公共點(diǎn)
判定:不在一個平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)
性質(zhì):一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,則這條直線就和兩平面的交線平行
2、平面與平面平行
定義:兩個平面沒有公共點(diǎn)
判定:一個平面內(nèi)有兩條相交直線平行于另一個平面,則這兩個平面平行
性質(zhì):兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。
3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線
三、空間中的垂直關(guān)系
1、直線與平面垂直
定義:直線與平面內(nèi)任意一條直線都垂直
判定:如果一條直線與一個平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直
性質(zhì):垂直于同一直線的兩平面平行
推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面
直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度
2、平面與平面垂直
定義:兩個平面所成的`二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個半平面內(nèi)分別作垂直于棱的兩條射線所成的角)
判定:一個平面過另一個平面的垂線,則這兩個平面垂直
性質(zhì):兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直
高中數(shù)學(xué)知識點(diǎn)總結(jié)2
一集合
1、集合的含義:集合為一些確定的、不同的對象的全體。2、集合的中元素的三個特性:確定性、互異性、無序性。3、集合的表示:
(1)用大寫字母表示集合:A,B…(2)集合的表示方法:
a、列舉法:將集合中的元素一一列舉出來{a,b,c}b、描述法:集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合,xRx23c、維恩圖:用一條封閉曲線的內(nèi)部表示.
4、集合的分類:
。1)有限集:含有有限個元素的集合(2)無限集:含有無限個元素的集合(3)空集:不含任何元素的集合5、元素與集合的關(guān)系:aA;aA注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集:(即自然數(shù)集)N正整數(shù)集:Nx或N+整數(shù)集:Z有理數(shù)集:Q實(shí)數(shù)集:R
6、集合間的基本關(guān)系(1)“包含”關(guān)系子集
定義:如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含
關(guān)系,稱集合A是集合B的子集。記作:AB(或BA)
注意:AB有兩種可能(1)A是B的一部分;
。2)A與B是同一集合。
B或BA反之:集合A不包含于集合B,或集合B不包含集合A,記作A(2)“包含”關(guān)系真子集
如果集合AB,但存在元素xB且xA,則集合A是集合B的真子集,記作AB(或BA)
。3“相等”關(guān)系:A=B“元素相同則兩集合相等”,如果AB同時BA那么A=B
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。(4)集合的性質(zhì)
、偃魏我粋集合是它本身的子集,AA②如果AB,BC,那么AC③如果AB且BC,那么AC
④有n個元素的集合,含有2n個子集,2n-1個真子集
7、集合的運(yùn)算
運(yùn)算類型交集并集定義由所有屬于A且屬于B由所有屬于集合A或?qū)俚脑厮M成的集合,于集合B的元素所組成叫做A,B的交集.記作的集合,叫做A,B的并AB(讀作‘A交B’)集.記作:AB(讀作‘A并B’)補(bǔ)集全集:一般,若一個集合含有我們所研究問題中的所有元素,我們就稱這個集合為全集,記作:U設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)記作CSA,韋恩圖示ABABSA圖1圖2CU(CUA)A性質(zhì)A∩A=AA∩Φ=ΦA(chǔ)∩B=BAAUA=AAUΦ=AAUB=BUAAU(CuA)=UA∩(CuA)=Φ.A∩BAA∩AUBABBAUBB二函數(shù)1.函數(shù)的概念:記法y=f(x),x∈A.
2.函數(shù)的三要素:定義域、值域、對應(yīng)法則
3.函數(shù)的表示方法:(1)解析法:(2)圖象法:(3)列表法:4.函數(shù)的基本性質(zhì)
a、函數(shù)解析式子的求法
。1)代入法:(2)待定系數(shù)法:(3)換元法:(4)拼湊法:
b、定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。(1)分式的分母不等于零;
(2)偶次方根的被開方數(shù)大于等于零;
(3)對數(shù)式的真數(shù)必須大于零;(4)零次冪式的底數(shù)不等于零;(5)分段函數(shù)的各段范圍取并集;
(6)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合;
(7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.c、相同函數(shù)的判斷方法;定義域一致②對應(yīng)法則一致
d.區(qū)間的概念:
e.值域(先考慮其定義域)5.分段函數(shù)6.映射的概念
對于映射f:A→B來說,則應(yīng)滿足:
(1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個;(3)不要求集合B中的每一個元素在集合A中都有原象。注意:函數(shù)是特殊的映射。7、函數(shù)的單調(diào)性(局部性質(zhì))(1)增減函數(shù)定義(2)圖象的特點(diǎn)
如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的
(3)函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(A)定義法:○1取值;○2作差;○3變形;○4定號;○5結(jié)論.(B)圖象法(從圖象上看升降)
(C)復(fù)合函數(shù)的單調(diào)性:“同增異減”
注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.
8、函數(shù)的奇偶性(整體性質(zhì))(1)奇、偶函數(shù)定義
。2)具有奇偶性的函數(shù)的'圖象的特征
偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱.(3)利用定義判斷函數(shù)奇偶性的步驟:
a、首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對稱;若是不對稱,則是非奇非偶的函數(shù);若對稱,則進(jìn)行下面判斷;b、確定f(-x)與f(x)的關(guān)系;
c、作出相應(yīng)結(jié)論:若f(-x)=f(x),則f(x)是偶函數(shù);
若f(-x)=-f(x),則f(x)是奇函數(shù).
注意:函數(shù)定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的前提條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,若不對稱則函數(shù)是非奇非偶函數(shù).(4)函數(shù)的奇偶性與單調(diào)性
奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相反的單調(diào)性。(5)若已知是奇、偶函數(shù)可以直接用特值9、基本初等函數(shù)
一、一次函數(shù)
二、二次函數(shù):二次函數(shù)的圖象與性質(zhì),注意:二次函數(shù)值域求法三、指數(shù)函數(shù)(一)指數(shù)
1、有理指數(shù)冪的運(yùn)算法則2、根式的概念3、分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的
anam(a0,m,nNx,n1),amnmn1amn1nam(a0,m,nNx,n1)
。ǘ┲笖(shù)函數(shù)的性質(zhì)及其特點(diǎn)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)yax(a0,且a1)叫做指數(shù)函數(shù),其中x是自變量,
函數(shù)的定義域?yàn)镽.
2、指數(shù)函數(shù)的圖象和性質(zhì)a>16540
注意:換底公式
logablogcb(a0,且a1;c0,且c1;b0).logca1nlogab;(2)logabmlogba利用換底公式推導(dǎo)下面的結(jié)論(1)logambn.
(三)對數(shù)函數(shù)
1、對數(shù)函數(shù)的概念:函數(shù)ylogax(a0,且a1)叫做對數(shù)函數(shù),其中x是自變量,
函數(shù)的定義域是(0,+∞).
2、對數(shù)函數(shù)的性質(zhì):a>10
高中數(shù)學(xué)知識點(diǎn)總結(jié)3
1.萬能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)
2.輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a
3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
向量公式:
1.單位向量:單位向量a0=向量a/|向量a|
2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根號(x平方+y平方)
3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(x1平方+y1平方)_根號(x2平方+y2平方)
5.空間向量:同上推論(提示:向量a={x,y,z})
6.充要條件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2
7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方
高中數(shù)學(xué)知識點(diǎn)總結(jié)4
4.1.1圓的標(biāo)準(zhǔn)方程
1、圓的標(biāo)準(zhǔn)方程:(xa)2(yb)2r2
圓心為A(a,b),半徑為r的圓的方程
2、點(diǎn)M(x0,y0)與圓(xa)(1)(x0(3)(x02(yb)2r2的關(guān)系的判斷方法:
a)2(y0b)2>r2,點(diǎn)在圓外(2)(x0a)2(y0b)2=r2,點(diǎn)在圓上a)2(y0b)2歸海木心QQ:634102564
(4)當(dāng)l|r1r2|時,圓C1與圓C2內(nèi)切;(5)當(dāng)l|r1r2|時,圓C1與圓C2內(nèi)含;
4.2.3直線與圓的方程的應(yīng)用
1、利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;2、過程與方法
用坐標(biāo)法解決幾何問題的`步驟:
第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論.
RM4.3.1空間直角坐標(biāo)系
1、點(diǎn)M對應(yīng)著唯一確定的有序?qū)崝?shù)組(x,y,z),x、上的坐標(biāo)
2、有序?qū)崝?shù)組(x,y,z),對應(yīng)著空間直角坐標(biāo)系中的一點(diǎn)
y、z分別是P、Q、R在x、y、z軸
xOPQM"y3、空間中任意點(diǎn)M的坐標(biāo)都可以用有序?qū)崝?shù)組(x,y,z)來表示,該數(shù)組叫做點(diǎn)M在此空間直角坐標(biāo)系中的坐標(biāo),記M(x,y,z),x叫做點(diǎn)M的橫坐標(biāo),坐標(biāo)。y叫做點(diǎn)M的縱坐標(biāo),z叫做點(diǎn)M的豎
z4.3.2空間兩點(diǎn)間的距離公式1、空間中任意一點(diǎn)P1(x1,y1,z1)到點(diǎn)P2(x2,y2,z2)之間的距離公式P1P2P1P2(x1x2)(y1y2)(z1z2)222N1xOM1MM2HN2yN
高中數(shù)學(xué)知識點(diǎn)總結(jié)5
第一講相似三角形的判定及有關(guān)性質(zhì)1.平行線等分線段定理
平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。
推理1:經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊。推理2:經(jīng)過梯形一腰的中點(diǎn),且與底邊平行的直線平分另一腰。
2.平分線分線段成比例定理
平分線分線段成比例定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例。
推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例。
3.相似三角形的判定及性質(zhì)
相似三角形的判定:
定義:對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形。相似三角形對應(yīng)邊的比值叫做相似比(或相似系數(shù))。
由于從定義出發(fā)判斷兩個三角形是否相似,需考慮6個元素,即三組對應(yīng)角是否分別相等,三組對應(yīng)邊是否分別成比例,顯然比較麻煩。所以我們曾經(jīng)給出過如下幾個判定兩個三角形相似的簡單方法:
。1)兩角對應(yīng)相等,兩三角形相似;
。2)兩邊對應(yīng)成比例且夾角相等,兩三角形相似;(3)三邊對應(yīng)成比例,兩三角形相似。
預(yù)備定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與三角形相似。
判定定理1:對于任意兩個三角形,如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似。簡述為:兩角對應(yīng)相等,兩三角形相似。
判定定理2:對于任意兩個三角形,如果一個三角形的兩邊和另一個三角形的兩邊對應(yīng)成比例,并且夾角相等,那么這兩個三角形相似。簡述為:兩邊對應(yīng)成比例且夾角相等,兩三角形相似。
判定定理3:對于任意兩個三角形,如果一個三角形的三條邊和另一個三角形的三條邊對應(yīng)成比例,那么這兩個三角形相似。簡述為:三邊對應(yīng)成比例,兩三角形相似。
引理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。定理:(1)如果兩個直角三角形有一個銳角對應(yīng)相等,那么它們相似;
(2)如果兩個直角三角形的兩條直角邊對應(yīng)成比例,那么它們相似。
定理:如果一個直角三角形的斜邊和一條直角邊與另一個三角形的斜邊和直角邊對應(yīng)成比例,那么這兩個直角三角形相似。相似三角形的性質(zhì):
。1)相似三角形對應(yīng)高的比、對應(yīng)中線的比和對應(yīng)平分線的比都等于相似比;(2)相似三角形周長的比等于相似比;
(3)相似三角形面積的比等于相似比的平方。
相似三角形外接圓的直徑比、周長比等于相似比,外接圓的面積比等于相似比的平方。
4.直角三角形的射影定理
射影定理:直角三角形斜邊上的高是兩直角邊在斜邊上射影的比例中項(xiàng);兩直角邊分別是它們在斜邊上射影與斜邊的比例中項(xiàng)。
第二講直線與圓的位置關(guān)系1.圓周定理
圓周角定理:圓上一條弧所對的圓周角等于它所對的圓周角的一半。圓心角定理:圓心角的度數(shù)等于它所對弧的度數(shù)。
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧相等。推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
2.圓內(nèi)接四邊形的性質(zhì)與判定定理
定理1:圓的內(nèi)接四邊形的對角互補(bǔ)。
定理2:圓內(nèi)接四邊形的外角等于它的內(nèi)角的對角。
圓內(nèi)接四邊形判定定理:如果一個四邊形的對角互補(bǔ),那么這個四邊形的四個頂點(diǎn)共圓。推論:如果四邊形的一個外角等于它的內(nèi)角的對角,那么這個四邊形的四個頂點(diǎn)共圓。
3.圓的切線的性質(zhì)及判定定理
切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑。推論1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)。推論2:經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。
切線的'判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。
4.弦切角的性質(zhì)
弦切角定理:弦切角等于它所夾的弧所對的圓周角。
5.與圓有關(guān)的比例線段
相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等。
割線定理:從園外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等。
切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)。
切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。
6.垂徑定理
垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
7.三角形的五心
(1)內(nèi)心:三條角平分線的交點(diǎn),也是三角形內(nèi)切圓的圓心。性質(zhì):到三邊距離相等。(2)外心:三條中垂線的交點(diǎn),也是三角形外接圓的圓心。性質(zhì):到三個頂點(diǎn)距離相等。(3)重心:三條中線的交點(diǎn)。性質(zhì):三條中線的三等分點(diǎn),到頂點(diǎn)距離為到對邊中點(diǎn)距離的2倍。
(4)垂心:三條高所在直線的交點(diǎn)。
(5)旁心:三角形任意兩角的外角平分線和第三個角的內(nèi)角平分線的交點(diǎn)。性質(zhì):到三邊的
距離相等
第三講圓錐曲線性質(zhì)的探究1.平面與圓柱面的截線:
當(dāng)平面與圓柱的兩底面平行時,截面是個圓;當(dāng)平面與圓柱的兩底面不平行時,截面是個橢
圓;定理1:圓柱形物體的斜截口是橢圓。
定理2:在空間中,取直線l為軸,直線l’與l相交于O點(diǎn),夾角為α,l’圍繞l旋轉(zhuǎn)得
到以O(shè)為頂點(diǎn),l’為母線的圓錐面,任取平面π,若它與軸l的夾角為β(當(dāng)π與l平行時,記β=0),則截面不過頂點(diǎn)時:
(1)β>α,平面π與圓錐的交線為橢圓;(2)β=α,平面π與圓錐的交線為拋物線;(3)
β<α,平面π與圓錐的交線為雙曲線;截面過頂點(diǎn)時:(1)截面和圓錐面只相交于頂點(diǎn),交線為一個點(diǎn)。
(2)截面和圓錐面相交于兩條母線,交線為兩條相交曲線。(3)截面和圓錐面相切,交線為兩
高中數(shù)學(xué)知識點(diǎn)總結(jié)6
1.多動腦思考
2.強(qiáng)化自己學(xué)習(xí)訓(xùn)練
要是想學(xué)好高中數(shù)學(xué),必須做的一件事就是做大量的題,數(shù)學(xué)不一定好,因襲要提高解題的效率,做題的目的在于檢查你學(xué)的知識,方法是否掌握得很好。如果你掌握得不準(zhǔn),甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準(zhǔn)確地把握住基本知識和方法的.基礎(chǔ)上做一定量的定式訓(xùn)練是必要的。盡管復(fù)習(xí)時間緊張,但我們?nèi)匀灰⒁饣貧w課本。要抓綱悟本,對著課本目錄回憶和梳理知識,把重點(diǎn)放在掌握例題涵蓋的知識及解題方法上,選擇一些針對性極強(qiáng)的題目進(jìn)行強(qiáng)化訓(xùn)練、復(fù)習(xí)才有實(shí)效。
3.養(yǎng)成良好的學(xué)習(xí)習(xí)慣
學(xué)習(xí)高三數(shù)學(xué)必須養(yǎng)成良好的審解題解題習(xí)慣,如仔細(xì)閱讀題目,看清數(shù)字,規(guī)范解題格式,做到審題要慢解題要快,注重過程,書寫不規(guī)范,在正規(guī)考試中即使答案對了,由于過程不完整被扣分較多,導(dǎo)致“會而不對”,或是為了保證正確率,反復(fù)驗(yàn)算,浪費(fèi)很多時間,影響整體得分。這些問題都很難在短時間得以解決,必須在平時下功夫努力改正。其實(shí)這是一種不良的學(xué)習(xí)習(xí)慣,必須在第一輪復(fù)習(xí)中逐步克服,否則,后患無窮。可結(jié)合平時解題中存在的具體問題,逐題找出原因,看其是行為習(xí)慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時作些記錄,也就是錯題本,每位學(xué)生必備的,以便以后查詢。
高中數(shù)學(xué)知識點(diǎn)總結(jié)7
集合的分類:
。1)按元素屬性分類,如點(diǎn)集,數(shù)集。
。2)按元素的個數(shù)多少,分為有/無限集
關(guān)于集合的概念:
(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。
。2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的'對象,相同的對象歸入同一個集合時只能算作集合的一個元素。
。3)無序性:判斷一些對象時候構(gòu)成集合,關(guān)鍵在于看這些對象是否有明確的標(biāo)準(zhǔn)。
集合可以根據(jù)它含有的元素的個數(shù)分為兩類:
含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。
非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N。
在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_。
整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z。
有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q。(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)
實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的'點(diǎn)一一對應(yīng)的數(shù)。)
1、列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個集合,例如,由兩個元素0,1構(gòu)成的集合可表示為{0,1}。
有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。
例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}。
無限集有時也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}。
2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。
例如:正偶數(shù)構(gòu)成的集合,它的每一個元素都具有性質(zhì):“能被2整除,且大于0”
而這個集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內(nèi)豎線左邊的X表示這個集合的任意一個元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。
一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。
例如:集合A={x∈R│x2—1=0}的特征是X2—1=0
高中數(shù)學(xué)知識點(diǎn)總結(jié)8
高考數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)
。ㄒ唬⿲(dǎo)數(shù)第一定義
設(shè)函數(shù)y = f(x)在點(diǎn)x0的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0 + △x也在該鄰域內(nèi))時,相應(yīng)地函數(shù)取得增量△y = f(x0 + △x)— f(x0);如果△y與△x之比當(dāng)△x→0時極限存在,則稱函數(shù)y = f(x)在點(diǎn)x0處可導(dǎo),并稱這個極限值為函數(shù)y = f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第一定義
。ǘ⿲(dǎo)數(shù)第二定義
設(shè)函數(shù)y = f(x)在點(diǎn)x0的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x — x0也在該鄰域內(nèi))時,相應(yīng)地函數(shù)變化△y = f(x)— f(x0);如果△y與△x之比當(dāng)△x→0時極限存在,則稱函數(shù)y = f(x)在點(diǎn)x0處可導(dǎo),并稱這個極限值為函數(shù)y = f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第二定義
。ㄈ⿲(dǎo)函數(shù)與導(dǎo)數(shù)
如果函數(shù)y = f(x)在開區(qū)間I內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時函數(shù)y = f(x)對于區(qū)間I內(nèi)的每一個確定的x值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù)y = f(x)的導(dǎo)函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。
。ㄋ模﹩握{(diào)性及其應(yīng)用
1。利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟
(1)求f¢(x)
。2)確定f¢(x)在(a,b)內(nèi)符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2。用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟
。1)求f¢(x)
。2)f¢(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間
高中數(shù)學(xué)重難點(diǎn)知識點(diǎn)
高中數(shù)學(xué)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)習(xí)兩本書。
必修一:1、集合與函數(shù)的概念(這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用(比較抽象,較難理解)
必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角
這部分知識是高一學(xué)生的難點(diǎn),比如:一個角實(shí)際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學(xué)生的立體意識較強(qiáng)。這部分知識高考占22———27分
2、直線方程:高考時不單獨(dú)命題,易和圓錐曲線結(jié)合命題
3、圓方程:
必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計(jì):3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分
必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15———20分,并且經(jīng)常和其他函數(shù)混合起來考查
2、平面向量:高考不單獨(dú)命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17———22分3、不等式:(線性規(guī)劃,聽課時易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。
高中數(shù)學(xué)知識點(diǎn)大全
一、集合與簡易邏輯
1、集合的元素具有確定性、無序性和互異性。
2、對集合,時,必須注意到“極端”情況:或;求集合的子集時是否注意到是任何集合的子集、是任何非空集合的真子集。
3、判斷命題的真假關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”。
4、“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”。
5、四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”。
原命題等價于逆否命題,但原命題與逆命題、否命題都不等價。反證法分為三步:假設(shè)、推矛、得果。
6、充要條件
二、函數(shù)
1、指數(shù)式、對數(shù)式,
2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個集合中的元素必有像,但第二個集合中的元素不一定有原像(中元素的像有且僅有下一個,但中元素的原像可能沒有,也可任意個);函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集的子集”。
。2)函數(shù)圖像與軸垂線至多一個公共點(diǎn),但與軸垂線的公共點(diǎn)可能沒有,也可任意個。
。3)函數(shù)圖像一定是坐標(biāo)系中的曲線,但坐標(biāo)系中的曲線不一定能成為函數(shù)圖像。
3、單調(diào)性和奇偶性
。1)奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同。
偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反。
。2)復(fù)合函數(shù)的單調(diào)性特點(diǎn)是:“同性得增,增必同性;異性得減,減必異性”。
復(fù)合函數(shù)的奇偶性特點(diǎn)是:“內(nèi)偶則偶,內(nèi)奇同外”。復(fù)合函數(shù)要考慮定義域的變化。(即復(fù)合有意義)
4、對稱性與周期性(以下結(jié)論要消化吸收,不可強(qiáng)記)
。1)函數(shù)與函數(shù)的圖像關(guān)于直線(軸)對稱。
推廣一:如果函數(shù)對于一切,都有成立,那么的圖像關(guān)于直線(由“和的一半確定”)對稱。
推廣二:函數(shù),的圖像關(guān)于直線對稱。
。2)函數(shù)與函數(shù)的圖像關(guān)于直線(軸)對稱。
。3)函數(shù)與函數(shù)的圖像關(guān)于坐標(biāo)原點(diǎn)中心對稱。
三、數(shù)列
1、數(shù)列的通項(xiàng)、數(shù)列項(xiàng)的項(xiàng)數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項(xiàng)與數(shù)列的前項(xiàng)和公式的關(guān)系
2、等差數(shù)列中
(1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性。
。2)也成等差數(shù)列。
。3)兩等差數(shù)列對應(yīng)項(xiàng)和(差)組成的新數(shù)列仍成等差數(shù)列。
。4)仍成等差數(shù)列。
。5)“首正”的遞等差數(shù)列中,前項(xiàng)和的最大值是所有非負(fù)項(xiàng)之和;“首負(fù)”的遞增等差數(shù)列中,前項(xiàng)和的最小值是所有非正項(xiàng)之和;
(6)有限等差數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定。若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和“奇數(shù)項(xiàng)和=總項(xiàng)數(shù)的一半與其公差的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和—偶數(shù)項(xiàng)和”=此數(shù)列的中項(xiàng)。
(7)兩數(shù)的等差中項(xiàng)惟一存在。在遇到三數(shù)或四數(shù)成等差數(shù)列時,?紤]選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解。
。8)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項(xiàng)法、通項(xiàng)法、和式法、圖像法(也就是說數(shù)列是等差數(shù)列的充要條件主要有這五種形式)。
3、等比數(shù)列中:
。1)等比數(shù)列的符號特征(全正或全負(fù)或一正一負(fù)),等比數(shù)列的首項(xiàng)、公比與等比數(shù)列的單調(diào)性。
。2)兩等比數(shù)列對應(yīng)項(xiàng)積(商)組成的新數(shù)列仍成等比數(shù)列。
。3)“首大于1”的正值遞減等比數(shù)列中,前項(xiàng)積的最大值是所有大于或等于1的項(xiàng)的積;“首小于1”的正值遞增等比數(shù)列中,前項(xiàng)積的最小值是所有小于或等于1的項(xiàng)的.積;
(4)有限等比數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定。若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”=“奇數(shù)項(xiàng)和”與“公比”的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和“首項(xiàng)”加上“公比”與“偶數(shù)項(xiàng)和”積的和。
(5)并非任何兩數(shù)總有等比中項(xiàng)。僅當(dāng)實(shí)數(shù)同號時,實(shí)數(shù)存在等比中項(xiàng)。對同號兩實(shí)數(shù)的等比中項(xiàng)不僅存在,而且有一對。也就是說,兩實(shí)數(shù)要么沒有等比中項(xiàng)(非同號時),如果有,必有一對(同號時)。在遇到三數(shù)或四數(shù)成等差數(shù)列時,常優(yōu)先考慮選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解。
。6)判定數(shù)列是否是等比數(shù)列的方法主要有:定義法、中項(xiàng)法、通項(xiàng)法、和式法(也就是說數(shù)列是等比數(shù)列的充要條件主要有這四種形式)。
4、等差數(shù)列與等比數(shù)列的聯(lián)系
。1)如果數(shù)列成等差數(shù)列,那么數(shù)列(總有意義)必成等比數(shù)列。
。2)如果數(shù)列成等比數(shù)列,那么數(shù)列必成等差數(shù)列。
(3)如果數(shù)列既成等差數(shù)列又成等比數(shù)列,那么數(shù)列是非零常數(shù)數(shù)列;但數(shù)列是常數(shù)數(shù)列僅是數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件。
(4)如果兩等差數(shù)列有公共項(xiàng),那么由他們的公共項(xiàng)順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的公差是原兩等差數(shù)列公差的最小公倍數(shù)。
如果一個等差數(shù)列與一個等比數(shù)列有公共項(xiàng)順次組成新數(shù)列,那么常選用“由特殊到一般的方法”進(jìn)行研討,且以其等比數(shù)列的項(xiàng)為主,探求等比數(shù)列中那些項(xiàng)是他們的公共項(xiàng),并構(gòu)成新的數(shù)列。
5、數(shù)列求和的常用方法:
。1)公式法:①等差數(shù)列求和公式(三種形式),
、诘缺葦(shù)列求和公式(三種形式),
。2)分組求和法:在直接運(yùn)用公式法求和有困難時,常將“和式”中“同類項(xiàng)”先合并在一起,再運(yùn)用公式法求和。
。3)倒序相加法:在數(shù)列求和中,若和式中到首尾距離相等的兩項(xiàng)和有其共性或數(shù)列的通項(xiàng)與組合數(shù)相關(guān)聯(lián),則?煽紤]選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數(shù)列前和公式的推導(dǎo)方法)。
。4)錯位相減法:如果數(shù)列的通項(xiàng)是由一個等差數(shù)列的通項(xiàng)與一個等比數(shù)列的通項(xiàng)相乘構(gòu)成,那么常選用錯位相減法,將其和轉(zhuǎn)化為“一個新的的等比數(shù)列的和”求解(注意:一般錯位相減后,其中“新等比數(shù)列的項(xiàng)數(shù)是原數(shù)列的項(xiàng)數(shù)減一的差”!)(這也是等比數(shù)列前和公式的推導(dǎo)方法之一)。
。5)裂項(xiàng)相消法:如果數(shù)列的通項(xiàng)可“分裂成兩項(xiàng)差”的形式,且相鄰項(xiàng)分裂后相關(guān)聯(lián),那么常選用裂項(xiàng)相消法求和
。6)通項(xiàng)轉(zhuǎn)換法。
四、三角函數(shù)
1、終邊與終邊相同(的終邊在終邊所在射線上)。
終邊與終邊共線(的終邊在終邊所在直線上)。
終邊與終邊關(guān)于軸對稱
終邊與終邊關(guān)于軸對稱
終邊與終邊關(guān)于原點(diǎn)對稱
一般地:終邊與終邊關(guān)于角的終邊對稱。
與的終邊關(guān)系由“兩等分各象限、一二三四”確定。
2、弧長公式:,扇形面積公式:1弧度(1rad)。
3、三角函數(shù)符號特征是:一是全正、二正弦正、三是切正、四余弦正。
4、三角函數(shù)線的特征是:正弦線“站在軸上(起點(diǎn)在軸上)”、余弦線“躺在軸上(起點(diǎn)是原點(diǎn))”、正切線“站在點(diǎn)處(起點(diǎn)是)”。務(wù)必重視“三角函數(shù)值的大小與單位圓上相應(yīng)點(diǎn)的坐標(biāo)之間的關(guān)系,‘正弦’‘縱坐標(biāo)’、‘余弦’‘橫坐標(biāo)’、‘正切’‘縱坐標(biāo)除以橫坐標(biāo)之商’”;務(wù)必記住:單位圓中角終邊的變化與值的大小變化的關(guān)系為銳角
5、三角函數(shù)同角關(guān)系中,平方關(guān)系的運(yùn)用中,務(wù)必重視“根據(jù)已知角的范圍和三角函數(shù)的取值,精確確定角的范圍,并進(jìn)行定號”;
6、三角函數(shù)誘導(dǎo)公式的本質(zhì)是:奇變偶不變,符號看象限。
7、三角函數(shù)變換主要是:角、函數(shù)名、次數(shù)、系數(shù)(常值)的變換,其核心是“角的變換”!
角的變換主要有:已知角與特殊角的變換、已知角與目標(biāo)角的變換、角與其倍角的變換、兩角與其和差角的變換。
8、三角函數(shù)性質(zhì)、圖像及其變換:
。1)三角函數(shù)的定義域、值域、單調(diào)性、奇偶性、有界性和周期性
注意:正切函數(shù)、余切函數(shù)的定義域;絕對值對三角函數(shù)周期性的影響:一般說來,某一周期函數(shù)解析式加絕對值或平方,其周期性是:弦減半、切不變。既為周期函數(shù)又是偶函數(shù)的函數(shù)自變量加絕對值,其周期性不變;其他不定。如的周期都是,但的周期為,y=|tanx|的周期不變,問函數(shù)y=cos|x|,,y=cos|x|是周期函數(shù)嗎?
。2)三角函數(shù)圖像及其幾何性質(zhì):
。3)三角函數(shù)圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換。
。4)三角函數(shù)圖像的作法:三角函數(shù)線法、五點(diǎn)法(五點(diǎn)橫坐標(biāo)成等差數(shù)列)和變換法。
9、三角形中的三角函數(shù):
。1)內(nèi)角和定理:三角形三角和為,任意兩角和與第三個角總互補(bǔ),任意兩半角和與第三個角的半角總互余。銳角三角形三內(nèi)角都是銳角三內(nèi)角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方。
。2)正弦定理:(R為三角形外接圓的半徑)。
。3)余弦定理:常選用余弦定理鑒定三角形的類型。
五、向量
1、向量運(yùn)算的幾何形式和坐標(biāo)形式,請注意:向量運(yùn)算中向量起點(diǎn)、終點(diǎn)及其坐標(biāo)的特征。
2、幾個概念:零向量、單位向量(與共線的單位向量是,平行(共線)向量(無傳遞性,是因?yàn)橛校、相等向量(有傳遞性)、相反向量、向量垂直、以及一個向量在另一向量方向上的投影(在上的投影是)。
3、兩非零向量平行(共線)的充要條件
4、平面向量的基本定理:如果e1和e2是同一平面內(nèi)的兩個不共線向量,那么對該平面內(nèi)的任一向量a,有且只有一對實(shí)數(shù),使a= e1+ e2。
5、三點(diǎn)共線;
6、向量的數(shù)量積:
六、不等式
1、(1)解不等式是求不等式的解集,最后務(wù)必有集合的形式表示;不等式解集的端點(diǎn)值往往是不等式對應(yīng)方程的根或不等式有意義范圍的端點(diǎn)值。
。2)解分式不等式的一般解題思路是什么?(移項(xiàng)通分,分子分母分解因式,x的系數(shù)變?yōu)檎,?biāo)根及奇穿過偶彈回);
。3)含有兩個絕對值的不等式如何去絕對值?(一般是根據(jù)定義分類討論、平方轉(zhuǎn)化或換元轉(zhuǎn)化);
(4)解含參不等式常分類等價轉(zhuǎn)化,必要時需分類討論。注意:按參數(shù)討論,最后按參數(shù)取值分別說明其解集,但若按未知數(shù)討論,最后應(yīng)求并集。
2、利用重要不等式以及變式等求函數(shù)的最值時,務(wù)必注意a,b(或a,b非負(fù)),且“等號成立”時的條件是積ab或和a+b其中之一應(yīng)是定值(一正二定三等四同時)。
3、常用不等式有:(根據(jù)目標(biāo)不等式左右的運(yùn)算結(jié)構(gòu)選用)
a、b、c R,(當(dāng)且僅當(dāng)時,取等號)
4、比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數(shù)性質(zhì)法、綜合法、分析法
5、含絕對值不等式的性質(zhì):
6、不等式的恒成立,能成立,恰成立等問題
(1)恒成立問題
若不等式在區(qū)間上恒成立,則等價于在區(qū)間上
若不等式在區(qū)間上恒成立,則等價于在區(qū)間上
。2)能成立問題
。3)恰成立問題
若不等式在區(qū)間上恰成立,則等價于不等式的解集為。
若不等式在區(qū)間上恰成立,則等價于不等式的解集為,
七、直線和圓
1、直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義(或)及其直線方程的向量式((為直線的方向向量))。應(yīng)用直線方程的點(diǎn)斜式、斜截式設(shè)直線方程時,一般可設(shè)直線的斜率為k,但你是否注意到直線垂直于x軸時,即斜率k不存在的情況?
2、知直線縱截距,常設(shè)其方程為或;知直線橫截距,常設(shè)其方程為(直線斜率k存在時,為k的倒數(shù))或知直線過點(diǎn),常設(shè)其方程為。
。2)直線在坐標(biāo)軸上的截距可正、可負(fù)、也可為0。直線兩截距相等直線的斜率為—1或直線過原點(diǎn);直線兩截距互為相反數(shù)直線的斜率為1或直線過原點(diǎn);直線兩截距絕對值相等直線的斜率為或直線過原點(diǎn)。
(3)在解析幾何中,研究兩條直線的位置關(guān)系時,有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合。
3、相交兩直線的夾角和兩直線間的到角是兩個不同的概念:夾角特指相交兩直線所成的較小角,范圍是。而其到角是帶有方向的角,范圍是
4、線性規(guī)劃中幾個概念:約束條件、可行解、可行域、目標(biāo)函數(shù)、最優(yōu)解。
5、圓的方程:最簡方程;標(biāo)準(zhǔn)方程;
6、解決直線與圓的關(guān)系問題有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價轉(zhuǎn)化求解,重要的是發(fā)揮“圓的平面幾何性質(zhì)(如半徑、半弦長、弦心距構(gòu)成直角三角形,切線長定理、割線定理、弦切角定理等等)的作用!”
。1)過圓上一點(diǎn)圓的切線方程
過圓上一點(diǎn)圓的切線方程
過圓上一點(diǎn)圓的切線方程
如果點(diǎn)在圓外,那么上述直線方程表示過點(diǎn)兩切線上兩切點(diǎn)的“切點(diǎn)弦”方程。
如果點(diǎn)在圓內(nèi),那么上述直線方程表示與圓相離且垂直于(為圓心)的直線方程,(為圓心到直線的距離)。
7、曲線與的交點(diǎn)坐標(biāo)方程組的解;
過兩圓交點(diǎn)的圓(公共弦)系為,當(dāng)且僅當(dāng)無平方項(xiàng)時,為兩圓公共弦所在直線方程。
八、圓錐曲線
1、圓錐曲線的兩個定義,及其“括號”內(nèi)的限制條件,在圓錐曲線問題中,如果涉及到其兩焦點(diǎn)(兩相異定點(diǎn)),那么將優(yōu)先選用圓錐曲線第一定義;如果涉及到其焦點(diǎn)、準(zhǔn)線(一定點(diǎn)和不過該點(diǎn)的一定直線)或離心率,那么將優(yōu)先選用圓錐曲線第二定義;涉及到焦點(diǎn)三角形的問題,也要重視焦半徑和三角形中正余弦定理等幾何性質(zhì)的應(yīng)用。
(1)注意:①圓錐曲線第一定義與配方法的綜合運(yùn)用;
、趫A錐曲線第二定義是:“點(diǎn)點(diǎn)距為分子、點(diǎn)線距為分母”,橢圓點(diǎn)點(diǎn)距除以點(diǎn)線距商是小于1的正數(shù),雙曲線點(diǎn)點(diǎn)距除以點(diǎn)線距商是大于1的正數(shù),拋物線點(diǎn)點(diǎn)距除以點(diǎn)線距商是等于1。
2、圓錐曲線的幾何性質(zhì):圓錐曲線的對稱性、圓錐曲線的范圍、圓錐曲線的特殊點(diǎn)線、圓錐曲線的變化趨勢。其中,橢圓中、雙曲線中。
重視“特征直角三角形、焦半徑的最值、焦點(diǎn)弦的最值及其‘頂點(diǎn)、焦點(diǎn)、準(zhǔn)線等相互之間與坐標(biāo)系無關(guān)的幾何性質(zhì)’”,尤其是雙曲線中焦半徑最值、焦點(diǎn)弦最值的特點(diǎn)。
3、在直線與圓錐曲線的位置關(guān)系問題中,有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價轉(zhuǎn)化求解。特別是:
、僦本與圓錐曲線相交的必要條件是他們構(gòu)成的方程組有實(shí)數(shù)解,當(dāng)出現(xiàn)一元二次方程時,務(wù)必“判別式≥0”,尤其是在應(yīng)用韋達(dá)定理解決問題時,必須先有“判別式≥0”。
、谥本與拋物線(相交不一定交于兩點(diǎn))、雙曲線位置關(guān)系(相交的四種情況)的特殊性,應(yīng)謹(jǐn)慎處理。
③在直線與圓錐曲線的位置關(guān)系問題中,常與“弦”相關(guān),“平行弦”問題的關(guān)鍵是“斜率”、“中點(diǎn)弦”問題關(guān)鍵是“韋達(dá)定理”或“小小直角三角形”或“點(diǎn)差法”、“長度(弦長)”問題關(guān)鍵是長度(弦長)公式
④如果在一條直線上出現(xiàn)“三個或三個以上的點(diǎn)”,那么可選擇應(yīng)用“斜率”為橋梁轉(zhuǎn)化。
4、要重視常見的尋求曲線方程的方法(待定系數(shù)法、定義法、直譯法、代點(diǎn)法、參數(shù)法、交軌法、向量法等),以及如何利用曲線的方程討論曲線的幾何性質(zhì)(定義法、幾何法、代數(shù)法、方程函數(shù)思想、數(shù)形結(jié)合思想、分類討論思想和等價轉(zhuǎn)化思想等),這是解析幾何的兩類基本問題,也是解析幾何的基本出發(fā)點(diǎn)。
注意:①如果問題中涉及到平面向量知識,那么應(yīng)從已知向量的特點(diǎn)出發(fā),考慮選擇向量的幾何形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化,還是選擇向量的代數(shù)形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化。
、谇與曲線方程、軌跡與軌跡方程是兩個不同的概念,尋求軌跡或軌跡方程時應(yīng)注意軌跡上特殊點(diǎn)對軌跡的“完備性與純粹性”的影響。
、墼谂c圓錐曲線相關(guān)的綜合題中,常借助于“平面幾何性質(zhì)”數(shù)形結(jié)合(如角平分線的雙重身份)、“方程與函數(shù)性質(zhì)”化解析幾何問題為代數(shù)問題、“分類討論思想”化整為零分化處理、“求值構(gòu)造等式、求變量范圍構(gòu)造不等關(guān)系”等等。
九、直線、平面、簡單多面體
1、計(jì)算異面直線所成角的關(guān)鍵是平移(補(bǔ)形)轉(zhuǎn)化為兩直線的夾角計(jì)算
2、計(jì)算直線與平面所成的角關(guān)鍵是作面的垂線找射影,或向量法(直線上向量與平面法向量夾角的余角),三余弦公式(最小角定理),或先運(yùn)用等積法求點(diǎn)到直線的距離,后虛擬直角三角形求解。注:一斜線與平面上以斜足為頂點(diǎn)的角的兩邊所成角相等斜線在平面上射影為角的平分線。
3、空間平行垂直關(guān)系的證明,主要依據(jù)相關(guān)定義、公理、定理和空間向量進(jìn)行,請重視線面平行關(guān)系、線面垂直關(guān)系(三垂線定理及其逆定理)的橋梁作用。注意:書寫證明過程需規(guī)范。
4、直棱柱、正棱柱、平行六面體、長方體、正方體、正四面體、棱錐、正棱錐關(guān)于側(cè)棱、側(cè)面、對角面、平行于底的截面的幾何體性質(zhì)。
如長方體中:對角線長,棱長總和為,全(表)面積為,(結(jié)合可得關(guān)于他們的等量關(guān)系,結(jié)合基本不等式還可建立關(guān)于他們的不等關(guān)系式),
如三棱錐中:側(cè)棱長相等(側(cè)棱與底面所成角相等)頂點(diǎn)在底上射影為底面外心,側(cè)棱兩兩垂直(兩對對棱垂直)頂點(diǎn)在底上射影為底面垂心,斜高長相等(側(cè)面與底面所成相等)且頂點(diǎn)在底上在底面內(nèi)頂點(diǎn)在底上射影為底面內(nèi)心。
5、求幾何體體積的常規(guī)方法是:公式法、割補(bǔ)法、等積(轉(zhuǎn)換)法、比例(性質(zhì)轉(zhuǎn)換)法等。注意:補(bǔ)形:三棱錐三棱柱平行六面體
6、多面體是由若干個多邊形圍成的幾何體。棱柱和棱錐是特殊的多面體。
正多面體的每個面都是相同邊數(shù)的正多邊形,以每個頂點(diǎn)為其一端都有相同數(shù)目的棱,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體。
7、球體積公式。球表面積公式,是兩個關(guān)于球的幾何度量公式。它們都是球半徑及的函數(shù)。
十、導(dǎo)數(shù)
1、導(dǎo)數(shù)的意義:曲線在該點(diǎn)處的切線的斜率(幾何意義)、瞬時速度、邊際成本(成本為因變量、產(chǎn)量為自變量的函數(shù)的導(dǎo)數(shù),C為常數(shù))
2、多項(xiàng)式函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性
在一個區(qū)間上(個別點(diǎn)取等號)在此區(qū)間上為增函數(shù)。
在一個區(qū)間上(個別點(diǎn)取等號)在此區(qū)間上為減函數(shù)。
3、導(dǎo)數(shù)與極值、導(dǎo)數(shù)與最值:
。1)函數(shù)處有且“左正右負(fù)”在處取極大值;
函數(shù)在處有且左負(fù)右正”在處取極小值。
注意:①在處有是函數(shù)在處取極值的必要非充分條件。
、谇蠛瘮(shù)極值的方法:先找定義域,再求導(dǎo),找出定義域的分界點(diǎn),列表求出極值。特別是給出函數(shù)極大(。┲档臈l件,一定要既考慮,又要考慮驗(yàn)“左正右負(fù)”(“左負(fù)右正”)的轉(zhuǎn)化,否則條件沒有用完,這一點(diǎn)一定要切記。
、蹎握{(diào)性與最值(極值)的研究要注意列表!
。2)函數(shù)在一閉區(qū)間上的最大值是此函數(shù)在此區(qū)間上的極大值與其端點(diǎn)值中的“最大值”
函數(shù)在一閉區(qū)間上的最小值是此函數(shù)在此區(qū)間上的極小值與其端點(diǎn)值中的“最小值”;
注意:利用導(dǎo)數(shù)求最值的步驟:先找定義域再求出導(dǎo)數(shù)為0及導(dǎo)數(shù)不存在的的點(diǎn),然后比較定義域的端點(diǎn)值和導(dǎo)數(shù)為0的點(diǎn)對應(yīng)函數(shù)值的大小,其中最大的就是最大值,最小就為最小。
高中數(shù)學(xué)知識點(diǎn)總結(jié)9
1、命題的四種形式及其相互關(guān)系是什么?
(互為逆否關(guān)系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
2、對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應(yīng)元素的唯一性,哪幾種對應(yīng)能構(gòu)成映射?
。ㄒ粚σ,多對一,允許B中有元素?zé)o原象。)
3、函數(shù)的三要素是什么?如何比較兩個函數(shù)是否相同?
(定義域、對應(yīng)法則、值域)
4、反函數(shù)存在的條件是什么?
(一一對應(yīng)函數(shù))
求反函數(shù)的步驟掌握了嗎?
。á俜唇鈞;②互換x、y;③注明定義域)
5、反函數(shù)的.性質(zhì)有哪些?
、倩榉春瘮(shù)的圖象關(guān)于直線y=x對稱;
、诒4媪嗽瓉砗瘮(shù)的單調(diào)性、奇函數(shù)性;
6、函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?
(f(x)定義域關(guān)于原點(diǎn)對稱)
高中數(shù)學(xué)知識點(diǎn)總結(jié)10
導(dǎo)數(shù)及其應(yīng)用
一.導(dǎo)數(shù)概念的引入
數(shù)學(xué)選修2-2知識點(diǎn)總結(jié)
1.導(dǎo)數(shù)的物理意義:瞬時速率。一般的,函數(shù)yf(x)在xx0處的瞬時變化率是
limf(x0x)f(x0)x,
x0我們稱它為函數(shù)yf(x)在xx0處的導(dǎo)數(shù),記作f(x0)或y|xx,即
0f(x0)=limf(x0x)f(x0)xx0
例1.在高臺跳水運(yùn)動中,運(yùn)動員相對于水面的高度h(單位:m)與起跳后的時間t(單位:
s)存在函數(shù)關(guān)系
h(t)4.9t6.5t10
2運(yùn)動員在t=2s時的瞬時速度是多少?解:根據(jù)定義
vh(2)limh(2x)h(2)xx013.1
即該運(yùn)動員在t=2s是13.1m/s,符號說明方向向下
2.導(dǎo)數(shù)的幾何意義:曲線的切線.通過圖像,我們可以看出當(dāng)點(diǎn)Pn趨近于P時,直線PT與
曲線相切。容易知道,割線PPn的斜率是knf(xn)f(x0)xnx0,當(dāng)點(diǎn)Pn趨近于P時,函
數(shù)yf(x)在xx0處的導(dǎo)數(shù)就是切線PT的斜率k,即
klimf(xn)f(x0)xnx0f(x0)
x03.導(dǎo)函數(shù):當(dāng)x變化時,f(x)便是x的一個函數(shù),我們稱它為f(x)的導(dǎo)函數(shù).yf(x)的導(dǎo)函數(shù)有時也記作y,即
f(x)limf(xx)f(x)xx0
二.導(dǎo)數(shù)的計(jì)算
1.函數(shù)yf(x)c的導(dǎo)數(shù)2.函數(shù)yf(x)x的導(dǎo)數(shù)3.函數(shù)yf(x)x的導(dǎo)數(shù)
4.函數(shù)yf(x)1x的導(dǎo)數(shù)
基本初等函數(shù)的導(dǎo)數(shù)公式:
1若f(x)c(c為常數(shù)),則f(x)0;2若f(x)x,則f(x)x1;3若f(x)sinx,則f(x)cosx4若f(x)cosx,則f(x)sinx;5若f(x)ax,則f(x)axlna6若f(x)ex,則f(x)ex
x7若f(x)loga,則f(x)1xlna1x
8若f(x)lnx,則f(x)導(dǎo)數(shù)的運(yùn)算法則
1.[f(x)g(x)]f(x)g(x)
2.[f(x)g(x)]f(x)g(x)f(x)g(x)
f(x)g(x)f(x)g(x)f(x)g(x)[g(x)]23.[]
復(fù)合函數(shù)求導(dǎo)
yf(u)和ug(x),稱則y可以表示成為x的函數(shù),即yf(g(x))為一個復(fù)合函數(shù)yf(g(x))g(x)
三.導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用1.函數(shù)的單調(diào)性與導(dǎo)數(shù):
一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系:
在某個區(qū)間(a,b)內(nèi),如果f(x)0,那么函數(shù)yf(x)在這個區(qū)間單調(diào)遞增;如果f(x)0,那么函數(shù)yf(x)在這個區(qū)間單調(diào)遞減.2.函數(shù)的極值與導(dǎo)數(shù)
極值反映的是函數(shù)在某一點(diǎn)附近的大小情況.求函數(shù)yf(x)的極值的方法是:
(1)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極大值;(2)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極小值;4.函數(shù)的最大(小)值與導(dǎo)數(shù)
函數(shù)極大值與最大值之間的關(guān)系.
求函數(shù)yf(x)在[a,b]上的最大值與最小值的步驟(1)求函數(shù)yf(x)在(a,b)內(nèi)的極值;
。2)將函數(shù)yf(x)的各極值與端點(diǎn)處的函數(shù)值f(a),f(b)比較,其中最大的是一個
最大值,最小的是最小值.
四.生活中的優(yōu)化問題
利用導(dǎo)數(shù)的知識,,求函數(shù)的最大(小)值,從而解決實(shí)際問題
第二章推理與證明
考點(diǎn)一合情推理與類比推理
根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理,歸納是從特殊到一般的過程,它屬于合情推理
根據(jù)兩類不同事物之間具有某些類似(或一致)性,推測其中一類事物具有與另外一類事物類似的性質(zhì)的推理,叫做類比推理.
類比推理的一般步驟:
(1)找出兩類事物的相似性或一致性;
(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想);
(3)一般的,事物之間的各個性質(zhì)并不是孤立存在的,而是相互制約的如果兩個事物在某
些性質(zhì)上相同或相似,那么他們在另一寫性質(zhì)上也可能相同或類似,類比的結(jié)論可能是真的
(4)一般情況下,如果類比的相似性越多,相似的性質(zhì)與推測的性質(zhì)之間越相關(guān),那么類比
得出的命題越可靠.
考點(diǎn)二演繹推理(俗稱三段論)
由一般性的命題推出特殊命題的過程,這種推理稱為演繹推理.
考點(diǎn)三數(shù)學(xué)歸納法
1.它是一個遞推的數(shù)學(xué)論證方法.
2.步驟:A.命題在n=1(或n0)時成立,這是遞推的基礎(chǔ);B.假設(shè)在n=k時命題成立C.證明n=k+1時命題也成立,
完成這兩步,就可以斷定對任何自然數(shù)(或n>=n0,且nN)結(jié)論都成立?键c(diǎn)三證明1.反證法:2.分析法:3.綜合法:
第一章數(shù)系的擴(kuò)充和復(fù)數(shù)的概念考點(diǎn)一:復(fù)數(shù)的概念
(1)復(fù)數(shù):形如abi(aR,bR)的數(shù)叫做復(fù)數(shù),a和b分別叫它的實(shí)部和虛部.
(2)分類:復(fù)數(shù)abi(aR,bR)中,當(dāng)b0,就是實(shí)數(shù);b0,叫做虛數(shù);當(dāng)a0,b0時,
叫做純虛數(shù).
(3)復(fù)數(shù)相等:如果兩個復(fù)數(shù)實(shí)部相等且虛部相等就說這兩個復(fù)數(shù)相等.
(4)共軛復(fù)數(shù):當(dāng)兩個復(fù)數(shù)實(shí)部相等,虛部互為相反數(shù)時,這兩個復(fù)數(shù)互為共軛復(fù)數(shù).(5)復(fù)平面:建立直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸除去原點(diǎn)的部
分叫做虛軸。
(6)兩個實(shí)數(shù)可以比較大小,但兩個復(fù)數(shù)如果不全是實(shí)數(shù)就不能比較大小。
考點(diǎn)二:復(fù)數(shù)的運(yùn)算
1.復(fù)數(shù)的加,減,乘,除按以下法則進(jìn)行設(shè)z1abi,z2cdi(a,b,c,dR)則
z1z2(ac)(bd)iz1z2(acbd)(adbc)i
z1z2(acbd)(adbc)icd22(z20)
2,幾個重要的.結(jié)論
2222(1)|z1z2||z1z2|2(|z1||z2|)
(2)zz|z|2|z|2(3)若z為虛數(shù),則|z|z3.運(yùn)算律
(1)zmznzmn;(2)(z)zmnmnnnn;(3)(z1z2)z1z2(m,nR)
224.關(guān)于虛數(shù)單位i的一些固定結(jié)論:
。1)i1(2)ii(3)i1(2)ii234nn2in3in
擴(kuò)展閱讀:高中數(shù)學(xué)文科選修1-2知識點(diǎn)總結(jié)
高中數(shù)學(xué)選修1-2知識點(diǎn)總結(jié)
第一章統(tǒng)計(jì)案例
1.線性回歸方程①變量之間的兩類關(guān)系:函數(shù)關(guān)系與相關(guān)關(guān)系;②制作散點(diǎn)圖,判斷線性相關(guān)關(guān)系
、劬性回歸方程:ybxa(最小二乘法)
nxiyinxyi1bn2其中,2xinxi1aybx注意:線性回歸直線經(jīng)過定點(diǎn)(x,y).
2.相關(guān)系數(shù)(判定兩個變量線性相關(guān)性):r(xi1nix)(yiy)2
(xi1nix)(yi1niy)2注:⑴r>0時,變量x,y正相關(guān);r第二章框圖
1.流程圖
流程圖是由一些圖形符號和文字說明構(gòu)成的圖示.流程圖是表述工作方式、工藝流程的一種常用手段,它的特點(diǎn)是直觀、清晰.3.結(jié)構(gòu)圖
一些事物之間不是先后順序關(guān)系,而是存在某種邏輯關(guān)系,像這樣的關(guān)系可以用結(jié)構(gòu)圖來描述.常用的結(jié)構(gòu)圖一般包括層次結(jié)構(gòu)圖,分類結(jié)構(gòu)圖及知識結(jié)構(gòu)圖等.
第三章推理與證明
1.推理⑴合情推理:
歸納推理和類比推理都是根據(jù)已有事實(shí),經(jīng)過觀察、分析、比較、聯(lián)想,在進(jìn)行歸納、類比,然后提出猜想的推理,我們把它們稱為合情推理。①歸納推理
由某類食物的部分對象具有某些特征,推出該類事物的全部對象都具有這些特征的推理,或者有個別事實(shí)概括出一般結(jié)論的推理,稱為歸納推理,簡稱歸納。歸納推理是由部分到整體,由個別到一般的推理。②類比推理
由兩類對象具有類似和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理,稱為類比推理,簡稱類比。類比推理是特殊到特殊的推理。⑵演繹推理
從一般的原理出發(fā),推出某個特殊情況下的結(jié)論,這種推理叫演繹推理。演繹推理是由一般到特殊的推理。
“三段論”是演繹推理的一般模式,包括:⑴大前提---------已知的一般結(jié)論;⑵小前提---------所研究的特殊情況;⑶結(jié)論---------根據(jù)一般原理,對特殊情況得出的判斷。
2
2.證明
(1)直接證明①綜合法
一般地,利用已知條件和某些數(shù)學(xué)定義、定理、公理等,經(jīng)過一系列的推理論證,最后推導(dǎo)出所要證明的結(jié)論成立,這種證明方法叫做綜合法。綜合法又叫順推法或由因?qū)Ч。②分析?/p>
一般地,從要證明的結(jié)論出發(fā),逐步尋求使它成立的充分條件,直至最后,把要證明的結(jié)論歸結(jié)為判定一個明顯成立的條件(已知條件、定義、定理、公理等),這種證明的方法叫分析法。分析法又叫逆推證法或執(zhí)果索因法。(2)間接證明……反證法
一般地,假設(shè)原命題不成立,經(jīng)過正確的推理,最后得出矛盾,因此說明假設(shè)錯誤,從而證明原命題成立,這種證明方法叫反證法。
第四章復(fù)數(shù)
1.復(fù)數(shù)的有關(guān)概念
(1)把平方等于-1的數(shù)用符號i表示,規(guī)定i2=-1,把i叫作虛數(shù)單位.
(2)形如a+bi的數(shù)叫作復(fù)數(shù)(a,b是實(shí)數(shù),i是虛數(shù)單位).通常表示為z=a+bi(a,b∈R).(3)對于復(fù)數(shù)z=a+bi,a與b分別叫作復(fù)數(shù)z的______與______,并且分別用Rez與Imz表示.2.數(shù)集之間的關(guān)系
復(fù)數(shù)的全體組成的集合叫作_____________,記作C.3.復(fù)數(shù)的分類
實(shí)數(shù)(b=0)
復(fù)數(shù)a+bi
純虛數(shù)(a=0)(a,b∈R)虛數(shù)(b≠0)
非純虛數(shù)(a≠0)
4.兩個復(fù)數(shù)相等的充要條件
設(shè)a,b,c,d都是實(shí)數(shù),則a+bi=c+di,當(dāng)且僅當(dāng)_________
3
5.復(fù)平面
(1)定義:當(dāng)用__________________的點(diǎn)來表示復(fù)數(shù)時,我們稱這個直角坐標(biāo)平面為復(fù)平面.(2)實(shí)軸:_______稱為實(shí)軸.虛軸:_________稱為虛軸.6.復(fù)數(shù)的模
若z=a+bi(a,b∈R),則_______________.7.共軛復(fù)數(shù)
(1)定義:當(dāng)兩個復(fù)數(shù)的實(shí)部________,虛部互為___________時,這樣的兩個復(fù)數(shù)叫作互為共軛復(fù)數(shù).復(fù)數(shù)z的共軛復(fù)數(shù)用______表示,即若z=a+bi,則z-=__________.2)性質(zhì):==___________.
必背結(jié)論
1.(1)z=a+bi∈Rb=0(a,b∈R)z=zz2≥0;(2)z=a+bi是虛數(shù)b≠0(a,b∈R);
(3)z=a+bi是純虛數(shù)a=0且b≠0(a,b∈R)z+z=0(z≠0)z2
高中數(shù)學(xué)知識點(diǎn)總結(jié)11
空間兩條直線只有三種位置關(guān)系:平行、相交、異面。
按是否共面可分為兩類:
(1)共面:平行、相交
。2)異面:
異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp。空間向量法。
兩異面直線間距離:公垂線段(有且只有一條)esp?臻g向量法。
若從有無公共點(diǎn)的角度看可分為兩類:
(1)有且僅有一個公共點(diǎn)——相交直線;(2)沒有公共點(diǎn)——平行或異面。
直線和平面的位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行。
①直線在平面內(nèi)——有無數(shù)個公共點(diǎn)
、谥本和平面相交——有且只有一個公共點(diǎn)
直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。
空間向量法(找平面的法向量)
規(guī)定:a、直線與平面垂直時,所成的角為直角;b、直線與平面平行或在平面內(nèi),所成的角為0°角。
由此得直線和平面所成角的'取值范圍為[0°,90°]。
最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角。
三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直。
直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。
直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。直線和平面平行——沒有公共點(diǎn)
直線和平面平行的定義:如果一條直線和一個平面沒有公共點(diǎn),那么我們就說這條直線和這個平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。
直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。
高中數(shù)學(xué)知識點(diǎn)總結(jié)12
空間兩條直線只有三種位置關(guān)系:平行、相交、異面
按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法
兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法
若從有無公共點(diǎn)的角度看可分為兩類:
(1)有且僅有一個公共點(diǎn)——相交直線;
(2)沒有公共點(diǎn)——平行或異面
直線和平面的'位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
、僦本在平面內(nèi)——有無數(shù)個公共點(diǎn)
、谥本和平面相交——有且只有一個公共點(diǎn)
直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。
空間向量法(找平面的法向量)
規(guī)定:
a、直線與平面垂直時,所成的角為直角,
b、直線與平面平行或在平面內(nèi),所成的角為0°角
由此得直線和平面所成角的取值范圍為[0°,90°]
最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角
三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直
直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。
直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點(diǎn)
直線和平面平行的定義:如果一條直線和一個平面沒有公共點(diǎn),那么我們就說這條直線和這個平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。
直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。
高中數(shù)學(xué)知識點(diǎn)總結(jié)13
總體和樣本
、僭诮y(tǒng)計(jì)學(xué)中,把研究對象的全體叫做總體。
、诎衙總研究對象叫做個體。
③把總體中個體的總數(shù)叫做總體容量。
、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,x-x研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量。
簡單隨機(jī)抽樣
也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨。
機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ),高三。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
簡單隨機(jī)抽樣常用的方法
①抽簽法
、陔S機(jī)數(shù)表法
、塾(jì)算機(jī)模擬法
、苁褂媒y(tǒng)計(jì)軟件直接抽取。
在簡單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:
、倏傮w變異情況;
、谠试S誤差范圍;
、鄹怕时WC程度。
抽簽法
、俳o調(diào)查對象群體中的.每一個對象編號;
②準(zhǔn)備抽簽的工具,實(shí)施抽簽;
、蹖颖局械拿恳粋個體進(jìn)行測量或調(diào)查。
拓展閱讀:高二數(shù)學(xué)學(xué)習(xí)方法
一、提高聽課的效率是關(guān)鍵
課前預(yù)習(xí)能提高聽課的針對性。預(yù)習(xí)中發(fā)現(xiàn)的難點(diǎn),就是聽課的重點(diǎn);對預(yù)習(xí)中遇到的沒有掌握好的有關(guān)的舊知識,可進(jìn)行補(bǔ)缺,以減少聽課過程中的困難;有助于提高思維能力,預(yù)習(xí)后把自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己思維水平;預(yù)習(xí)還可以培養(yǎng)自己的自學(xué)能力。其次就是聽課要全神貫注。
二、做好復(fù)習(xí)和總結(jié)工作
做好及時的復(fù)習(xí)。課完課的當(dāng)天,必須做好當(dāng)天的復(fù)習(xí)。復(fù)習(xí)的有效方法不是一遍遍地看書或筆記,而是采取回憶式的復(fù)習(xí),然后打開筆記與書本,對照一下還有哪些沒記清的,把它補(bǔ)起來,就使得當(dāng)天上課內(nèi)容鞏固下來,同時也就檢查了當(dāng)天課堂聽課的效果如何,也為改進(jìn)聽課方法及提高聽課效果提出必要的改進(jìn)措施。
三、指導(dǎo)做一定量的練習(xí)題
做題的目的在于檢查你學(xué)的知識,方法是否掌握得很好。如果你掌握得不準(zhǔn),甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準(zhǔn)確地把握住基本知識和方法的基礎(chǔ)上做一定量的練習(xí)是必要的。而對于中檔題,尢其要講究做題的效益,這就需要在做題后進(jìn)行一定的“反思”,思考一下本題所用的基礎(chǔ)知識,把它們聯(lián)系起來,你就會得到更多的經(jīng)驗(yàn)和教訓(xùn),更重要的是養(yǎng)成善于思考的好習(xí)慣,這將大大有利于你今后的學(xué)習(xí)。
高中數(shù)學(xué)知識點(diǎn)總結(jié)14
1、算法的概念:
、儆苫具\(yùn)算及規(guī)定的運(yùn)算順序所構(gòu)成的完整的解題步驟,或者是按照要求設(shè)計(jì)好的有限的計(jì)算序列,并且這樣的步驟或序列能解決一類問題。
②算法的五個重要特征:
、∮懈F性:一個算法必須保證執(zhí)行有限步后結(jié)束;
、⒋_切性:算法的每一步必須有確切的定義;
?尚行裕核惴ㄔ瓌t上能夠精確地運(yùn)行,而且人們用筆和紙做有限次即可完成;
ⅳ輸入:一個算法有0個或多個輸入,以刻劃運(yùn)算對象的初始條件。所謂0個輸入是指算法本身定出了初始條件。
、ポ敵觯阂粋算法有1個或多個輸出,以反映對輸入數(shù)據(jù)加工后的結(jié)果。沒有輸出的算法是毫無意義的。
2、程序框圖也叫流程圖,是人們將思考的過程和工作的順序進(jìn)行分析、整理,用規(guī)定的文字、符號、圖形的組合加以直觀描述的方法
(1)程序框圖的基本符號:
。2)畫流程圖的基本規(guī)則:
①使用標(biāo)準(zhǔn)的框圖符號
、趶纳系瓜隆淖蟮接
、坶_始符號只有一個退出點(diǎn),結(jié)束符號只有一個進(jìn)入點(diǎn),判斷符號允許有多個退出點(diǎn)
④判斷可以是兩分支結(jié)構(gòu),也可以是多分支結(jié)構(gòu)
、菡Z言簡練
⑥循環(huán)框可以被替代
3、三種基本的.邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)
(1)順序結(jié)構(gòu):
順序結(jié)構(gòu)描述的是是最簡單的算法結(jié)構(gòu),語句與語句之間,框與框之間是按從上到下的順序進(jìn)行的。
。2)條件結(jié)構(gòu):分支結(jié)構(gòu)的一般形式
兩種結(jié)構(gòu)的共性:
①一個入口,一個出口。特別注意:一個判斷框可以有兩個出口,但一個條件分支結(jié)構(gòu)只有一個出口。
、诮Y(jié)構(gòu)中每個部分都有可能被執(zhí)行,即對每一個框都有從入口進(jìn)、出口出的路徑。
以上兩點(diǎn)是用來檢查流程圖是否合理的基本方法(當(dāng)然,學(xué)習(xí)循環(huán)結(jié)構(gòu)后,循環(huán)結(jié)構(gòu)也有此特點(diǎn))
。3)循環(huán)結(jié)構(gòu)的一般形式:
在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。
循環(huán)結(jié)構(gòu)又稱重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:
、偃缱笙聢D所示,它的功能是當(dāng)給定的條件成立時,執(zhí)行A框,框執(zhí)行完畢后,再判斷條件是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行框,直到某一次條件不成立為止,此時不再執(zhí)行A框,從b離開循環(huán)結(jié)構(gòu)。
、谌缬疑蠄D所示,它的功能是先執(zhí)行,然后判斷給定的條件是否成立,如果仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件成立為止,此時不再執(zhí)行A框,從b點(diǎn)離開循環(huán)結(jié)構(gòu)。
高中數(shù)學(xué)算法初步知識點(diǎn):算法的基本語句
。1)賦值語句:在表述一個算法時,經(jīng)常要引入變量,并賦給該變量一個值,用來表明賦給某一個變量的一個具體的確定值的語句叫做賦值語句。
賦值語句的一般格式:變量名表達(dá)式
、=的意義和作用:賦值語句中的=號,稱作賦值號。
、谫x值語句的作用:先計(jì)算出賦值號右邊表達(dá)式的值,然后把該值賦給賦值號左邊的變量,使該變量的值等于表達(dá)式的值。
、坳P(guān)于賦值語句,需要注意幾點(diǎn):
、≠x值號左邊只能是變量名,而不是表達(dá)式。例如3。6=X,5=y;都是錯誤的
ⅱ賦值號左右不能對換:賦值語句是將賦值號右邊的表達(dá)式賦值給賦值號左邊的變量,例如:Y=X,表示用X的值替代變量Y原先的取值,不能改寫成X=Y,因?yàn)楹笳弑硎居肶的值替代變量X的值。
、2荒芾觅x值語句進(jìn)行代數(shù)式(或符號)的演算:在賦值語句中的賦值符號右邊的表達(dá)式中的每一個變量都必須事先賦值給確定的值,不能用賦值語句進(jìn)行如化簡、因式分解等演算,在一個賦值語句中只能給一個變量賦值,不能出現(xiàn)兩個或多個=。
、べx值號和數(shù)學(xué)中的等號的意義不同:賦值號左邊的變量如果原來沒有值,則在執(zhí)行賦值語句后,獲得一個值。例如X=5;Y=1等;如果原來已經(jīng)有值,則執(zhí)行該語句后,以賦值號右邊表達(dá)式的值代替該變量的原值,即將原值沖掉。例如:N=N+1在數(shù)學(xué)中是不成立的,但在賦值語句中,意思是將N的原值加1再賦給N,即N的值增加1。
計(jì)算機(jī)執(zhí)行這種形式的條件語句時,也是首先對IF后的條件進(jìn)行判斷,如果條件符合,就執(zhí)行語句,如果條件不符合,則直接結(jié)束該條件語句,轉(zhuǎn)而執(zhí)行其他語句。其對應(yīng)的程序框圖為:(如下圖)
條件語句的作用:在程序執(zhí)行過程中,根據(jù)判斷是否滿足約定的條件而決定是否需要轉(zhuǎn)換到何處去。需要計(jì)算機(jī)按條件進(jìn)行分析、比較、判斷,并按判斷后的不同情況進(jìn)行不同的處理。
。3)循環(huán)結(jié)構(gòu):
算法中的循環(huán)結(jié)構(gòu)是由循環(huán)語句來實(shí)現(xiàn)的。對應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)計(jì)語言中也有當(dāng)型(WHILE型)和直到型(for型)兩種語句結(jié)構(gòu)。即WHILE語句和UNTIL語句。
、賅HILE語句的一般格式是:
其中循環(huán)體是由計(jì)算機(jī)反復(fù)執(zhí)行的一組語句構(gòu)成的。WHLIE后面的條件是用于控制計(jì)算機(jī)執(zhí)行循環(huán)體或跳出循環(huán)體的。
當(dāng)計(jì)算機(jī)遇到WHILE語句時,先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與END之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個過程反復(fù)進(jìn)行,直到某一次條件不符合為止。這時,計(jì)算機(jī)將不執(zhí)行循環(huán)體,直接跳到END語句后,接著執(zhí)行END之后的語句。其對應(yīng)的程序結(jié)構(gòu)框圖為:(如下圖)
其對應(yīng)的程序結(jié)構(gòu)框圖為:(如上圖)
從for型循環(huán)結(jié)構(gòu)分析,計(jì)算機(jī)執(zhí)行該語句時,先把初始值賦給循環(huán)變量,記下終值和步長,并比較初值和中止,如果初值超過終值,就執(zhí)行end以后的語句,否則執(zhí)行for語句下面的語句,執(zhí)行到end語句時,計(jì)算機(jī)讓循環(huán)變量增加一個步長值,然后用增值后的循環(huán)變量值與終值比較,如果超過終值,就執(zhí)行for語句以后的語句。是先執(zhí)行循環(huán)體后進(jìn)行條件判斷的循環(huán)語句。
高中數(shù)學(xué)算法初步知識點(diǎn):復(fù)習(xí)點(diǎn)睛
1、什么是算法:一般地,算法是指在解決問題時按照某種機(jī)械程序步驟一定可以得到結(jié)果的處理過程。這種程序必須是確定的、有效的、有限的。要了解算法的基本思想、基本結(jié)構(gòu)、程序框圖、基本語句、算法案例等。
2、四種基本的程序框:
4、基本算法語句:賦值語句、條件語句、循環(huán)語句;
5、解決分段函數(shù)的求值等問題,一般可采用條件結(jié)構(gòu)來設(shè)計(jì)算法;
6、對于有規(guī)律的計(jì)算問題,一般可采用循環(huán)結(jié)構(gòu)設(shè)計(jì)算法;
7、在WHILE語句中,是當(dāng)條件滿足時執(zhí)行循環(huán)體,而在for語句中,是當(dāng)條件不滿足時執(zhí)行循環(huán)體
高中數(shù)學(xué)知識點(diǎn)總結(jié)15
4.1.1圓的標(biāo)準(zhǔn)方程
1、圓的標(biāo)準(zhǔn)方程:(xa)(yb)r
圓心為A(a,b),半徑為r的圓的方程
2、點(diǎn)M(x0,y0)與圓(xa)(yb)r的關(guān)系的判斷方法:
。1)(x0a)(y0b)>r,點(diǎn)在圓外(2)(x0a)(y0b)=r,點(diǎn)在圓上(3)(x0a)(y0b)中國權(quán)威高考信息資源門戶
(4)當(dāng)l|r1r2|時,圓C1與圓C2內(nèi)切;(5)當(dāng)l|r1r2|時,圓C1與圓C2內(nèi)含;
4.2.3直線與圓的方程的應(yīng)用
1、利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;2、過程與方法
用坐標(biāo)法解決幾何問題的步驟:
第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論.
RMOPM"4.3.1空間直角坐標(biāo)系
1、點(diǎn)M對應(yīng)著唯一確定的有序?qū)崝?shù)組(x,y,z),x、y、z分別是P、Q、R在x、y、z軸上的坐標(biāo)
2、有序?qū)崝?shù)組(x,y,z),對應(yīng)著空間直角坐標(biāo)系中的'一點(diǎn)
xQy3、空間中任意點(diǎn)M的坐標(biāo)都可以用有序?qū)崝?shù)組(x,y,z)來表示,該數(shù)組叫做點(diǎn)M在此空間直角坐標(biāo)系中的坐標(biāo),記M(x,y,z),x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),z叫做點(diǎn)M的豎坐標(biāo)。z4.3.2空間兩點(diǎn)間的距離公式1、空間中任意一點(diǎn)P1(x1,y1,z1)到點(diǎn)P2(x2,y2,z2)之間的距離公式222OM1N1xMM2HN2NyP2P1P1P2(x1x2)(y1y2)(z1z2)
【高中數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:
高中數(shù)學(xué)知識點(diǎn)總結(jié)04-30
高中數(shù)學(xué)知識點(diǎn)總結(jié)15篇02-20
高中數(shù)學(xué)三角函數(shù)知識點(diǎn)總結(jié)06-08
高中數(shù)學(xué)教學(xué)總結(jié)02-17
物理知識點(diǎn)總結(jié)03-01
生物知識點(diǎn)總結(jié)03-03