關于因式分解教案合集五篇
作為一名優(yōu)秀的教育工作者,很有必要精心設計一份教案,教案有助于順利而有效地開展教學活動。我們該怎么去寫教案呢?以下是小編精心整理的因式分解教案5篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
因式分解教案 篇1
教學目標:
1.知識與技能:掌握運用提公因式法、公式法分解因式,培養(yǎng)學生應用因式分解解決問題的能力.
2.過程與方法:經歷探索因式分解方法的過程,培養(yǎng)學生研討問題的方法,通過猜測、推理、驗證、歸納等步驟,得出因式分解的方法.
3.情感態(tài)度與價值觀:通過因式分解的學習,使學生體會數學美,體會成功的自信和團結合作精神,并體會整體數學思想和轉化的數學思想.
教學重、難點:用提公因式法和公式法分解因式.
教具準備:多媒體課件(小黑板)
教學方法:活動探究法
教學過程:
引入:在整式的變形中,有時需要將一個多項式寫成幾個整式的乘積的形式,這種變形就是因式分解.什么叫因式分解?
知識詳解
知識點1 因式分解的定義
把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式因式分解,也叫做把這個多項式分解因式.
【說明】 (1)因式分解與整式乘法是相反方向的變形.
例如:
(2)因式分解是恒等變形,因此可以用整式乘法來檢驗.
怎樣把一個多項式分解因式?
知識點2 提公因式法
多項式ma+mb+mc中的各項都有一個公共的因式m,我們把因式m叫做這個多項式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個因式乘積的形式,其中一個因式是各項的公因式m,另一個因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).
探究交流
下列變形是否是因式分解?為什么?
(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;
(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.
典例剖析 師生互動
例1 用提公因式法將下列各式因式分解.
(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);
分析:(1)題直接提取公因式分解即可,(2)題首先要適當的變形, 再把b-a化成-(a-b),然后再提取公因式.
小結 運用提公因式法分解因式時,要注意下列問題:
(1)因式分解的結果每個括號內如有同類項要合并,而且每個括號內不能再分解.
(2)如果出現(xiàn)像(2)小題需統(tǒng)一時,首先統(tǒng)一,盡可能使統(tǒng)一的'個數少。這時注意到(a-b)n=(b-a)n(n為偶數).
(3)因式分解最后如果有同底數冪,要寫成冪的形式.
學生做一做 把下列各式分解因式.
(1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2
知識點3 公式法
(1)平方差公式:a2-b2=(a+b)(a-b).即兩個數的平方差,等于這兩個數的和與這個數的差的積.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).
(2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即兩個數的平方和加上(或減去)這兩個數的積的2倍,等于這兩個數的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.
探究交流
下列變形是否正確?為什么?
(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.
例2 把下列各式分解因式.
(1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.
分析:本題旨在考查用完全平方公式分解因式.
學生做一做 把下列各式分解因式.
(1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).
綜合運用
例3 分解因式.
(1)x3-2x2+x; (2) x2(x-y)+y2(y-x);
分析:本題旨在考查綜合運用提公因式法和公式法分解因式.
小結 解因式分解題時,首先考慮是否有公因式,如果有,先提公因式;如果沒有公因式是兩項,則考慮能否用平方差公式分解因式. 是三項式考慮用完全平方式,最后,直到每一個因式都不能再分解為止.
探索與創(chuàng)新題
例4 若9x2+kxy+36y2是完全平方式,則k= .
分析:完全平方式是形如:a2±2ab+b2即兩數的平方和與這兩個數乘積的2倍的和(或差).
學生做一做 若x2+(k+3)x+9是完全平方式,則k= .
課堂小結
用提公因式法和公式法分解因式,會運用因式分解解決計算問題.
各項有"公"先提"公",首項有負常提負,某項提出莫漏"1",括號里面分到"底"。
自我評價 知識鞏固
1.若x2+2(m-3)x+16是完全平方式,則m的值等于( )
A.3 B.-5 C.7. D.7或-1
2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),則n的值是( )
A.2 B.4 C.6 D.8
3.分解因式:4x2-9y2= .
4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.
5.把多項式1-x2+2xy-y2分解因式
思考題 分解因式(x4+x2-4)(x4+x2+3)+10.
因式分解教案 篇2
教學目標:
1、進一步鞏固因式分解的概念; 2、鞏固因式分解常用的三種方法
3、選擇恰當的方法進行因式分解 4、應用因式分解來解決一些實際問題
5、體驗應用知識解決問題的樂趣
教學重點:靈活運用因式分解解決問題
教學難點:靈活運用恰當的因式分解的方法,拓展練習2、3
教學過程:
一、創(chuàng)設情景:若a=101,b=99,求a2-b2的值
利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識回顧
1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.
判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關系)
(1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法
(3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解
(5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解
(7).2πR+2πr=2π(R+r) 因式分解
2、.規(guī)律總結(教師講解): 分解因式與整式乘法是互逆過程.
分解因式要注意以下幾點: (1).分解的對象必須是多項式.
(2).分解的結果一定是幾個整式的乘積的'形式. (3).要分解到不能分解為止.
3、因式分解的方法
提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法
公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2
4、強化訓練
試一試把下列各式因式分解:
(1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2
(3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)
三、例題講解
例1、分解因式
(1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)
(3) (4)y2+y+例2、分解因式
1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=
4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=
例3、分解因式
1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3
三、知識應用
1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)
3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2
4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除嗎?還能被哪些整數整除?
四、拓展應用
1.計算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)
2、20042+20xx被20xx整除嗎?
3、若n是整數,證明(2n+1)2-(2n-1)2是8的倍數.
五、課堂小結:今天你對因式分解又有哪些新的認識?
因式分解教案 篇3
學習目標
1、 學會用公式法因式法分解
2、綜合運用提取公式法、公式法分解因式
學習重難點 重點:
完全平方公式分解因式.
難點:綜合運用兩種公式法因式分解
自學過程設計
完全平方公式:
完全平方公式的逆運用:
做一做:
1.(1)16x2-8x+_______=(4x-1)2;
(2)_______+6x+9=(x+3)2;
(3)16x2+_______+9y2=(4x+3y)2;
(4)(a-b)2-2(a-b)+1=(______-1)2.
2.在代數式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)
3.下列因式分解正確的是( )
A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2
C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2
4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1
5.計算:20062-40102006+20052=___________________.
6.若x+y=1,則 x2+xy+ y2的值是_________________.
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________________________________________________________ 預習展示一:
1.判別下列各式是不是完全平方式.
2、把下列各式因式分解:
(1)-x2+4xy-4y2
(2)3ax2+6axy+3ay2
(3)(2x+y)2-6(2x+y)+9
應用探究:
1、用簡便方法計算
49.92+9.98 +0.12
拓展提高:
(1)( a2+b2)( a2+b2 10)+25=0 求a2+b2
(2)4x2+y2-4xy-12x+6y+9=0
求x、y關系
(3)分解因式:m4+4
教后反思 考察利用公式法因式分解的題目不會很難,但是需要學生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的`,但是這里有用到實際中去的例子,對學生來說會難一些。
因式分解教案 篇4
教學目標
1、 會運用因式分解進行簡單的多項式除法。
2、 會運用因式分解解簡單的方程。
二、教學重點與難點教學重點:
教學重點
因式分解在多項式除法和解方程兩方面的應用。
教學難點:
應用因式分解解方程涉及較多的推理過程。
三、教學過程
(一)引入新課
1、 知識回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應用平方差公式: = (a+b) (a—b)③應用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y
(二)師生互動,講授新課
1、運用因式分解進行多項式除法例1 計算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一個小問題 :這里的x能等于3/2嗎 ?為什么?
想一想:那么(4x —9) (3—2x) 呢?練習:課本P162課內練習
合作學習
想一想:如果已知 ( )( )=0 ,那么這兩個括號內應填入怎樣的數或代數式子才能夠滿足條件呢? (讓學生自己思考、相互之間討論!)事實上,若AB=0 ,則有下面的結論:(1)A和B同時都為零,即A=0,且B=0(2)A和B中有一個為零,即A=0,或B=0
試一試:你能運用上面的結論解方程(2x+1)(3x—2)=0 嗎?3、 運用因式分解解簡單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一個未知數的'方程的解也叫做根,當方程的根多于一個時,常用帶足標的字母表示,比如:x1 ,x2
等練習:課本P162課內練習2
做一做!對于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時除以(x+2)嗎?為什么?
教師總結:運用因式分解解方程的基本步驟(1)如果方程的右邊是零,那么把左邊分解因式,轉化為解若干個一元一次方程;(2)如果方程的兩邊都不是零,那么應該先移項,把方程的右邊化為零以后再進行解方程;遇到方程兩邊有公因式,同樣需要先進行移項使右邊化為零,切忌兩邊同時除以公因式!4、知識延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著繼續(xù)解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰(zhàn)極限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知識,總結收獲因式分解的兩種應用:
(1)運用因式分解進行多項式除法
。2)運用因式分解解簡單的方程
(四)布置課后作業(yè)
作業(yè)本6、42、課本P163作業(yè)題(選做)
因式分解教案 篇5
一、運用平方差公式分解因式
教學目標1、使學生了解運用公式來分解因式的意義。
2、使學生理解平方差公式的意義,弄清平方差公式的形式和特點;使學生知道把乘法公式反過來就可以得到相應的因式分解。
3、掌握運用平方差公式分解因式的方法,能正確運用平方差公式把多項式分解因式(直接用公式不超過兩次)
重點運用平方差公式分解因式
難點靈活運用平方差公式分解因式
教學方法對比發(fā)現(xiàn)法課型新授課教具投影儀
教師活動學生活動
情景設置:
同學們,你能很快知道992-1是100的倍數嗎?你是怎么想出來的?
(學生或許還有其他不同的解決方法,教師要給予充分的肯定)
新課講解:
從上面992-1=(99+1)(99-1),我們容易看出,這種方法利用了我們剛學過的'哪一個乘法公式?
首先我們來做下面兩題:(投影)
1.計算下列各式:
(1)(a+2)(a-2)=;
(2)(a+b)(a-b)=;
(3)(3a+2b)(3a-2b)=.
2.下面請你根據上面的算式填空:
(1)a2-4=;
(2)a2-b2=;
(3)9a2-4b2=;
請同學們對比以上兩題,你發(fā)現(xiàn)什么呢?
事實上,像上面第2題那樣,把一個多項式寫成幾個整式積的形式叫做多項式的因式分解。(投影)
比如:a2–16=a2–42=(a+4)(a–4)
例題1:把下列各式分解因式;(投影)
(1)36–25x2;(2)16a2–9b2;
(3)9(a+b)2–4(a–b)2.
(讓學生弄清平方差公式的形式和特點并會運用)
例題2:如圖,求圓環(huán)形綠化區(qū)的面積
練習:第87頁練一練第1、2、3題
小結:
這節(jié)課你學到了什么知識,掌握什么方法?
教學素材:
A組題:
1.填空:81x2-=(9x+y)(9x-y);=
利用因式分解計算:=。
2、下列多項式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把下列各式分解因式
(1)1-16a2(2)9a2x2-b2y2
(3).49(a-b)2-16(a+b)2
B組題:
1分解因式81a4-b4=
2若a+b=1,a2+b2=1,則ab=;
3若26+28+2n是一個完全平方數,則n=.
由學生自己先做(或互相討論),然后回答,若有答不全的,教師(或其他學生)補充.
學生回答1:
992-1=99×99-1=9801-1
=9800
學生回答2:992-1就是(99+1)(99-1)即100×98
學生回答:平方差公式
學生回答:
(1):a2-4
(2):a2-b2
(3):9a2-4b2
學生輕松口答
(a+2)(a-2)
(a+b)(a-b)
(3a+2b)(3a-2b)
學生回答:
把乘法公式
(a+b)(a-b)=a2-b2
反過來就得到
a2-b2=(a+b)(a-b)
學生上臺板演:
36–25x2=62–(5x)2
=(6+5x)(6–5x)
16a2–9b2=(4a)2–(3b)2
=(4a+3b)(4a–3b)
9(a+b)2–4(a–b)2
=[3(a+b)]2–[2(a–b)]2
=[3(a+b)+2(a–b)]
[3(a+b)–2(a–b)]
=(5a+b)(a+5b)
解:352π–152π
=π(352–152)
=(35+15)(35–15)π
=50×20π
=1000π(m2)
這個綠化區(qū)的面積是
1000πm2
學生歸納總結
【因式分解教案】相關文章:
因式分解教案09-26
初中數學因式分解教案03-19
精選因式分解教案三篇07-18
因式分解教案合集8篇02-05
因式分解教案集錦六篇04-03
因式分解教案集錦五篇04-04
因式分解教案范文七篇04-03
關于因式分解教案七篇04-07
因式分解教案錦集六篇04-05
因式分解教案范文合集六篇04-06