亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

二次根式教案

時間:2023-04-07 11:11:25 教案大全 我要投稿

二次根式教案匯編7篇

  作為一名為他人授業(yè)解惑的教育工作者,編寫教案是必不可少的,借助教案可以讓教學(xué)工作更科學(xué)化。我們應(yīng)該怎么寫教案呢?下面是小編收集整理的二次根式教案7篇,歡迎閱讀與收藏。

二次根式教案匯編7篇

二次根式教案 篇1

  教學(xué)目的

  1.使學(xué)生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;

  2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

  教學(xué)重點

  最簡二次根式的定義。

  教學(xué)難點

  一個二次根式化成最簡二次根式的方法。

  教學(xué)過程

  一、復(fù)習(xí)引入

  1.把下列各根式化簡,并說出化簡的根據(jù):

  2.引導(dǎo)學(xué)生觀察考慮:

  化簡前后的根式,被開方數(shù)有什么不同?

  化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

  3.啟發(fā)學(xué)生回答:

  二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

  二、講解新課

  1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:

  滿足下列兩個條件的二次根式叫做最簡二次根式:

  (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

  (2)被開方數(shù)中不含能開得盡的`因數(shù)或因式。

  最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

  2.練習(xí):

  下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

  3.例題:

  例1 把下列各式化成最簡二次根式:

  例2 把下列各式化成最簡二次根式:

  4.總結(jié)

  把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

  當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

  當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

  此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

  三、鞏固練習(xí)

  1.把下列各式化成最簡二次根式:

  2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

  四、小結(jié)

  本節(jié)課學(xué)習(xí)了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當被開方數(shù)為多項式時要進行因式分解,被開方數(shù)為兩個分數(shù)的和則要先通分,再化簡。

  五、布置作業(yè)

  下列各式化成最簡二次根式:

二次根式教案 篇2

  一、復(fù)習(xí)引入

  學(xué)生活動:請同學(xué)們完成下列各題:

  1.計算

 。1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

  二、探索新知

  如果把上面的x、y、z改寫成二次根式呢?以上的運算規(guī)律是否仍成立呢?仍成立.

  整式運算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當然也可以代表二次根式,所以,整式中的'運算規(guī)律也適用于二次根式.

  例1.計算:

 。1)(+)×(2)(4-3)÷2分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運算規(guī)律,所以直接可用整式的運算規(guī)律.

  解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計算

 。1)(+6)(3-)(2)(+)(-)

  分析:剛才已經(jīng)分析,二次根式的多項式乘以多項式運算在乘法公式運算中仍然成立.

  解:(1)(+6)(3-)

  =3-()2+18-6=13-3(2)(+)(-)=()2-()2

  =10-7=3

  三、鞏固練習(xí)

  課本P20練習(xí)1、2.

  四、應(yīng)用拓展

  例3.已知=2-,其中a、b是實數(shù),且a+b≠0,

  化簡+,并求值.

  分析:由于(+)(-)=1,因此對代數(shù)式的化簡,可先將分母有理化,再通過解含有字母系數(shù)的一元一次方程得到x的值,代入化簡得結(jié)果即可?

二次根式教案 篇3

  一、教學(xué)目標

  1.了解二次根式的意義;

  2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;

  4.通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;

  5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美.

  二、教學(xué)重點和難點

  重點:(1)二次根的意義;(2)二次根式中字母的取值范圍.

  難點:確定二次根式中字母的取值范圍.

  三、教學(xué)方法

  啟發(fā)式、講練結(jié)合.

  四、教學(xué)過程

  (一)復(fù)習(xí)提問

  1.什么叫平方根、算術(shù)平方根?

  2.說出下列各式的意義,并計算:

  通過練習(xí)使學(xué)生進一步理解平方根、算術(shù)平方根的概念.

  觀察上面幾個式子的特點,引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

  表示的是算術(shù)平方根.

  (二)引入新課

  我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

  新課:二次根式

  定義: 式子 叫做二次根式.

  對于 請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

  (1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎? 呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.

  (2) 是二次根式,而 ,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的外在形態(tài).請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.

  例1 當a為實數(shù)時,下列各式中哪些是二次根式?

  分析: , , , 、 、 、 四個是二次根式. 因為a是實數(shù)時,a+10、a2-1不能保證是非負數(shù),即a+10、a2-1可以是負數(shù)(如當a-10時,a+10又如當0

  例2 x是怎樣的實數(shù)時,式子 在實數(shù)范圍有意義?

  解:略.

  說明:這個問題實質(zhì)上是在x是什么數(shù)時,x-3是非負數(shù),式子 有意義.

  例3 當字母取何值時,下列各式為二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的定義 ,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式.

  解:(1)∵a、b為任意實數(shù)時,都有a2+b20,當a、b為任意實數(shù)時, 是二次根式.

  (2)-3x0,x0,即x0時, 是二次根式.

  (3) ,且x0,x0,當x0時, 是二次根式.

  (4) ,即 ,故x-20且x-20, x2.當x2時, 是二次根式.

  例4 下列各式是二次根式,求式子中的字母所滿足的條件:

  (1) ; (2) ; (3) ; (4)

  分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進一步鞏固二次根式的'定義,.即: 只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.

  解:(1)由2a+30,得 .

  (2)由 ,得3a-10,解得 .

  (3)由于x取任何實數(shù)時都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實數(shù).

  (4)由-b20得b20,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.

  (三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))

  1.式子 叫做二次根式,實際上是一個非負的實數(shù)a的算術(shù)平方根的表達式.

  2.式子中,被開方數(shù)(式)必須大于等于零.

  (四)練習(xí)和作業(yè)

  練習(xí):

  1.判斷下列各式是否是二次根式

  分析:(2) 中, , 是二次根式;(5)是二次根式. 因為x是實數(shù)時,x、x+1不能保證是非負數(shù),即x、x+1可以是負數(shù)(如x0時,又如當x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.

  2.a是怎樣的實數(shù)時,下列各式在實數(shù)范圍內(nèi)有意義?

  五、作業(yè)

  教材P.172習(xí)題11.1;A組1;B組1.

  六、板書設(shè)計

二次根式教案 篇4

  教學(xué)目的:

  1、在二次根式的混合運算中,使學(xué)生掌握應(yīng)用有理化分母的方法化簡和計算二次根式;

  2、會求二次根式的代數(shù)的值;

  3、進一步提高學(xué)生的綜合運算能力。

  教學(xué)重點:在二次根式的混合運算中,靈活選擇有理化分母的方法化簡二次根式

  教學(xué)難點:正確進行二次根式的混合運算和求含有二次根式的代數(shù)式的值

  教學(xué)過程:

  一、二次根式的混合運算

  例1 計算:

  分析:(1)題是二次根式的加減運算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進行二次根式的加減運算。

  (2)題是含乘方、加、減和除法的混合運算,應(yīng)按運算的順序進行計算,先算括號內(nèi)的式子,最后進行除法運算。注意的計算。

  練習(xí)1:P206 / 8--① P207 / 1①②

  例2 計算

  問:計算思路是什么?

  答:先把第一人的括號內(nèi)的式子通分,把第二個括號內(nèi)的.式子的分母有理化,再進行計算。

  二、求代數(shù)式的值。 注意兩點:

  (1)如果已知條件為含二次根式的式子,先把它化簡;

  (2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡,再求值。

  例3 已知,求的值。

  分析:多項式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母。可使計算簡便。

  例4 已知,求的值。

  觀察代數(shù)式的特點,請說出求這個代數(shù)式的值的思路。

  答:所求的代數(shù)式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進行]通分,把這個代數(shù)式化簡后,再求值。

  三、小結(jié)

  1、對于二次根式的混合混合運算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運算的順序進行,即先進行乘方運算,再進行乘、除運算,最后進行加、減運算。如果有括號,先進行括號內(nèi)的式子的運算,運算結(jié)果要化為最簡二次根式。

  2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡,然后再求值。

  3、在進行二次根式的混合運算時,要根據(jù)題目特點,靈活選擇解題方法,目的在于使計算更簡捷。

  四、作業(yè)

  P206 / 7 P206 / 8---②③

二次根式教案 篇5

  【 學(xué)習(xí)目標 】

  1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負性,并能應(yīng)用它解決相關(guān)問題。

  2、過程與方法:進一步體會分類討論的數(shù)學(xué)思想。

  3、情感、態(tài)度與價值觀:通過小組合作學(xué)習(xí),體驗在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。

  【 學(xué)習(xí)重難點 】

  1、重點:準確理解二次根式的概念,并能進行簡單的計算。

  2、難點:準確理解二次根式的雙重非負性。

  【 學(xué)習(xí)內(nèi)容 】課本第2— 3頁

  【 學(xué)習(xí)流程 】

  一、 課前準備(預(yù)習(xí)學(xué)案見附件1)

  學(xué)生在家中認真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。

  二、 課堂教學(xué)

  (一)合作學(xué)習(xí)階段。

  教師出示課堂教學(xué)目標及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標,根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進行及時的引導(dǎo)、點撥,對普遍存在的問題做好記錄。

  (二)集體講授階段。(15分鐘左右)

  1. 各小組推選代表依次對課堂引導(dǎo)材料中的問題進行解答,不足的本組成員可以補充。

  2. 教師對合作學(xué)習(xí)中存在的`普遍的不能解決的問題進行集體講解。

  3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請其他小組幫助解答,解答不了的由教師進行解答。

  (三)當堂檢測階段

  為了及時了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對本節(jié)課進行及時的鞏固,對學(xué)生進行當堂檢測,測試完試卷上交。

  (注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進行適當調(diào)整次序或交叉進行)

  三、 課后作業(yè)(課后作業(yè)見附件2)

  教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對性作業(yè),以幫助學(xué)生進一步鞏固提高課堂所學(xué)。

  四、板書設(shè)計

  課題:二次根式(1)

  二次根式概念 例題 例題

  二次根式性質(zhì)

  反思:

二次根式教案 篇6

  1.請同學(xué)們回憶(≥0,b≥0)是如何得到的?

  2.學(xué)生觀察下面的例子,并計算:

  由學(xué)生總結(jié)上面兩個式的關(guān)系得:

  類似地,請每個同學(xué)再舉一個例子,然后由這些特殊的例子,得出:

  (≥0,b0)

  使學(xué)生回憶起二次根式乘法的運算方法的推導(dǎo)過程.

  類似地,請每個同學(xué)再舉一個例子,

  請學(xué)生們思考為什么b的取值范圍變小了?

  與學(xué)生一起寫清解題過程,提醒他們被開方式一定要開盡.

  對比二次根式的乘法推導(dǎo)出除法的'運算方法

  增強學(xué)生的自信心,并從一開始就使他們參與到推導(dǎo)過程中來.

  對學(xué)生進一步強化被開方數(shù)的取值范圍,以及分母不能為零.

  強化學(xué)生的解題格式一定要標準.

  教學(xué)過程設(shè)計

  問題與情境師生行為設(shè)計意圖

  活動二自我檢測

  活動三挑戰(zhàn)逆向思維

  把反過來,就得到

 。ā0,b0)

  利用它就可以進行二次根式的化簡.

  例2化簡:

  (1)

 。2)(b≥0).

  解:(1)(2)練習(xí)2化簡:

  (1)(2)活動四談?wù)勀愕氖斋@

  1.商的算術(shù)平方根的性質(zhì)(注意公式成立的條件).

  2.會利用商的算術(shù)平方根的性質(zhì)進行簡單的二次根式的化簡.

  找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計算,然后再找學(xué)生指出不足.

  二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?

  找學(xué)生口述解題過程,教師將過程寫在黑板上.

  請學(xué)生仿照例題自己解決這兩道小題,組長檢查本組的學(xué)習(xí)情況.

  請學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.

  為了更快地發(fā)現(xiàn)學(xué)生的錯誤之處,以便糾正.

  此處進行簡單處理是因為有二次根式的乘法公式的逆用作基礎(chǔ)理解并不難.

  讓學(xué)困生在自己做題時有一個參照.

  充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.

二次根式教案 篇7

  教學(xué)目標

  課標要求:學(xué)生要學(xué)會學(xué)習(xí)、自主學(xué)習(xí),要為學(xué)生終生學(xué)習(xí)打下堅實的基礎(chǔ),根據(jù)教學(xué)大綱和新課標的要求,根據(jù)教材內(nèi)容和學(xué)生的特點我確定了本節(jié)課的教學(xué)目標 1、了解二次根式的概念 2、了解二次根式的基本性質(zhì),經(jīng)歷觀察、比較、總結(jié)二次根式的基本性質(zhì)的過程,發(fā)展學(xué)生的歸納概括能力。 3、通過對二次根式的概念和性質(zhì)的探究,提高數(shù)學(xué)探究能力和歸納表達能力。 4、學(xué)生經(jīng)歷觀察、比較、總結(jié)和應(yīng)用等數(shù)學(xué)活動,感受數(shù)學(xué)活動充滿了探索性與創(chuàng)造性,體驗發(fā)現(xiàn)的樂趣,并提高應(yīng)用的意識。

  教學(xué)重點:二次根式的概念和基本性質(zhì)

  教學(xué)難點:二次根式的基本性質(zhì)的靈活運用

  教法和學(xué)法

  教學(xué)活動的本質(zhì)是一種合作,一種交流。學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者,本節(jié)課主要采用自主學(xué)習(xí),合作探究,引領(lǐng)提升的方式展開教學(xué)。依據(jù)學(xué)生的年齡特點和已有的知識基礎(chǔ),本節(jié)課注重加強知識間的縱向聯(lián)系,,拓展學(xué)生探索的空間,體現(xiàn)由具體到抽象的認識過程。為了為后續(xù)學(xué)習(xí)打下堅實的基礎(chǔ),例如在“銳角三角函數(shù)”一章中,會遇到很多實際問題,在解決實際問題的過程中,要遇到將二次根式化成最簡二次根式等,本課適當加強練習(xí),讓學(xué)生養(yǎng)成聯(lián)系和發(fā)展的觀點學(xué)習(xí)數(shù)學(xué)的習(xí)慣。

  教學(xué)過程

  活動一:根據(jù)學(xué)生已有知識探究二次根式的概念 1.探究二次根式概念 由四個實際問題(三個幾何問題,一個物理問題)入手,設(shè)置問題情境,讓學(xué)生感受到研究二次根式來源于生活又服務(wù)于生活。 思考:用帶有根號的式子填空,看看寫出的結(jié)果有什么特點? (1)要做一個兩條直角邊的長分別為7cm和4cm的三角尺,斜邊的長應(yīng)為 cm

  (2)面積為S的正方形的邊長為

  (3)要修建一個面積為6.28m2的圓形噴水池,它的半徑為m(∏取3.14)

  (4)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與開始落下時的高度h(單位:m)滿足關(guān)系h=5t2.如果用含有h的式子表示t,則t= 學(xué)生發(fā)現(xiàn)所填結(jié)果都表示一個數(shù)的算術(shù)平方根,教師引導(dǎo)學(xué)生用一個式子表示這些有共同特點的式子。學(xué)生表示為,此時教師啟發(fā)學(xué)生回憶已學(xué)平方根的性質(zhì)讓學(xué)生總結(jié)出a這一條件。在此基礎(chǔ)上總結(jié)出二次根式的概念。 2.例題評析 例1:哪些為二次根式? 練習(xí):x取何值時下列各式有意義,通過4小題的訓(xùn)練,讓學(xué)生體會二次根式概念的初步應(yīng)用。加深對二次根式定義的理解,并注重新舊知識間的聯(lián)系,用轉(zhuǎn)化的思想解決問題,總結(jié)出解題規(guī)律:求未知數(shù)的取值范圍即轉(zhuǎn)化為①被開方數(shù)大于等于0②分母不為0列不等式或不等式組解決問題。

  活動二:探究二次根式的性質(zhì)1 1.探究(a)與0的`關(guān)系 學(xué)生分類討論探究出:(a)是一個非負數(shù),此時歸納出二次根式的第一個性質(zhì):雙重非負性。培養(yǎng)學(xué)生的分類討論和概括能力。例2:,則變式:,

  活動三:探究二次根式的性質(zhì)2 探究()2=a(a)由課本具體的正數(shù)和零入手來研究二次根式的第二個性質(zhì),首先讓學(xué)生通過探究活動感受這條結(jié)論,然后再從算術(shù)平方根的意義出發(fā),結(jié)合具體例子對這條結(jié)論進行分析,引導(dǎo)學(xué)生由具體到抽象,得出一般的結(jié)論,并發(fā)現(xiàn)開平方運算與平方運算的關(guān)系,培養(yǎng)學(xué)生由特殊到一般的思維方式,提高歸納、總結(jié)的能力。前兩題學(xué)生口述教師板書,后面的兩題由學(xué)生板演引導(dǎo)學(xué)生分析(2)(4)實質(zhì)是積的乘方和分式的乘方 拓展:反之(a)如 為后面的化最簡二次根式(簡單的分母有理化)做好鋪墊。 例4:在實數(shù)范圍內(nèi)分解因式

  活動四:探究二次根式的性質(zhì)3 3.探究 在活動三的基礎(chǔ)上出示課本第4頁的探究: 引導(dǎo)學(xué)生比較活動三與活動四探究中兩組題目的不同之處,活動三中的題目是對非負數(shù)先進行開平方運算,再進行平方運算;而活動四中的題目正好相反,是先進行平方運算,再進行開平方運算。再次由特殊到一般的讓學(xué)生歸納出二次根式的又一個性質(zhì)。培養(yǎng)學(xué)生觀察、對比的能力和意識。 此時引導(dǎo)學(xué)生談一談對()2和的聯(lián)系和區(qū)別 相同點:①都有平方和開平方運算 ②運算結(jié)果都是非負數(shù) ③僅當a時,()2= 不同點:①從形式和運算順序看:()2先開方后平方,先平方后開方 ②從a的取值范圍看:()2(a),(a為任意數(shù)) ③從運算結(jié)果看:()2=a(a),(a為任意數(shù)

【二次根式教案】相關(guān)文章:

二次根式教案11-10

二次根式教案01-09

二次根式數(shù)學(xué)教案11-26

二次根式教案三篇04-12

二次根式教案6篇02-21

二次根式教案15篇02-15

二次根式教案(15篇)02-16

精選二次根式教案(通用10篇)09-27

二次根式教案模板10篇10-18

【推薦】二次根式教案3篇10-16