亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

范文資料網(wǎng)>反思報告>教案大全>《高三數(shù)學(xué)文教案

高三數(shù)學(xué)文教案

時間:2023-11-07 18:16:43 教案大全 我要投稿
  • 相關(guān)推薦

高三數(shù)學(xué)文教案

  作為一名教學(xué)工作者,通常會被要求編寫教案,編寫教案助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。那么什么樣的教案才是好的呢?下面是小編為大家整理的高三數(shù)學(xué)文教案,歡迎閱讀與收藏。

高三數(shù)學(xué)文教案

高三數(shù)學(xué)文教案1

  【簡單復(fù)合函數(shù)的導(dǎo)數(shù)】

  【高考要求】:簡單復(fù)合函數(shù)的導(dǎo)數(shù)(B).

  【學(xué)習(xí)目標(biāo)】:

  1.了解復(fù)合函數(shù)的概念,理解復(fù)合函數(shù)的求導(dǎo)法則,能求簡單的復(fù)合函數(shù)(僅限于形如f(ax+b))的導(dǎo)數(shù).

  2.會用復(fù)合函數(shù)的導(dǎo)數(shù)研究函數(shù)圖像或曲線的特征.

  3.會用復(fù)合函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值.

  【知識復(fù)習(xí)與自學(xué)質(zhì)疑】

  1.復(fù)合函數(shù)的求導(dǎo)法則是什么?

  2.(1)若,則________.(2)若,則_____.(3)若,則___________.(4)若,則___________.

  3.函數(shù)在區(qū)間_____________________________上是增函數(shù),在區(qū)間__________________________上是減函數(shù).

  4.函數(shù)的單調(diào)性是_________________________________________.

  5.函數(shù)的極大值是___________.

  6.函數(shù)的值,最小值分別是______,_________.

  【例題精講】

  1.求下列函數(shù)的導(dǎo)數(shù)(1);(2).

  2.已知曲線在點處的切線與曲線在點處的切線相同,求的值.

  【矯正反饋】

  1.與曲線在點處的切線垂直的一條直線是___________________.

  2.函數(shù)的極大值點是_______,極小值點是__________.

  (不好解)3.設(shè)曲線在點處的切線斜率為,若,則函數(shù)的周期是____________.

  4.已知曲線在點處的切線與曲線在點處的切線互相垂直,為原點,且,則的面積為______________.

  5.曲線上的點到直線的最短距離是___________.

  【遷移應(yīng)用】

  1.設(shè),,若存在,使得,求的取值范圍.

  2.已知,,若對任意都有,試求的取值范圍.

  【概率統(tǒng)計復(fù)習(xí)】

  一、知識梳理

  1.三種抽樣方法的聯(lián)系與區(qū)別:

  類別共同點不同點相互聯(lián)系適用范圍

  簡單隨機抽樣都是等概率抽樣從總體中逐個抽取總體中個體比較少

  系統(tǒng)抽樣將總體均勻分成若干部分;按事先確定的規(guī)則在各部分抽取在起始部分采用簡單隨機抽樣總體中個體比較多

  分層抽樣將總體分成若干層,按個體個數(shù)的比例抽取在各層抽樣時采用簡單隨機抽樣或系統(tǒng)抽樣總體中個體有明顯差異

  (1)從含有N個個體的總體中抽取n個個體的樣本,每個個體被抽到的概率為

  (2)系統(tǒng)抽樣的步驟:①將總體中的個體隨機編號;②將編號分段;③在第1段中用簡單隨機抽樣確定起始的個體編號;④按照事先研究的規(guī)則抽取樣本.

  (3)分層抽樣的步驟:①分層;②按比例確定每層抽取個體的個數(shù);③各層抽樣;④匯合成樣本.

  (4)要懂得從圖表中提取有用信息

  如:在頻率分布直方圖中①小矩形的面積=組距=頻率②眾數(shù)是矩形的中點的橫坐標(biāo)③中位數(shù)的左邊與右邊的直方圖的面積相等,可以由此估計中位數(shù)的值

  2.方差和標(biāo)準(zhǔn)差都是刻畫數(shù)據(jù)波動大小的數(shù)字特征,一般地,設(shè)一組樣本數(shù)據(jù),…,其平均數(shù)為則方差,標(biāo)準(zhǔn)差

  3.古典概型的概率公式:如果一次試驗中可能出現(xiàn)的結(jié)果有個,而且所有結(jié)果都是等可能的,如果事件包含個結(jié)果,那么事件的概率P=

  特別提醒:古典概型的兩個共同特點:

  ○1,即試中有可能出現(xiàn)的基本事件只有有限個,即樣本空間Ω中的元素個數(shù)是有限的;

  ○2,即每個基本事件出現(xiàn)的可能性相等。

  4.幾何概型的概率公式:P(A)=

  特別提醒:幾何概型的特點:試驗的結(jié)果是無限不可數(shù)的;○2每個結(jié)果出現(xiàn)的可能性相等。

  二、夯實基礎(chǔ)

  (1)某單位有職工160名,其中業(yè)務(wù)人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個容量為20的樣本.若用分層抽樣的方法,抽取的業(yè)務(wù)人員、管理人員、后勤人員的人數(shù)應(yīng)分別為____________.

  (2)某賽季,甲、乙兩名籃球運動員都參加了

  11場比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,則甲、乙兩名運動員得分的中位數(shù)分別為()

  A.19、13B.13、19C.20、18D.18、20

  (3)統(tǒng)計某校1000名學(xué)生的數(shù)學(xué)會考成績,得到樣本頻率分布直方圖如右圖示,規(guī)定不低于60分為

  及格,不低于80分為優(yōu)秀,則及格人數(shù)是;

  優(yōu)秀率為。

  (4)在一次歌手大獎賽上,七位評委為歌手打出的分?jǐn)?shù)如下:

  9.48.49.49.99.69.49.7

  去掉一個分和一個最低分后,所剩數(shù)據(jù)的平均值

  和方差分別為()

  A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016

  (5)將一顆骰子先后拋擲2次,觀察向上的點數(shù),則以第一次向上點數(shù)為橫坐標(biāo)x,第二次向上的點數(shù)為縱坐標(biāo)y的點(x,y)在圓x2+y2=27的內(nèi)部的概率________.

  (6)在長為12cm的線段AB上任取一點M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為()

  三、高考鏈接

  07、某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與19秒之間,將測試結(jié)果按如下方式分成六組:第一組,成績大于等于13秒且小于14秒;第二組,成績大于等于14秒且小于15秒

  ;第六組,成績大于等于18秒且小于等于19秒.右圖

  是按上述分組方法得到的頻率分布直方圖.設(shè)成績小于17秒

  的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比為,成績大于等于15秒

  且小于17秒的學(xué)生人數(shù)為,則從頻率分布直方圖中可分析

  出和分別為()

  08、從某項綜合能力測試中抽取100人的成績,統(tǒng)計如表,則這100人成績的'標(biāo)準(zhǔn)差為()

  分?jǐn)?shù)54321

  人數(shù)2010303010

  09、在區(qū)間上隨機取一個數(shù)x,的值介于0到之間的概率為().

  08、現(xiàn)有8名奧運會志愿者,其中志愿者通曉日語,通曉俄語,通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.

  (Ⅰ)求被選中的概率;(Ⅱ)求和不全被選中的概率.

  【核心考點算法初步復(fù)習(xí)】

  1.(2011年天津)閱讀圖11的程序框圖,運行相應(yīng)的程序,則輸出i的值為()

  A.3B.4C.5D.6

  2.(2011年全國)執(zhí)行圖12的程序框圖,如果輸入的N是6,那么輸出的p是()

  A.120B.720C.1440D.5040

  3.執(zhí)行如圖13的程序框圖,則輸出的n=()

  A.6B.5C.8D.7

  4.(2011年湖南)若執(zhí)行如圖14所示的框圖,輸入x1=1,x2=2,x3=3,x-=2,則輸出的數(shù)等于________.

  5.(2011年浙江)若某程序圖如圖15所示,則該程序運行后輸出的k值為________.

  6.(2011年淮南模擬)某程序框圖如圖16所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是()

  A.f(x)=x2B.f(x)=1x

  C.f(x)=exD.f(x)=sinx

  7.運行如下程序:當(dāng)輸入168,72時,輸出的結(jié)果是()

  INPUTm,n

  DO

  r=mMODn

  m=n

  n=r

  LOOPUNTILr=0

  PRINTm

  END

  A.168B.72C.36D.24

  8.在圖17程序框圖中,輸入f1(x)=xex,則輸出的函數(shù)表達(dá)式是________________.

  9.(2011年安徽合肥模擬)如圖18所示,輸出的為()

  A.10B.11C.12D.13

  10.(2011年廣東珠海模擬)閱讀圖19的算法框圖,輸出結(jié)果的值為()

  A.1B.3C.12D.32

高三數(shù)學(xué)文教案2

一、指導(dǎo)思想

今年是我省使用新教材的第八年,即進(jìn)入了新課程標(biāo)準(zhǔn)下高考的第六年。高三數(shù)學(xué)教學(xué)要以《數(shù)學(xué)課程標(biāo)準(zhǔn)》為依據(jù),全面貫徹教育方針,積極實施素質(zhì)教育。提高學(xué)生的學(xué)習(xí)能力仍是我們的奮斗目標(biāo)。近年來的高考數(shù)學(xué)試題逐步做到科學(xué)化、規(guī)范化,堅持了穩(wěn)中求改、穩(wěn)中創(chuàng)新的原則。高考試題不但堅持了考查全面,比例適當(dāng),布局合理的特點,也突出體現(xiàn)了變知識立意為能力立意這一舉措。更加注重考查考生進(jìn)入高校學(xué)習(xí)所需的基本素養(yǎng),這些問題應(yīng)引起我們在教學(xué)中的關(guān)注和重視。

二、注意事項

1、高度重視基礎(chǔ)知識,基本技能和基本方法的復(fù)習(xí)。

“基礎(chǔ)知識,基本技能和基本方法”是高考復(fù)習(xí)的重點。我們希望在復(fù)習(xí)課中要認(rèn)真落實“基礎(chǔ)練習(xí)”,并注意蘊涵在基礎(chǔ)知識中的能力因素,注意基本問題中的能力培養(yǎng)。特別是要學(xué)會把基礎(chǔ)知識放在新情景中去分析,應(yīng)用。

2、高中的‘重點知識’在復(fù)習(xí)中要保持較大的比重和必要的深度。

原來的重點內(nèi)容函數(shù)、不等式、數(shù)列、向量、立體幾何,平面三角及解析幾何中的綜合問題等。在教學(xué)中,要避免重復(fù)及簡單的操練。新增的內(nèi)容:算法、概率等內(nèi)容在復(fù)習(xí)時也應(yīng)引起我們的足夠重視。總之高三的數(shù)學(xué)復(fù)習(xí)課要以培養(yǎng)邏輯思維能力為核心,加強運算能力為主體進(jìn)行復(fù)習(xí)。

3、重視‘通性、通法’的落實。

要把復(fù)習(xí)的重點放在教材中典型例題、習(xí)題上;放在體現(xiàn)通性、通法的例題、習(xí)題上;放在各部分知識網(wǎng)絡(luò)之間的內(nèi)在聯(lián)系上抓好課堂教學(xué)質(zhì)量,定出實施方法和評價方案。

4、認(rèn)真學(xué)習(xí)《某省20xx年高考考試說明》,研究近三年的高考試題,提高復(fù)習(xí)課的效率。

《考試說明》是命題的依據(jù),復(fù)習(xí)的依據(jù)。高考試題是《考試說明》的具體體現(xiàn)。只有研究近年來的考試試題,才能加深對《考試說明》的理解,找到我們與命題專家在認(rèn)識《考試說明》上的差距。并力求在二輪復(fù)習(xí)中縮小這一差距,更好地指導(dǎo)我們的復(fù)習(xí)。

5、滲透數(shù)學(xué)思想方法,培養(yǎng)數(shù)學(xué)學(xué)科能力。

《考試說明》明確指出要考查數(shù)學(xué)思想方法,要加強學(xué)科能力的考查。我們在復(fù)習(xí)中要加強數(shù)學(xué)思想方法的復(fù)習(xí),如轉(zhuǎn)化與化歸的思想、函數(shù)與方程的思想、分類討論的思想、數(shù)形結(jié)合的思想。以及配方法、換元法、待定系數(shù)法、反證法、數(shù)學(xué)歸納法、解析法等數(shù)學(xué)基本方法都要有意識地根據(jù)學(xué)生學(xué)習(xí)實際予以復(fù)習(xí)及落實。

6、二輪復(fù)習(xí)課中注意新的目標(biāo)定位。

①培養(yǎng)學(xué)生搜集和處理信息的能力;

②激發(fā)學(xué)生的創(chuàng)新精神;

③培養(yǎng)學(xué)生在學(xué)習(xí)過程中的的合作精神;

④激活顯示各科知識的儲存,嘗試相關(guān)知識的靈活應(yīng)用及綜合應(yīng)用。

三、知識和能力要求

1、知識要求對知識的要求由低到高分為三個層次,依次是知道和感知、理解和掌握、靈活和綜合運用,且高一級的層次要求包括低一級的層次要求。

(1)感知和了解:要求對所學(xué)知識的含義有初步的了解和感性的認(rèn)識或初步的理解,知道這一知識內(nèi)容是什么,并能在有關(guān)的問題中識別、模仿、描述它。

(2)理解和掌握:要求對所學(xué)知識內(nèi)容有較為深刻的理論認(rèn)識,能夠準(zhǔn)確地刻畫或解釋、舉例說明、簡單的變形、推導(dǎo)或證明、抽象歸納,并能利用相關(guān)知識解決有關(guān)問題。

(3)靈活和綜合運用:要求系統(tǒng)地掌握知識的內(nèi)在聯(lián)系,能靈活運用所學(xué)知識分析和解決較為復(fù)雜的或綜合性的數(shù)學(xué)現(xiàn)象與數(shù)學(xué)問題。

2、能力要求

能力主要指運算求解能力、數(shù)據(jù)處理能力、空間想象能力、抽象概括能力、推理論證能力以及實踐能力和創(chuàng)新意識。

(1)運算求解能力:會根據(jù)法則、公式進(jìn)行正確運算、變形;能根據(jù)問題的條件,尋找與設(shè)計合理、簡捷運算途徑。

(2)數(shù)據(jù)處理能力:會收集、整理、分析數(shù)據(jù),能抽取對研究問題有用的信息,并作出正確的判斷;能根據(jù)要求對數(shù)據(jù)進(jìn)行估計和近似計算。

(3)空間想象能力:會畫簡單的幾何圖形;能準(zhǔn)確地分析圖形中有關(guān)量的相互關(guān)系;會運用圖形與圖表等手段形象地揭示問題的本質(zhì)。

(4)抽象概括能力:能從具體、生動的實例中,發(fā)現(xiàn)研究對象的本質(zhì);能從給定的大量信息材料中,概括出一些結(jié)論,并能應(yīng)用于解決問題或作出新的判斷。

(5)推理論證能力:會根據(jù)已知的事實和已獲得的正確數(shù)學(xué)命題來論證某一數(shù)學(xué)命題真實性。

(6)應(yīng)用意識和實踐能力:能夠?qū)栴}所提供的信息資料進(jìn)行歸納、整理和分類,將實際問題抽象為數(shù)學(xué)問題,建立數(shù)學(xué)模型;能應(yīng)用相關(guān)的數(shù)學(xué)方法解決問題。

(7)創(chuàng)新意識和能力:能夠獨立思考,靈活和綜合地運用所學(xué)數(shù)學(xué)的知識、思想和方法,提出問題、分析問題和解決問題。

四、學(xué)生情況分析:

1基礎(chǔ)知識掌握情況分析:高三一部11、12班大部分學(xué)生基礎(chǔ)知識掌握情況較差,計算能力不強,一些基本的題型都不能自如的解決。通過一段的一輪復(fù)習(xí),大部分學(xué)生對復(fù)習(xí)過的公式,定理、法則都有了一定的認(rèn)識與理解;灸軌蛴涀≡撚浌,但對于沒有復(fù)習(xí)的部分,還是有一定的.欠缺。表現(xiàn)為一些基本的公式、法則、定理等都忘掉了。

2學(xué)習(xí)態(tài)度情況分析:有相當(dāng)一部分同學(xué)學(xué)習(xí)態(tài)度極為不端正,主要表現(xiàn)為:

(1)缺乏上進(jìn)心,有相當(dāng)一部分同學(xué)信心不足,沒有必勝的勇氣和信心。

(2)不能按時完成作業(yè),有抄襲或只是解決一些簡單的問題而缺乏深入研究難題的習(xí)慣。

(3)缺乏自主復(fù)習(xí)的習(xí)慣,大部分同學(xué)只是在等老師引導(dǎo)進(jìn)行一輪復(fù)習(xí),而不能夠自己動手搞好提前復(fù)習(xí),表現(xiàn)在考試(或作業(yè))中遇到了沒有復(fù)習(xí)的試題時,顯得毫無辦法。

(4)缺乏動手能力及動手習(xí)慣,對復(fù)習(xí)過的知識不能及時的進(jìn)行鞏固、練習(xí),所發(fā)的講義、練習(xí)卷等不能夠及時、認(rèn)真填寫,導(dǎo)致對復(fù)習(xí)過的知識掌握的熟練程度不夠。

3復(fù)習(xí)方式、方法分析:

(1)缺少科學(xué)有效的復(fù)習(xí)方法,有相當(dāng)一部分同學(xué)沒有改錯本,在一些愛錯的地方不斷的犯錯。不能夠做到“吃一塹、長一智”。

(2)一些同學(xué)不會聽課,不會記筆記。上課時,整堂忙于記筆記,而忽視聽講,不注意聽思路的分析及探索過程。

(3)不注意歸納知識,復(fù)習(xí)到的只是一些零散的知識,而不是有效的知識、方法體系,顯得很笨。

(4)不注意經(jīng);仡,對復(fù)習(xí)過的知識置之千里,而不去經(jīng)常鞏固、練習(xí)。時間長了,又“生銹”了。

五、復(fù)習(xí)對策教學(xué)措施

1、盡快幫助學(xué)生樹立信心!

2、教給學(xué)生科學(xué)的復(fù)習(xí)習(xí)慣和復(fù)習(xí)方法。

3、堅持基礎(chǔ)知識訓(xùn)練。

4、對高考要考察的六類解答問題,一定要認(rèn)真做好專題復(fù)習(xí)和訓(xùn)練;每周訓(xùn)練兩套模擬試題;每天做好專題訓(xùn)練的配套作業(yè)。

六、教學(xué)參考進(jìn)度

1、2月10日至4月20日為第二輪復(fù)習(xí)階段。這一輪的復(fù)習(xí)方式是綜合訓(xùn)練與專題總結(jié)并舉,在每周兩次綜合練習(xí)的基礎(chǔ)上穿插專題總結(jié);

2、4月21日至5月20日為第三輪復(fù)習(xí)階段。這一階段主要以綜合訓(xùn)練為主。每周至少做三套綜合練習(xí)題,題目來源為山東省各地市的一、二輪模擬題。

3、5月21日至6月7日為回扣課本階段。這一階段主要根據(jù)第三輪綜合練習(xí)中的問題回顧課本,以達(dá)到進(jìn)一步落實升華的目的。

七、二輪復(fù)習(xí)資料編寫專題內(nèi)容及分工安排

(一)專題分工專題一:集合與簡單邏輯用語xxxxxx鄧光珍專題二:《函數(shù)與導(dǎo)數(shù)》xx-張福平專題三:《三角函數(shù)及解三角形》xxxx王富香專題四:《數(shù)列》xxxx姜守芹專題五:《立體幾何》xxxx高吉泉專題六:《解析幾何(穿插向量)》xxxx趙來偉專題七:《概率與統(tǒng)計》xxxx梁建國專題八:《導(dǎo)數(shù)與積分》xxxx梁建國專題九:《思想方法與選擇、填空題的解法》xx-高吉泉

(二)編寫專題的基本要求:

1、專題以高考命題趨勢、考點透視、知識框架題目、例題、專項訓(xùn)練的形式出現(xiàn),要精選題目,要有一定的綜合性,難度要達(dá)到高考的要求,不能降低要求。

2、每個專題約4天時間完成(包括過關(guān)測試),采用講練結(jié)合,以練為主。

3、各專題的題量要根據(jù)本專題的地位及難易程度,既要有小題,也要有大題。

4、每個專題在復(fù)習(xí)過程中要讓學(xué)生理清本專題的常考考點、高考地位,高考分值、主要題型、高考熱點、重點等。在第二輪復(fù)習(xí)的強化訓(xùn)練中,根據(jù)學(xué)生的實際情況,以強化訓(xùn)練為主。

在強化訓(xùn)練中,命題一定要針對學(xué)生的實際情況,有針對性地命題,難度要適易,尤其中低檔強化訓(xùn)練題為主,不要過于拔高要求,各層次的訓(xùn)練都要狠抓基礎(chǔ),針對高考的方向,切實做到通過強化訓(xùn)練,使學(xué)生的數(shù)學(xué)成績能得到穩(wěn)步提高。在強化訓(xùn)練的試卷講評中,要提前探討和思考,讓學(xué)生有回顧的余地,切忌發(fā)下試卷就講評,且要有針對性的講解,老師備課一定要備學(xué)生,盡可能一節(jié)課的時間講評完試卷,每次的訓(xùn)練中要總結(jié)得與失,出現(xiàn)的問題要及時得到解決,問題較多的還要多次重復(fù)考及多次訓(xùn)練。

八、本學(xué)期備課內(nèi)容及進(jìn)度:周次、內(nèi)容、目的、要求重點、考點熱點

1市第二次統(tǒng)考試卷講評

2專題一集合與簡單邏輯用語知識框架、雙基集合運算和充分必要條件

3專題二函數(shù)與導(dǎo)數(shù)知識框架、雙基函數(shù)不等式綜合應(yīng)用

4第三專題角函數(shù)及解三角形知識網(wǎng)絡(luò)、雙基數(shù)列綜合應(yīng)用

5第四專題數(shù)列函數(shù)創(chuàng)新探究函數(shù)創(chuàng)新綜合

6專題五立體幾何回扣雙基、知識框架立體幾何綜合應(yīng)用

7專題六解析幾何知識框架、回扣雙基解析幾何綜合應(yīng)用

8市三次統(tǒng)考試卷講評

9第七專題概率與統(tǒng)計知識框架、雙基概率統(tǒng)計綜合

10第八專題導(dǎo)數(shù)應(yīng)用和積分雙基、知識要點導(dǎo)數(shù)綜合應(yīng)用

11第九專題思想方法和選、填題解法回扣基本方法和思想數(shù)形結(jié)合、分類討論、化歸轉(zhuǎn)化、函數(shù)與方程

12市四次統(tǒng)考試卷講評

13考前模擬訓(xùn)練綜合訓(xùn)練、應(yīng)試能力和技巧重點、熱點講評

14回扣課本、反饋雙基查缺補漏,回歸課本

15回扣課本、反饋雙基回歸課本,考試方法

16高考

高三數(shù)學(xué)文教案3

教學(xué)分析

本節(jié)課的研究是對初中不等式學(xué)習(xí)的延續(xù)和拓展,也是實數(shù)理論的進(jìn)一步發(fā)展.在本節(jié)課的學(xué)習(xí)過程中,將讓學(xué)生回憶實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.

通過本節(jié)課的學(xué)習(xí),讓學(xué)生從一系列的具體問題情境中,感受到在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,并充分認(rèn)識不等關(guān)系的存在與應(yīng)用.對不等關(guān)系的相關(guān)素材,用數(shù)學(xué)觀點進(jìn)行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關(guān)系表示出來.在本節(jié)課的學(xué)習(xí)過程中還安排了一些簡單的、學(xué)生易于處理的問題,其用意在于讓學(xué)生注意對數(shù)學(xué)知識和方法的應(yīng)用,同時也能激發(fā)學(xué)生的學(xué)習(xí)興趣,并由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望.根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用再現(xiàn)、回憶得出實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.

在本節(jié)教學(xué)中,教師可讓學(xué)生閱讀書中實例,充分利用數(shù)軸這一簡單的數(shù)形結(jié)合工具,直接用實數(shù)與數(shù)軸上點的一一對應(yīng)關(guān)系,從數(shù)與形兩方面建立實數(shù)的順序關(guān)系.要在溫故知新的基礎(chǔ)上提高學(xué)生對不等式的認(rèn)識.

三維目標(biāo)

1.在學(xué)生了解不等式產(chǎn)生的實際背景下,利用數(shù)軸回憶實數(shù)的基本理論,理解實數(shù)的大小關(guān)系,理解實數(shù)大小與數(shù)軸上對應(yīng)點位置間的關(guān)系.

2.會用作差法判斷實數(shù)與代數(shù)式的大小,會用配方法判斷二次式的大小和范圍.

3.通過溫故知新,提高學(xué)生對不等式的認(rèn)識,激發(fā)學(xué)生的學(xué)習(xí)興趣,體會數(shù)學(xué)的奧秘與數(shù)學(xué)的結(jié)構(gòu)美.

重點難點

教學(xué)重點:比較實數(shù)與代數(shù)式的大小關(guān)系,判斷二次式的大小和范圍.

教學(xué)難點:準(zhǔn)確比較兩個代數(shù)式的大小.

課時安排

1課時

教學(xué)過程

導(dǎo)入新課

思路1.(章頭圖導(dǎo)入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學(xué)生帶入“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同”的大自然和浩瀚的宇宙中,使學(xué)生在具體情境中感受到不等關(guān)系在現(xiàn)實世界和日常生活中是大量存在的,由此產(chǎn)生用數(shù)學(xué)研究不等關(guān)系的強烈愿望,自然地引入新課.

思路2.(情境導(dǎo)入)列舉出學(xué)生身體的高矮、身體的輕重、距離學(xué)校路程的遠(yuǎn)近、百米賽跑的時間、數(shù)學(xué)成績的多少等現(xiàn)實生活中學(xué)生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關(guān)系.這些不等關(guān)系怎樣在數(shù)學(xué)上表示出來呢?讓學(xué)生自由地展開聯(lián)想,教師組織不等關(guān)系的相關(guān)素材,讓學(xué)生用數(shù)學(xué)的觀點進(jìn)行觀察、歸納,使學(xué)生在具體情境中感受到不等關(guān)系與相等關(guān)系一樣,在現(xiàn)實世界和日常生活中大量存在著.這樣學(xué)生會由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望,從而進(jìn)入進(jìn)一步的探究學(xué)習(xí),由此引入新課.

推進(jìn)新課

新知探究

提出問題

1回憶初中學(xué)過的不等式,讓學(xué)生說出“不等關(guān)系”與“不等式”的異同.怎樣利用不等式研究及表示不等關(guān)系?

2在現(xiàn)實世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系.你能舉出一些實際例子嗎?

3數(shù)軸上的任意兩點與對應(yīng)的兩實數(shù)具有怎樣的關(guān)系?

4任意兩個實數(shù)具有怎樣的關(guān)系?用邏輯用語怎樣表達(dá)這個關(guān)系?

活動:教師引導(dǎo)學(xué)生回憶初中學(xué)過的不等式概念,使學(xué)生明確“不等關(guān)系”與“不等式”的異同.不等關(guān)系強調(diào)的是關(guān)系,可用符號“>”“<”“≠”“≥”“≤”表示,而不等式則是表示兩者的不等關(guān)系,可用“a>b”“a

教師與學(xué)生一起舉出我們?nèi)粘I钪胁坏汝P(guān)系的例子,可讓學(xué)生充分合作討論,使學(xué)生感受到現(xiàn)實世界中存在著大量的不等關(guān)系.在學(xué)生了解了一些不等式產(chǎn)生的實際背景的前提下,進(jìn)一步學(xué)習(xí)不等式的有關(guān)內(nèi)容.

實例1:某天的天氣預(yù)報報道,氣溫32℃,最低氣溫26℃.

實例2:對于數(shù)軸上任意不同的兩點A、B,若點A在點B的左邊,則-A

實例3:若一個數(shù)是非負(fù)數(shù),則這個數(shù)大于或等于零.

實例4:兩點之間線段最短.

實例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.

實例6:限速40km/h的路標(biāo)指示司機在前方路段行駛時,應(yīng)使汽車的速度v不超過40km/h.

實例7:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.

教師進(jìn)一步點撥:能夠發(fā)現(xiàn)身邊的數(shù)學(xué)當(dāng)然很好,這說明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門學(xué)科,但作為我們研究數(shù)學(xué)的人來說,能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數(shù)學(xué)的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關(guān)系呢?學(xué)生很容易想到,用不等式或不等式組來表示這些不等關(guān)系.那么不等式就是用不等號將兩個代數(shù)式連結(jié)起來所成的式子.如-7<-5,3+4>1+4,2-≤6,a+2≥0,3≠4,0≤5等.

教師引導(dǎo)學(xué)生將上述的7個實例用不等式表示出來.實例1,若用t表示某天的氣溫,則26℃≤t≤32℃.實例3,若用-表示一個非負(fù)數(shù),則-≥0.實例5,|AC|+|BC|>|AB|,如下圖.

|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.

|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交換被減數(shù)與減數(shù)的位置也可以.

實例6,若用v表示速度,則v≤40km/h.實例7,f≥2.5%,p≥2.3%.對于實例7,教師應(yīng)點撥學(xué)生注意酸奶中的脂肪含量與蛋白質(zhì)含量需同時滿足,避免寫成f≥2.5%或p≥2.3%,這是不對的但可表示為f≥2.5%且p≥2.3%.

對以上問題,教師讓學(xué)生輪流回答,再用投影儀給出課本上的兩個結(jié)論.

討論結(jié)果:

(1)(2)略;(3)數(shù)軸上任意兩點中,右邊點對應(yīng)的實數(shù)比左邊點對應(yīng)的實數(shù)大.

(4)對于任意兩個實數(shù)a和b,在a=b,a>b,a應(yīng)用示例

例1(教材本節(jié)例1和例2)

活動:通過兩例讓學(xué)生熟悉兩個代數(shù)式的大小比較的基本方法:作差,配方法.

點評:本節(jié)兩例的求解,是借助因式分解和應(yīng)用配方法完成的,這兩種方法是代數(shù)式變形時經(jīng)常使用的方法,應(yīng)讓學(xué)生熟練掌握.

變式訓(xùn)練

1.若f(-)=3-2xx+1,g(-)=2-2+xx1,則f(-)與g(-)的大小關(guān)系是(  )

A.f(-)>g(-)      B.f(-)=g(-)

C.f(-)

答案:A

解析:f(-)-g(-)=-2-2-+2=(xx1)2+1≥1>0,∴f(-)>g(-).

2.已知-≠0,比較(-2+1)2與-4+-2+1的大小.

解:由(-2+1)2-(-4+-2+1)=-4+2-2+1xx4xx2-1=-2.

∵-≠0,得-2>0.從而(-2+1)2>-4+-2+1.

例2比較下列各組數(shù)的大小(a≠b).

(1)a+b2與21a+1b(a>0,b>0);

(2)a4-b4與4a3(a-b).

活動:比較兩個實數(shù)的大小,常根據(jù)實數(shù)的運算性質(zhì)與大小順序的關(guān)系,歸結(jié)為判斷它們的差的符號來確定.本例可由學(xué)生獨立完成,但要點撥學(xué)生在最后的符號判斷說理中,要理由充分,不可忽略這點.

解:(1)a+b2-21a+1b=a+b2-2aba+b=?a+b?2-4ab2?a+b?=?a-b?22?a+b?.

∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴?a-b?22?a+b?>0,即a+b2>21a+1b.

(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)

=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]

=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].

∵2a2+(a+b)2≥0(當(dāng)且僅當(dāng)a=b=0時取等號),

又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.

∴a4-b4<4a3(a-b).

點評:比較大小常用作差法,一般步驟是作差——變形——判斷符號.變形常用的手段是分解因式和配方,前者將“差”變?yōu)椤胺e”,后者將“差”化為一個或幾個完全平方式的.“和”,也可兩者并用.

變式訓(xùn)練

已知->y,且y≠0,比較-y與1的大小.

活動:要比較任意兩個數(shù)或式的大小關(guān)系,只需確定它們的差與0的大小關(guān)系.

解:-y-1=xxyy.

∵->y,∴xxy>0.

當(dāng)y<0時,xxyy<0,即-y-1<0.∴-y<1;

當(dāng)y>0時,xxyy>0,即-y-1>0.∴-y>1.

點評:當(dāng)字母y取不同范圍的值時,差-y-1的正負(fù)情況不同,所以需對y分類討論.

例3建筑設(shè)計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.

活動:解題關(guān)鍵首先是把文字語言轉(zhuǎn)換成數(shù)學(xué)語言,然后比較前后比值的大小,采用作差法.

解:設(shè)住宅窗戶面積和地板面積分別為a、b,同時增加的面積為m,根據(jù)問題的要求a

由于a+mb+m-ab=m?b-a?b?b+m?>0,于是a+mb+m>ab.又ab≥10%,

因此a+mb+m>ab≥10%.

所以同時增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.

點評:一般地,設(shè)a、b為正實數(shù),且a

變式訓(xùn)練

已知a1,a2,…為各項都大于零的等比數(shù)列,公比q≠1,則(  )

A.a1+a8>a4+a5       B.a1+a8

C.a1+a8=a4+a5D.a1+a8與a4+a5大小不確定

答案:A

解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4

=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).

∵{an}各項都大于零,∴q>0,即1+q>0.

又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.

課堂小結(jié)

1.教師與學(xué)生共同完成本節(jié)課的小結(jié),從實數(shù)的基本性質(zhì)的回顧,到兩個實數(shù)大小的比較方法;從例題的活動探究點評,到緊跟著的變式訓(xùn)練,讓學(xué)生去繁就簡,聯(lián)系舊知,將本節(jié)課所學(xué)納入已有的知識體系中.

2.教師畫龍點睛,點撥利用實數(shù)的基本性質(zhì)對兩個實數(shù)大小比較時易錯的地方.鼓勵學(xué)有余力的學(xué)生對節(jié)末的思考與討論在課后作進(jìn)一步的探究.

作業(yè)

習(xí)題3—1A組3;習(xí)題3—1B組2.

設(shè)計感想

1.本節(jié)設(shè)計關(guān)注了教學(xué)方法的優(yōu)化.經(jīng)驗告訴我們:課堂上應(yīng)根據(jù)具體情況,選擇、設(shè)計最能體現(xiàn)教學(xué)規(guī)律的教學(xué)過程,不宜長期使用一種固定的教學(xué)方法,或原封不動地照搬一種實驗?zāi)J?各種教學(xué)方法中,沒有一種能很好地適應(yīng)一切教學(xué)活動.也就是說,世上沒有萬能的教學(xué)方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.

2.本節(jié)設(shè)計注重了難度控制.不等式內(nèi)容應(yīng)用面廣,可以說與其他所有內(nèi)容都有交匯,歷來是高考的重點與熱點.作為本章開始,可以適當(dāng)開闊一些,算作拋磚引玉,讓學(xué)生有個自由探究聯(lián)想的平臺,但不宜過多向外拓展,以免對學(xué)生產(chǎn)生負(fù)面影響.

3.本節(jié)設(shè)計關(guān)注了學(xué)生思維能力的訓(xùn)練.訓(xùn)練學(xué)生的思維能力,提升思維的品質(zhì),是數(shù)學(xué)教師直面的重要課題,也是中學(xué)數(shù)學(xué)教育的主線.采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化.變式訓(xùn)練教學(xué)又可以拓展學(xué)生思維視野的廣度,解題后的點撥反思有助于學(xué)生思維批判性品質(zhì)的提升

高三數(shù)學(xué)文教案4

一、教學(xué)內(nèi)容分析

二面角是我們?nèi)粘I钪薪?jīng)常見到的一個圖形,它是在學(xué)生學(xué)過空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進(jìn)一步完善了空間角的概念.掌握好本節(jié)課的知識,對學(xué)生系統(tǒng)地理解直線和平面的知識、空間想象能力的培養(yǎng),乃至創(chuàng)新能力的培養(yǎng)都具有十分重要的意義.

二、教學(xué)目標(biāo)設(shè)計

理解二面角及其平面角的概念;能確認(rèn)圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運用它們解決相關(guān)問題.

三、教學(xué)重點及難點

二面角的平面角的概念的形成以及二面角的平面角的作法.

四、教學(xué)流程設(shè)計

五、教學(xué)過程設(shè)計

一、新課引入

1.復(fù)習(xí)和回顧平面角的有關(guān)知識.

平面中的角

定義從一個頂點出發(fā)的兩條射線所組成的圖形,叫做角

圖形

結(jié)構(gòu)射線—點—射線

表示法∠AOB,∠O等

2.復(fù)習(xí)和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征.(空間角轉(zhuǎn)化為平面角)

3.觀察:陡峭與否,跟山坡面與水平面所成的'角大小有關(guān),而山坡面與水平面所成的角就是兩個平面所成的角.在實際生活當(dāng)中,能夠轉(zhuǎn)化為兩個平面所成角例子非常多,比如在這間教室里,誰能舉出能夠體現(xiàn)兩個平面所成角的實例?(如圖1,課本的開合、門或窗的開關(guān).)從而,引出“二面角”的定義及相關(guān)內(nèi)容.

二、學(xué)習(xí)新課

(一)二面角的定義

平面中的角二面角

定義從一個頂點出發(fā)的兩條射線所組成的圖形,叫做角課本P17

圖形

結(jié)構(gòu)射線—點—射線半平面—直線—半平面

表示法∠AOB,∠O等二面角α—a—β或α-AB-β

(二)二面角的圖示

1.畫出直立式、平臥式二面角各一個,并分別給予表示.

2.在正方體中認(rèn)識二面角.

(三)二面角的平面角

平面幾何中的“角”可以看作是一條射線繞其端點旋轉(zhuǎn)而成,它有一個旋轉(zhuǎn)量,它的大小可以度量,類似地,"二面角"也可以看作是一個半平面以其棱為軸旋轉(zhuǎn)而成,它也有一個旋轉(zhuǎn)量,那么,二面角的大小應(yīng)該怎樣度量?

1.二面角的平面角的定義(課本P17).

2.∠AOB的大小與點O在棱上的位置無關(guān).

[說明]①平面與平面的位置關(guān)系,只有相交或平行兩種情況,為了對相交平面的相互位置作進(jìn)一步的探討,有必要來研究二面角的度量問題.

②與兩條異面直線所成的角、直線和平面所成的角做類比,用“平面角”去度量.

③二面角的平面角的三個主要特征:角的頂點在棱上;角的兩邊分別在兩個半平面內(nèi);角的兩邊分別與棱垂直.

3.二面角的平面角的范圍:

(四)例題分析

例1一張邊長為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個的二面角,求此時B、C兩點間的距離.

[說明]①檢查學(xué)生對二面角的平面角的定義的掌握情況.

②翻折前后應(yīng)注意哪些量的位置和數(shù)量發(fā)生了變化,哪些沒變?

例2如圖,已知邊長為a的等邊三角形所在平面外有一點P,使PA=PB=PC=a,求二面角的大小.

[說明]①求二面角的步驟:作—證—算—答.

②引導(dǎo)學(xué)生掌握解題可操作性的通法(定義法和線面垂直法).

例3已知正方體,求二面角的大小.(課本P18例1)

[說明]使學(xué)生進(jìn)一步熟悉作二面角的平面角的方法.

(五)問題拓展

例4如圖,山坡的傾斜度(坡面與水平面所成二面角的度數(shù))是,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是,沿這條路上山,行走100米后升高多少米?

[說明]使學(xué)生明白數(shù)學(xué)既來源于實際又服務(wù)于實際.

三、鞏固練習(xí)

1.在棱長為1的正方體中,求二面角的大小.

2.若二面角的大小為,P在平面上,點P到的距離為h,求點P到棱l的距離.

四、課堂小結(jié)

1.二面角的定義

2.二面角的平面角的定義及其范圍

3.二面角的平面角的常用作圖方法

4.求二面角的大小(作—證—算—答)

五、作業(yè)布置

1.課本P18練習(xí)14.4(1)

2.在二面角的一個面內(nèi)有一個點,它到另一個面的距離是10,求它到棱的距離.

3.把邊長為a的正方形ABCD以BD為軸折疊,使二面角A-BD-C成的二面角,求A、C兩點的距離.

六、教學(xué)設(shè)計說明

本節(jié)課的設(shè)計不是簡單地將概念直接傳受給學(xué)生,而是考慮到知識的形成過程,設(shè)法從學(xué)生的數(shù)學(xué)現(xiàn)實出發(fā),調(diào)動學(xué)生積極參與探索、發(fā)現(xiàn)、問題解決全過程.“二面角”及“二面角的平面角”這兩大概念的引出均運用了類比的手段和方法.教學(xué)過程中通過教師的層層鋪墊,學(xué)生的主動探究,使學(xué)生經(jīng)歷概念的形成、發(fā)展和應(yīng)用過程,有意識地加強了知識形成過程的教學(xué).

【高三數(shù)學(xué)文教案】相關(guān)文章:

高三文科數(shù)學(xué)復(fù)習(xí)計劃12-20

高三數(shù)學(xué)排列教案12-28

高三文科數(shù)學(xué)教師工作計劃04-15

高三文科學(xué)期總結(jié)11-26

2016高三文學(xué)常識05-06

上海高三文學(xué)常識05-07

高三文科學(xué)習(xí)計劃05-04

高三文科第一輪數(shù)學(xué)復(fù)習(xí)計劃10-12

高三數(shù)學(xué)總結(jié)11-19

高三數(shù)學(xué)計劃12-12