亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

范文資料網(wǎng)>書(shū)稿范文>總結(jié)>《初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-04-09 15:24:13 總結(jié) 我要投稿
  • 相關(guān)推薦

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  總結(jié)是指對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況加以總結(jié)和概括的書(shū)面材料,它在我們的學(xué)習(xí)、工作中起到呈上啟下的作用,因此,讓我們寫(xiě)一份總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?以下是小編幫大家整理的初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  1軸對(duì)稱圖形和關(guān)于直線對(duì)稱的兩個(gè)圖形

  2軸對(duì)稱的性質(zhì)

  軸對(duì)稱圖形的對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線;

  如兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連的線段的垂直平分線;

  線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等;

  到線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上。

  3用坐標(biāo)表示軸對(duì)稱

  點(diǎn)(x,y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)是(x,-y),關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是(-x,y),關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(-x,-y).。

  4等腰三角形

  等腰三角形的兩個(gè)底角相等;(等邊對(duì)等角)

  等腰三角形的頂角平分線、底邊上的中線、底邊上的高線互相重合;(三線合一)

  理解:已知等腰三角形的一線就可以推知另兩線。

  一個(gè)三角形的兩個(gè)相等的角所對(duì)的邊也相等。(等角對(duì)等邊)

  等腰三角形的判定:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等。(等角對(duì)等邊)

  5等邊三角形的性質(zhì)和判定

  性質(zhì):等邊三角形的三個(gè)內(nèi)角都相等,都等于60度;

  判定:三個(gè)角都相等的三角形是等邊三角形;

  有一個(gè)角是60度的等腰三角形是等邊三角形;

  推論:

  1、直角三角形中,如果有一個(gè)銳角是30度,那么他所對(duì)的直角邊等于斜邊的一半。

  2、在三角形中,大角對(duì)大邊,大邊對(duì)大角。

  3、經(jīng)過(guò)線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線。

  由一個(gè)平面圖形得到它的軸對(duì)稱圖形叫做軸對(duì)稱變換。

  6軸對(duì)稱圖形

  1.把一個(gè)圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個(gè)圖形就叫做軸對(duì)稱圖形。這條直線就是它的對(duì)稱軸。這時(shí)我們也說(shuō)這個(gè)圖形關(guān)于這條直線(成軸)對(duì)稱。

  2.把一個(gè)圖形沿著某一條直線折疊,如果它能與另一個(gè)圖形完全重合,那么就說(shuō)這兩個(gè)圖關(guān)于這條直線對(duì)稱。這條直線叫做對(duì)稱軸,折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn)。

  3、軸對(duì)稱圖形和軸對(duì)稱的區(qū)別與聯(lián)系

  4.軸對(duì)稱與軸對(duì)稱圖形的性質(zhì)

 、訇P(guān)于某直線對(duì)稱的兩個(gè)圖形是全等形。

  ②如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。

 、圯S對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。

 、苋绻麅蓚(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。

 、輧蓚(gè)圖形關(guān)于某條直線成軸對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上。

  7線段的垂直平分線

  定義:經(jīng)過(guò)線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。

  性質(zhì):線段垂直平分線上的點(diǎn)與這條線段的兩個(gè)端點(diǎn)的距離相等。

  判定:與一條線段兩個(gè)端點(diǎn)距離相等的'點(diǎn),在線段的垂直平分線上。

  8用坐標(biāo)表示軸對(duì)稱小結(jié)

  1、在平面直角坐標(biāo)系中

 、訇P(guān)于x軸對(duì)稱的點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù);

 、陉P(guān)于y軸對(duì)稱的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等;

 、坳P(guān)于原點(diǎn)對(duì)稱的點(diǎn)橫坐標(biāo)和縱坐標(biāo)互為相反數(shù);

 、芘cX軸或Y軸平行的直線的兩個(gè)點(diǎn)橫(縱)坐標(biāo)的關(guān)系;

  ⑤關(guān)于與直線X=C或Y=C對(duì)稱的坐標(biāo)

  2、點(diǎn)(x, y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為(x, -y)

  點(diǎn)(x, y)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為(-x, y)

  3、三角形三條邊的垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等。

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  一次函數(shù)

  (1)正比例函數(shù):一般地,形如y=kx(k是常數(shù),k?0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù);

  (2)正比例函數(shù)圖像特征:一些過(guò)原點(diǎn)的直線;

  (3)圖像性質(zhì):

 、佼(dāng)k>0時(shí),函數(shù)y=kx的圖像經(jīng)過(guò)第一、三象限,從左向右上升,即隨著x的增大y也增大;②當(dāng)k<0時(shí),函數(shù)y=kx的圖像經(jīng)過(guò)第二、四象限,從左向右下降,即隨著x的增大y反而減小;

  (4)求正比例函數(shù)的解析式:已知一個(gè)非原點(diǎn)即可;

  (5)畫(huà)正比例函數(shù)圖像:經(jīng)過(guò)原點(diǎn)和點(diǎn)(1,k);(或另外一個(gè)非原點(diǎn))

  (6)一次函數(shù):一般地,形如y=kx+b(k、b是常數(shù),k?0)的函數(shù),叫做一次函數(shù);

  (7)正比例函數(shù)是一種特殊的一次函數(shù);(因?yàn)楫?dāng)b=0時(shí),y=kx+b即為y=kx)

  (8)一次函數(shù)圖像特征:一些直線;

  (9)性質(zhì):

 、賧=kx與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個(gè)單位長(zhǎng)度而得;(當(dāng)b>0,向上平移;當(dāng)b<0,向下平移)

 、诋(dāng)k>0時(shí),直線y=kx+b由左至右上升,即y隨著x的增大而增大;

  ③當(dāng)k<0時(shí),直線y=kx+b由左至右下降,即y隨著x的增大而減小;

 、墚(dāng)b>0時(shí),直線y=kx+b與y軸正半軸有交點(diǎn)為(0,b);

 、莓(dāng)b<0時(shí),直線y=kx+b與y軸負(fù)半軸有交點(diǎn)為(0,b);

  (10)求一次函數(shù)的解析式:即要求k與b的.值;

  (11)畫(huà)一次函數(shù)的圖像:已知兩點(diǎn);

  用函數(shù)觀點(diǎn)看方程(組)與不等式

  (1)解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值;從圖像上看,這相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo)的值;

  (2)解一元一次不等式可以看作:當(dāng)一次函數(shù)值大(小)于0時(shí),求自變量相應(yīng)的取值范圍;

  (3)每個(gè)二元一次方程都對(duì)應(yīng)一個(gè)一元一次函數(shù),于是也對(duì)應(yīng)一條直線;

  (4)一般地,每個(gè)二元一次方程組都對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線。從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)的值相等,以及這個(gè)函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo);

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  一元一次方程:

 、僭谝粋(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

  ②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。

  解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。

  二元一次方程:

  含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的`方程叫做二元一次方程。

  二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。

  適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。

  二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。

  解二元一次方程組的方法:代入消元法/加減消元法。

  一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程

  一元二次方程的二次函數(shù)的關(guān)系

  大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y的0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖象與X軸的交點(diǎn)。也就是該方程的解了

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  1全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  2邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

  3角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  4推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  5邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  6斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

  7定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  8定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

  9角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  10等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)

  21推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

  22等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  23推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  24等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

  25推論1三個(gè)角都相等的`三角形是等邊三角形

  26推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

  27在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

  28直角三角形斜邊上的中線等于斜邊上的一半

  29定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  30逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  (初二)預(yù)計(jì)講解時(shí)間:10天

  第十一章全等三角形復(fù)習(xí)

  一、全等三角形

  1.定義:能夠完全重合的兩個(gè)三角形叫做全等三角形。

  理解:①全等三角形形狀與大小完全相等,與位置無(wú)關(guān);②一個(gè)三角形經(jīng)過(guò)平移、翻折、旋轉(zhuǎn)可以得到它的全等形;③三角形全等不因位置發(fā)生變化而改變。

  2、全等三角形有哪些性質(zhì)

  (1)全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等。

  理解:①長(zhǎng)邊對(duì)長(zhǎng)邊,短邊對(duì)短邊;最大角對(duì)最大角,最小角對(duì)最小角;②對(duì)應(yīng)角的對(duì)邊為對(duì)應(yīng)邊,對(duì)應(yīng)邊對(duì)的`角為對(duì)應(yīng)角。

  (2)全等三角形的周長(zhǎng)相等、面積相等。

 。3)全等三角形的對(duì)應(yīng)邊上的對(duì)應(yīng)中線、角平分線、高線分別相等。

  3、全等三角形的判定

  邊邊邊:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡(jiǎn)寫(xiě)成“SSS”)

  1、性質(zhì):角的平分線上的點(diǎn)到角的兩邊的距離相等.

  2、判定:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上。

  二、學(xué)習(xí)全等三角形應(yīng)注意以下幾個(gè)問(wèn)題:

 。1)要正確區(qū)分“對(duì)應(yīng)邊”與“對(duì)邊”,“對(duì)應(yīng)角”與“對(duì)角”的不同含義;

  (2表示兩個(gè)三角形全等時(shí),表示對(duì)應(yīng)頂點(diǎn)的字母要寫(xiě)在對(duì)應(yīng)的位置上;

 。3)“有三個(gè)角對(duì)應(yīng)相等”或“有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的兩個(gè)三角形不一定全等;

 。4)時(shí)刻注意圖形中的隱含條件,如“公共角” 、“公共邊”、“對(duì)頂角”

 。5)截長(zhǎng)補(bǔ)短法證三角形全等。

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  初二上冊(cè)知識(shí)點(diǎn)

  第一章 一次函數(shù)

  1 函數(shù)的定義,函數(shù)的定義域、值域、表達(dá)式,函數(shù)的圖像

  2 一次函數(shù)和正比例函數(shù),包括他們的表達(dá)式、增減性、圖像

  3 從函數(shù)的觀點(diǎn)看方程、方程組和不等式

  第二章 數(shù)據(jù)的描述

  1 了解幾種常見(jiàn)的統(tǒng)計(jì)圖表:條形圖、扇形圖、折線圖、復(fù)合條形圖、直方圖,了解各種圖表的特點(diǎn)

  條形圖特點(diǎn):

 。1)能夠顯示出每組中的具體數(shù)據(jù);

  (2)易于比較數(shù)據(jù)間的差別

  扇形圖的特點(diǎn):

 。1)用扇形的面積來(lái)表示部分在總體中所占的百分比;

  (2)易于顯示每組數(shù)據(jù)相對(duì)與總數(shù)的大小

  折線圖的特點(diǎn);

  易于顯示數(shù)據(jù)的變化趨勢(shì)

  直方圖的特點(diǎn):

 。1)能夠顯示各組頻數(shù)分布的情況;

 。2)易于顯示各組之間頻數(shù)的差別

  2 會(huì)用各種統(tǒng)計(jì)圖表示出一些實(shí)際的問(wèn)題

  第三章 全等三角形

  1 全等三角形的性質(zhì):

  全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  2 全等三角形的判定

  邊邊邊、邊角邊、角邊角、角角邊、直角三角形的HL定理

  3 角平分線的性質(zhì)

  角平分線上的點(diǎn)到角的兩邊的距離相等;

  到角的兩邊距離相等的點(diǎn)在角的平分線上.

  第四章 軸對(duì)稱

  1 軸對(duì)稱圖形和關(guān)于直線對(duì)稱的兩個(gè)圖形

  2 軸對(duì)稱的性質(zhì)

  軸對(duì)稱圖形的對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線;

  如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連的線段的垂直平分線;

  線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的'距離相等;

  到線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上

  3 用坐標(biāo)表示軸對(duì)稱

  點(diǎn)(x,y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)是(x,-y),關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是(-x,y),關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(-x,-y).

  4 等腰三角形

  等腰三角形的兩個(gè)底角相等;(等邊對(duì)等角)

  等腰三角形的頂角平分線、底邊上的中線、底邊上的高線互相重合;(三線合一)

  一個(gè)三角形的兩個(gè)相等的角所對(duì)的邊也相等.(等角對(duì)等邊)

  5 等邊三角形的性質(zhì)和判定

  等邊三角形的三個(gè)內(nèi)角都相等,都等于60度;

  三個(gè)角都相等的三角形是等邊三角形;

  有一個(gè)角是60度的等腰三角形是等邊三角形;

  推論:

  直角三角形中,如果有一個(gè)銳角是30度,那么他所對(duì)的直角邊等于斜邊的一半.

  在三角形中,大角對(duì)大邊,大邊對(duì)大角.

  第五章 整式

  1 整式定義、同類項(xiàng)及其合并

  2 整式的加減

  3 整式的乘法

 。1)同底數(shù)冪的乘法:

 。2)冪的乘方

 。3)積的乘方

 。4)整式的乘法

  4 乘法公式

 。1)平方差公式

  (2)完全平方公式

  5 整式的除法

 。1)同底數(shù)冪的除法

  (2)整式的除法

  6 因式分解

 。1)提共因式法

  (2)公式法

 。3)十字相乘法

  初二下冊(cè)知識(shí)點(diǎn)

  第一章 分式

  1 分式及其基本性質(zhì)

  分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變

  2 分式的運(yùn)算

 。1)分式的乘除

  乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母

  除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘.

  (2) 分式的加減

  加減法法則:同分母分式相加減,分母不變,把分子相加減;

  異分母分式相加減,先通分,變?yōu)橥帜傅姆质?再加減

  3 整數(shù)指數(shù)冪的加減乘除法

  4 分式方程及其解法

  第二章 反比例函數(shù)

  1 反比例函數(shù)的表達(dá)式、圖像、性質(zhì)

  圖像:雙曲線

  表達(dá)式:y=k/x(k不為0)

  性質(zhì):兩支的增減性相同;

  2 反比例函數(shù)在實(shí)際問(wèn)題中的應(yīng)用

  第三章 勾股定理

  1 勾股定理:直角三角形的兩個(gè)直角邊的平方和等于斜邊的平方

  2 勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形.

  第四章 四邊形

  1 平行四邊形

  性質(zhì):對(duì)邊相等;對(duì)角相等;對(duì)角線互相平分.

  判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;

  兩組對(duì)角分別相等的四邊形是平行四邊形;

  對(duì)角線互相平分的四邊形是平行四邊形;

  一組對(duì)邊平行而且相等的四邊形是平行四邊形.

  推論:三角形的中位線平行第三邊,并且等于第三邊的一半.

  2 特殊的平行四邊形:矩形、菱形、正方形

  (1) 矩形

  性質(zhì):矩形的四個(gè)角都是直角;

  矩形的對(duì)角線相等;

  矩形具有平行四邊形的所有性質(zhì)

  判定: 有一個(gè)角是直角的平行四邊形是矩形;

  對(duì)角線相等的平行四邊形是矩形;

  推論: 直角三角形斜邊的中線等于斜邊的一半.

 。2) 菱形

  性質(zhì):菱形的四條邊都相等;

  菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;

  菱形具有平行四邊形的一切性質(zhì)

  判定:有一組鄰邊相等的平行四邊形是菱形;

  對(duì)角線互相垂直的平行四邊形是菱形;

  四邊相等的四邊形是菱形.

 。3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì).

  3 梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;

  等腰梯形的兩條對(duì)角線相等;

  同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形.

  第五章 數(shù)據(jù)的分析

  加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

  實(shí)數(shù)

  無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù)

  平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒(méi)有平方根。④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開(kāi)平方,其中A叫做被開(kāi)方數(shù)。

  立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的運(yùn)算叫開(kāi)立方,其中A叫做被開(kāi)方數(shù)。

  實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。

  相信通過(guò)上面的學(xué)習(xí),同學(xué)們對(duì)實(shí)數(shù)知識(shí)點(diǎn)可以很好的掌握了,希望同學(xué)們?cè)诳荚囍腥〉煤贸煽?jī)。

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系

  下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

  三個(gè)規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

  對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  通過(guò)上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

  下面是對(duì)數(shù)學(xué)中點(diǎn)的.坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

  點(diǎn)的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

  對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

  一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

  希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。

  初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。

  因式分解的一般步驟

  如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

  通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

  相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。

  初中數(shù)學(xué)知識(shí)點(diǎn):因式分解

  下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

  因式分解

  因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  提取公因式步驟:

 、俅_定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

 、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

 、垭p重括號(hào)化成單括號(hào)

 、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

 、菹嗤蚴綄(xiě)成冪的形式

  ⑥首項(xiàng)負(fù)號(hào)放括號(hào)外

 、呃ㄌ(hào)內(nèi)同類項(xiàng)合并。

  通過(guò)上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  多邊形

  1、多邊形的概念:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。組成多邊形的各條線段叫做多邊形的邊;每相鄰兩條邊的公共端點(diǎn)叫做多邊形的頂點(diǎn);多邊形相鄰兩邊組成的角叫多邊形的內(nèi)角,一個(gè)n邊形有n個(gè)內(nèi)角;多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。在定義中應(yīng)注意:

 、僖恍┚段(多邊形的'邊數(shù)是大于等于3的正整數(shù));

 、谑孜岔槾蜗噙B,二者缺一不可;

 、劾斫鈺r(shí)要特別注意“在同一平面內(nèi)”這個(gè)條件,其目的是為了排除幾個(gè)點(diǎn)不共面的情況,即空間多邊形。

  2、多邊形的分類

  多邊形可分為凸多邊形和凹多邊形,畫(huà)出多邊形的任何一條邊所在的直線,如果整個(gè)多邊形都在這條直線的同一側(cè),則此多邊形為凸多邊形,反之為凹多邊形。

  凸多邊形凹多邊形各個(gè)角都相等、各個(gè)邊都相等的多邊形叫做正多邊形。

  3、多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。

 。1)從n邊形一個(gè)頂點(diǎn)可以引(n-3)條對(duì)角線,將多邊形分成(n-2)個(gè)三角形。

  (2)n邊形共有條對(duì)角線。

  4、多邊形的內(nèi)角和外角

 。1)多邊形的內(nèi)角和公式:n邊形的內(nèi)角和為(n-2)×180°

  (2)多邊形的外角和等于360°,它與邊數(shù)的多少無(wú)關(guān)。

  推論:

 。1)內(nèi)角和與邊數(shù)成正比:邊數(shù)增加,內(nèi)角和增加;邊數(shù)減少,內(nèi)角和減少。每增加一條邊,內(nèi)角的和就增加180°(反過(guò)來(lái)也成立),且多邊形的內(nèi)角和必須是180°的整數(shù)倍。

 。2)多邊形最多有三個(gè)內(nèi)角為銳角,最少?zèng)]有銳角(如矩形);多邊形的外角中最多有三個(gè)鈍角,最少?zèng)]有鈍角。

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  三角形知識(shí)點(diǎn)

  1、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等。

  2、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等。

  3、角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

  4、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

  5、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

  6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。

  7、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等。

  8、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上。

  9、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合。

  10、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)。

  函數(shù)與方程知識(shí)點(diǎn)

  1、一次函數(shù)也叫做線性函數(shù),一般在X,Y坐標(biāo)軸中用一條直線來(lái)表示,當(dāng)一次函數(shù)中的一個(gè)變量的值確定的情況下,可以用一元一次方程來(lái)解答出另一個(gè)變量的值。

  2、任何一個(gè)一元一次方程都可以轉(zhuǎn)化成ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值(從數(shù)的角度);從圖像上來(lái)看,就相當(dāng)于已知直線y=ax+b,確定它與x軸的交點(diǎn)橫坐標(biāo)的值(從形的角度)。

  3、利用函數(shù)圖像解方程:-2x+2=0,可以轉(zhuǎn)化為求一次函數(shù)y=-2x+2與x軸交點(diǎn)的橫坐標(biāo)。而y=-2x+2與x軸交點(diǎn)的橫坐標(biāo)為1,所以方程-2x+2=0的解為x=1。

  注意:解一元一次方程ax+b=0(a≠0)與求函數(shù)y=ax+b(a≠0)的圖像與x軸交點(diǎn)的.橫坐標(biāo)是同一個(gè)問(wèn)題。不同的是前者從數(shù)的角度來(lái)解決問(wèn)題,后者從形的角度來(lái)解決問(wèn)題。

  4、每個(gè)二元一次方程組都對(duì)應(yīng)兩個(gè)一次函數(shù),從數(shù)的角度來(lái)看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)的值相等,以及這個(gè)函數(shù)是何值;從形的角度來(lái)看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo),從而使方程組得出答案。

  5、解答一次函數(shù)的作法最簡(jiǎn)單的就是列表法,取一個(gè)滿足一次函數(shù)表達(dá)式的兩個(gè)點(diǎn)的坐標(biāo),來(lái)確定另一個(gè)未知數(shù)的值。還有一個(gè)描點(diǎn)法。一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。通常情況下y=kx+b(k≠0)的圖象過(guò)(0,b)和(-b/k,0)兩點(diǎn)即可畫(huà)出。

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  第十六章 分式

  一、定義:如果A、B表示兩個(gè)整式,并且B中含有字母,那么式子 叫做分式。

  二、分式基本性質(zhì):分式的分子與分母同乘或除以一個(gè)不等于0的整式,分式的值不變。

  三、分式計(jì)算:分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為分母。

  分式除法法則:分式除以分式,把除式的分子、分母顛倒置后,與被除式相乘。

  分式乘方:分式乘方要把分子、分母分別乘方。

  四、整數(shù)指數(shù)冪:(1) (2)較小數(shù)的科學(xué)記數(shù)法;

  五、分式方程檢驗(yàn)方法:將整式方程的解帶入最簡(jiǎn)公分母,如果最簡(jiǎn)公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解。(這個(gè)解是增根,原方程無(wú)解)。

  第十七章 反比例函數(shù)

  一、形如y= (k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù);

  二、反比例函數(shù)的圖像屬于雙曲線;

  三、性質(zhì):當(dāng)k>0時(shí),雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減小;

  當(dāng)k<0時(shí),雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大。

  第十八章 勾股定理

  一、勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么

  二、勾股定理逆定理:如果三角形三邊長(zhǎng)a,b,c滿足 ,那么這個(gè)三角形是直角三角形。

  三、經(jīng)過(guò)證明被確認(rèn)正確的命題叫做定理。

  四、我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理)

  第十九章 四邊形

  一、平行四邊形:

  1、定義:有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。

  2、性質(zhì):平行四邊形的對(duì)邊相等;平行四邊形的對(duì)角相等;平行四邊形的對(duì)角線互相平分。

  3、判定:(1)兩組對(duì)邊分別相等的四邊形是平行四邊形;

  (2)兩組對(duì)角分別相等的四邊形是平行四邊形;

  (3)對(duì)角線互相平分的四邊形是平行四邊形;

  (4)一組對(duì)邊平行且相等的四邊形是平行四邊形。

  (5)有兩組對(duì)邊分別平行的'四邊形叫做平行四邊形。(定義)

  4、三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。

  二、矩形:

  1、定義:有一個(gè)角是直角的平行四邊形叫做矩形。

  2、性質(zhì):矩形的四個(gè)角都是直角;矩形的對(duì)角線平分且相等。

  3、判定:(1)有一個(gè)角是直角的平行四邊形叫做矩形。(定義)

  (2)對(duì)角線相等的平行四邊形是矩形。

  (3)有三個(gè)角是直角的四邊形是矩形。

  4、直角三角形斜邊上的中線等于斜邊的一半。

  三、菱形:

  1、定義:一組鄰邊相等的平行四邊形是菱形

  2、性質(zhì):菱形的四條邊都相等;菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。

  3、判定:(1)一組鄰邊相等的平行四邊形是菱形。(定義)

  (2)對(duì)角線互相垂直的平行四邊形是菱形。

  (3)四條邊相等的四邊形是菱形。

  4、S菱形=底×高 S菱形= ab(a、b為兩條對(duì)角線)

  四、正方形:

  1、定義:有一組鄰邊相等的矩形是正方形;蛴幸粋(gè)角是直角的菱形是正方形。

  2、性質(zhì):四條邊都相等,四個(gè)角都是直角;正方形既是矩形,又是菱形。

  3、判定:(1)鄰邊相等的矩形是正方形。

  (2)有一個(gè)角是直角的菱形是正方形。

  五、梯形:

  1、定義:一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形叫做梯形。

  2、等腰梯形定義:兩腰相等的梯形叫做等腰梯形。

  性質(zhì):等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對(duì)角線相等。

  判定:同一底上兩個(gè)角相等的梯形是等腰梯形;對(duì)角線相等的梯形是等腰梯形。

  3、梯形的中位線分別平行于上、下兩底,且等于上、下兩底和的一半。

  六、重心:

  1、線段的重心就是線段的中點(diǎn)。

  2、平行四邊形的重心是它的兩條對(duì)角線的交點(diǎn)。

  3、三角形的三條中線交于疑點(diǎn),這一點(diǎn)就是三角形的重心。

  七、數(shù)學(xué)活動(dòng)(教材115頁(yè)):

  1、折紙多60°、30°、15°的角證明方法(重點(diǎn)30°角)

  2、寬和長(zhǎng)的比是 (約為0.618)的矩形叫做黃金矩形。

  第二十章 數(shù)據(jù)的分析

  一、加權(quán)平均數(shù):計(jì)算公式(教材125頁(yè)。)

  二、中位數(shù):將一組數(shù)據(jù)按照由小到大(大到小)的順序排列,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。

  三、眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。

  四、極差:一組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。

  五、方差:

  1、計(jì)算公式: ( 表示 的平均數(shù))

  2、性質(zhì):方差越大,數(shù)據(jù)的波動(dòng)越大;方差越小,數(shù)據(jù)的波動(dòng)越小,就越穩(wěn)定。

  六、數(shù)據(jù)的收集與整理的步驟:

  1.收集數(shù)據(jù) 2.整理數(shù)據(jù) 3.描述數(shù)據(jù) 4.分析數(shù)據(jù) 5.撰寫(xiě)調(diào)查報(bào)告

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  第一章分式

  1分式及其基本性質(zhì)分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變

  2分式的運(yùn)算

 。1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

 。2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變?yōu)橥帜傅姆质,再加減

  3整數(shù)指數(shù)冪的加減乘除法

  4分式方程及其解法

  第二章反比例函數(shù)

  1反比例函數(shù)的表達(dá)式、圖像、性質(zhì)

  圖像:雙曲線

  表達(dá)式:y=k/x(k不為0)

  性質(zhì):兩支的增減性相同;

  2反比例函數(shù)在實(shí)際問(wèn)題中的應(yīng)用

  第三章勾股定理

  1勾股定理:直角三角形的兩個(gè)直角邊的平方和等于斜邊的平方

  2勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形

  第四章四邊形

  1平行四邊形

  性質(zhì):對(duì)邊相等;對(duì)角相等;對(duì)角線互相平分。

  判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;

  兩組對(duì)角分別相等的四邊形是平行四邊形;

  對(duì)角線互相平分的四邊形是平行四邊形;

  一組對(duì)邊平行而且相等的四邊形是平行四邊形。

  推論:三角形的中位線平行第三邊,并且等于第三邊的一半。

  2特殊的平行四邊形:矩形、菱形、正方形

 。1)矩形

  性質(zhì):矩形的四個(gè)角都是直角;

  矩形的對(duì)角線相等;

  矩形具有平行四邊形的所有性質(zhì)

  判定:有一個(gè)角是直角的平行四邊形是矩形;對(duì)角線相等的平行四邊形是矩形;

  推論:直角三角形斜邊的中線等于斜邊的一半。

 。2)菱形性質(zhì):菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形具有平行四邊形的一切性質(zhì)

  判定:有一組鄰邊相等的平行四邊形是菱形;對(duì)角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。

 。3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。

  3梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對(duì)角線相等;同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形。

  第五章數(shù)據(jù)的分析

  加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差

  初二必備數(shù)學(xué)知識(shí)

  位置與坐標(biāo)

  1、確定位置

  在平面內(nèi),確定物體的位置一般需要兩個(gè)數(shù)據(jù)。

  2、平面直角坐標(biāo)系及有關(guān)概念

 、倨矫嬷苯亲鴺(biāo)系

  在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。

 、谧鴺(biāo)軸和象限

  為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。

  注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個(gè)象限。

 、埸c(diǎn)的.坐標(biāo)的概念

  對(duì)于平面內(nèi)任意一點(diǎn)P,過(guò)點(diǎn)P分別x軸、y軸向作垂線,垂足在上x(chóng)軸、y軸對(duì)應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(duì)(a,b)叫做點(diǎn)P的坐標(biāo)。

  點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開(kāi),橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。

  平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的。

  ④不同位置的點(diǎn)的坐標(biāo)的特征

  a、各象限內(nèi)點(diǎn)的坐標(biāo)的特征

  點(diǎn)P(x,y)在第一象限→ x>0,y>0

  點(diǎn)P(x,y)在第二象限→ x0

  點(diǎn)P(x,y)在第三象限→ x<0,y<0

  點(diǎn)P(x,y)在第四象限→ x>0,y<0

  b、坐標(biāo)軸上的點(diǎn)的特征

  點(diǎn)P(x,y)在x軸上→ y=0,x為任意實(shí)數(shù)

  點(diǎn)P(x,y)在y軸上→ x=0,y為任意實(shí)數(shù)

  點(diǎn)P(x,y)既在x軸上,又在y軸上→ x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)

  c、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征

  點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上→ x與y相等

  點(diǎn)P(x,y)在第二、四象限夾角平分線上→ x與y互為相反數(shù)

  d、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征

  位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。

  位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。

  e、關(guān)于x軸、y軸或原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特征

  點(diǎn)P與點(diǎn)p’關(guān)于x軸對(duì)稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于x軸的對(duì)稱點(diǎn)為P’(x,—y)

  點(diǎn)P與點(diǎn)p’關(guān)于y軸對(duì)稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于y軸的對(duì)稱點(diǎn)為P’(—x,y)

  點(diǎn)P與點(diǎn)p’關(guān)于原點(diǎn)對(duì)稱,橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P’(—x,—y)

  f、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離

  點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:

  點(diǎn)P(x,y)到x軸的距離等于?y?

  點(diǎn)P(x,y)到y(tǒng)軸的距離等于?x?

  點(diǎn)P(x,y)到原點(diǎn)的距離等于√x2+y2

  初二數(shù)學(xué)?贾R(shí)

  一次函數(shù)

  1、函數(shù)

  一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

  2、自變量取值范圍

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實(shí)數(shù)),分式(分母不為0)、二次根式(被開(kāi)方數(shù)為非負(fù)數(shù))、實(shí)際意義幾方面考慮。

  3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

  關(guān)系式(解析)法兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做關(guān)系式(解析)法。

  列表法把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。

  圖象法用圖象表示函數(shù)關(guān)系的方法叫做圖象法。

  4、由函數(shù)關(guān)系式畫(huà)其圖像的一般步驟

  列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值。

  描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)。

  連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來(lái)。

  5、正比例函數(shù)和一次函數(shù)

  ①正比例函數(shù)和一次函數(shù)的概念

  一般地,若兩個(gè)變量x,y間的關(guān)系可以表示成y=kx+b(k,b為常數(shù),k不等于0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。

  特別地,當(dāng)一次函數(shù)y=kx+b中的b=0時(shí)(k為常數(shù),k不等于0),稱y是x的正比例函數(shù)。②一次函數(shù)的圖像:

  所有一次函數(shù)的圖像都是一條直線。

 、垡淮魏瘮(shù)、正比例函數(shù)圖像的主要特征

  一次函數(shù)y=kx+b的圖像是經(jīng)過(guò)點(diǎn)(0,b)的直線;

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  一次函數(shù)

  一、正比例函數(shù)與一次函數(shù)的概念:

  一般地,形如y=kx(k為常數(shù),且k≠0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。

  一般地,形如y=kx+b(k,b為常數(shù),且k≠0)的函數(shù)叫做一次函數(shù).

  當(dāng)b=0時(shí),y=kx+b即為y=kx,所以正比例函數(shù),是一次函數(shù)的特例.

  二、正比例函數(shù)的圖象與性質(zhì):

  (1)圖象:正比例函數(shù)y=kx(k是常數(shù),k≠0))的圖象是經(jīng)過(guò)原點(diǎn)的一條直線,我們稱它為直線y=kx。

  (2)性質(zhì):當(dāng)k>0時(shí),直線y=kx經(jīng)過(guò)第三,一象限,從左向右上升,即隨著x的.增大y也增大;當(dāng)k0,b>0圖像經(jīng)過(guò)一、二、三象限;

  (2)k>0,b<0圖像經(jīng)過(guò)一、三、四象限;

  (3)k>0,b=0圖像經(jīng)過(guò)一、三象限;

  (4)k<0,b>0圖像經(jīng)過(guò)一、二、四象限;

  (5)k<0,b<0圖像經(jīng)過(guò)二、三、四象限;

  (6)k<0,b=0圖像經(jīng)過(guò)二、四象限。

  一次函數(shù)表達(dá)式的確定

  求一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)時(shí),需要由兩個(gè)點(diǎn)來(lái)確定;求正比例函數(shù)y=kx(k≠0)時(shí),只需一個(gè)點(diǎn)即可.

  5.一次函數(shù)與二元一次方程組:

  解方程組

  從“數(shù)”的角度看,自變量(x)為何值時(shí)兩個(gè)函數(shù)的值相等.并

  求出這個(gè)函數(shù)值

  解方程組從“形”的角度看,確定兩直線交點(diǎn)的坐標(biāo).

  數(shù)據(jù)的分析

  數(shù)據(jù)的代表:平均數(shù)、眾數(shù)、中位數(shù)、極差、方差

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  全等三角形

  知識(shí)與技能目標(biāo)考點(diǎn)課標(biāo)要求了解理解掌握用畫(huà)出任意三角形的角平分線、中線和高全等三角形的概念三角形全等的條件三角形的中位線三角形等腰三角形、直角三角形、等邊三角形的概念等腰三角形的性質(zhì)和成為等腰三角形的條件直角三角形的性質(zhì)和成為直角三角形的條件等邊三角形的性質(zhì)運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單問(wèn)題∨∨∨∨∨∨∨∨∨靈活應(yīng)軸對(duì)稱

  知識(shí)與技能目標(biāo)考課標(biāo)要求點(diǎn)了解理解掌握用認(rèn)識(shí)軸對(duì)稱,探索它的基本性質(zhì)對(duì)應(yīng)點(diǎn)所連的線段被對(duì)稱軸垂直平分的性質(zhì)作出簡(jiǎn)單平面圖形經(jīng)過(guò)一次或兩次軸對(duì)稱后的圖形圖探索簡(jiǎn)單圖形之間的軸對(duì)稱關(guān)系,并能指出對(duì)稱軸形的對(duì)稱探索基本圖形(等腰三角形,矩形。菱形.等腰梯形,正多邊形,圓)的軸對(duì)稱性及其相關(guān)性質(zhì)欣賞現(xiàn)實(shí)生活中的軸對(duì)稱圖形欣賞物體的鏡面對(duì)稱利用軸對(duì)稱進(jìn)行圖案設(shè)計(jì)對(duì)應(yīng)點(diǎn)連線平行且相等的性質(zhì)∨∨∨∨∨∨∨∨∨靈活應(yīng)按要求作出簡(jiǎn)單平面圖形平移后的圖形利用平移進(jìn)行圖案設(shè)計(jì)∨∨數(shù)據(jù)的描述

  知識(shí)與技能目標(biāo)考點(diǎn)課標(biāo)要求會(huì)用扇形統(tǒng)計(jì)圖表示數(shù)據(jù)理解頻數(shù)、頻率的概念數(shù)據(jù)的描述了解頻率分布的意義和作用會(huì)列頻數(shù)分布表,畫(huà)頻數(shù)分布直方圖和頻數(shù)折線圖能解決簡(jiǎn)單的實(shí)際問(wèn)題了解∨∨理解掌握∨∨靈活應(yīng)用∨

  2.頻數(shù)分布

  當(dāng)一組數(shù)據(jù)有n個(gè)數(shù)時(shí),頻數(shù)之和=n,頻率=,頻率之和=1,小長(zhǎng)方形的高代表頻數(shù)。

  一次函數(shù)

  知識(shí)與技能目標(biāo)考課標(biāo)要求點(diǎn)理解一次函數(shù)(包括正比例函數(shù))的概念一次函會(huì)畫(huà)一次函數(shù)(包括正比例函數(shù))的圖像理解一次函數(shù)的性質(zhì)并會(huì)應(yīng)用了解理解∨∨∨∨∨掌握應(yīng)用∨∨∨靈活能根據(jù)實(shí)際問(wèn)題列出一次函數(shù)及用待定系數(shù)法確數(shù)定一次函數(shù)的解析式用一次函數(shù)的圖像求二元一次方程組的近似解

  1.正比例函數(shù)與一次函數(shù)的關(guān)系:正比例函數(shù)是當(dāng)y=kx+b中b=0時(shí)特殊的一次函數(shù)。

  2.待定系數(shù)法確定正比例函數(shù)、一次函數(shù)的解析式:通常已知一點(diǎn)便可用待定系數(shù)法確定出正比例函數(shù)的解析式,已知兩點(diǎn)便可確定一次函數(shù)解析式。

  3.一次函數(shù)的圖像:正比例函數(shù)y=kx(k≠0)是過(guò)(0,0),(1,k)兩點(diǎn)的一條直線;一

  次函數(shù)y=kx+b(k≠0)是過(guò)(0,b),(

  ,0)兩點(diǎn)的一條直線。4.直線y=kx+b(k≠0)的位置與k、b符號(hào)的關(guān)系:當(dāng)k>0是直線y=kx+b過(guò)第一、三象限,當(dāng)k0直線交y軸于正半軸,b是負(fù)數(shù)時(shí),要特別注意符號(hào)。

  3.公式的探求與應(yīng)用:探求公式時(shí)要先觀察其中的規(guī)律,通過(guò)嘗試,歸納出公式,再加以驗(yàn)證,這幾個(gè)環(huán)節(jié)都是必不可少的,再就是靈活運(yùn)用公式解決實(shí)際問(wèn)題。

  4.正確理解整式的概念:整式的系數(shù)、次數(shù)、項(xiàng)、同類項(xiàng)等概念必須清楚,是今后學(xué)習(xí)方程、整式乘除、分式和二次函數(shù)的基礎(chǔ)。

  5.熟練掌握合并同類項(xiàng)、去(添)括號(hào)法則:要處理好合并同類項(xiàng)及去(添)括號(hào)中各項(xiàng)符號(hào)處理,式的運(yùn)算是數(shù)的運(yùn)算的深化,加強(qiáng)式與數(shù)的運(yùn)算對(duì)比與分析,體會(huì)其中滲透的轉(zhuǎn)化思想。

  6.能熟練地運(yùn)用冪的運(yùn)算性質(zhì)進(jìn)行計(jì)算:冪的運(yùn)算是整式的乘法的基礎(chǔ),也是考試的重點(diǎn)內(nèi)容,要求熟練掌握。運(yùn)算中注意“符號(hào)”問(wèn)題和區(qū)分各種運(yùn)算時(shí)指數(shù)的不同運(yùn)算。

  7.能熟練運(yùn)用整式的乘法法則進(jìn)行計(jì)算:整式運(yùn)算常以混合運(yùn)算出現(xiàn),其中單項(xiàng)式乘法是關(guān)鍵,其他乘除都要轉(zhuǎn)化為單項(xiàng)式乘法。

  8.能靈活運(yùn)用乘法公式進(jìn)行計(jì)算:乘法公式的運(yùn)用是重點(diǎn)也是難點(diǎn),計(jì)算時(shí),要注意觀察每個(gè)因式的結(jié)構(gòu)特點(diǎn),經(jīng)過(guò)適當(dāng)調(diào)整后,表面看來(lái)不能運(yùn)用乘法公式的式子就可以運(yùn)用乘法公式,從而使計(jì)算大大簡(jiǎn)化。

  9.區(qū)分因式分解與整式的乘法:它們的關(guān)系是意義上正好相反,結(jié)果的特征是因式分解是積的形式,整式的乘法是和的形式,抓住這一特征,就不容易混淆因式分解與整式的乘法。

  10.因式分解的兩種方法的靈活應(yīng)用:對(duì)于給出的多項(xiàng)式,首先要觀察是否有公因式,有公因式的話,首先要提公因式,然后再觀察運(yùn)用公式還是分組。分解因式要分解到不能分解為止。

  擴(kuò)展閱讀:人教版初二數(shù)學(xué)(上)知識(shí)點(diǎn)歸納

  初二數(shù)學(xué)(上)應(yīng)知應(yīng)會(huì)的知識(shí)點(diǎn)

  因式分解

  1.因式分解:把一個(gè)多項(xiàng)式化為幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解;注意:因式分解與乘法是相反的兩個(gè)轉(zhuǎn)化.

  2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.3.公因式的確定:系數(shù)的最大公約數(shù)相同因式的最低次冪.

  注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.4.因式分解的公式:

  (1)平方差公式:a2-b2=(a+b)(a-b);

  (2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.5.因式分解的注意事項(xiàng):

  (1)選擇因式分解方法的一般次序是:一提取、二公式、三分組、四十字;(2)使用因式分解公式時(shí)要特別注意公式中的字母都具有整體性;(3)因式分解的最后結(jié)果要求分解到每一個(gè)因式都不能分解為止;(4)因式分解的最后結(jié)果要求每一個(gè)因式的首項(xiàng)符號(hào)為正;(5)因式分解的最后結(jié)果要求加以整理;

 。6)因式分解的最后結(jié)果要求相同因式寫(xiě)成乘方的形式.

  6.因式分解的.解題技巧:(1)換位整理,加括號(hào)或去括號(hào)整理;(2)提負(fù)號(hào);(3)全變號(hào);(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分?jǐn)?shù)系數(shù);(9)展開(kāi)部分括號(hào)或全部括號(hào);(10)拆項(xiàng)或補(bǔ)項(xiàng).

  7.完全平方式:能化為(m+n)2的多項(xiàng)式叫完全平方式;對(duì)于二次三項(xiàng)式x2+px+q,有“x2+px+q是完全平方式分式

  Apq22”.

  1.分式:一般地,用A、B表示兩個(gè)整式,A÷B就可以表示為B的形式,如果B

  A中含有字母,式子B叫做分式.

  整式有理式分式2.有理式:整式與分式統(tǒng)稱有理式;即.

  3.對(duì)于分式的兩個(gè)重要判斷:(1)若分式的分母為零,則分式無(wú)意義,反之有意義;(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無(wú)意義.4.分式的基本性質(zhì)與應(yīng)用:

 。1)若分式的分子與分母都乘以(或除以)同一個(gè)不為零的整式,分式的值不變;

  (2)注意:在分式中,分子、分母、分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變;即

  分子分母分子分母分子分母分子分母

 。3)繁分式化簡(jiǎn)時(shí),采用分子分母同乘小分母的最小公倍數(shù)的方法,比較簡(jiǎn)單.5.分式的約分:把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經(jīng)常需要先因式分解.

  6.最簡(jiǎn)分式:一個(gè)分式的分子與分母沒(méi)有公因式,這個(gè)分式叫做最簡(jiǎn)分式;注意:分式計(jì)算的最后結(jié)果要求化為最簡(jiǎn)分式.

  acac,bdbd7.分式的乘除法法則:

  nna

  bcdadadbcbc.

  aan.(n為正整數(shù))b8.分式的乘方:b.

  9.負(fù)整指數(shù)計(jì)算法則:

  1(1)公式:a0=1(a≠0),a-n=a(a≠0);(2)正整指數(shù)的運(yùn)算法則都可用于負(fù)整指數(shù)計(jì)算;

  a(3)公式:bnnbananm,bbamn;

 。4)公式:(-1)-2=1,(-1)-3=-1.

  10.分式的通分:根據(jù)分式的基本性質(zhì),把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先確定最簡(jiǎn)公分母.11.最簡(jiǎn)公分母的確定:系數(shù)的最小公倍數(shù)相同因式的最高次冪.

  abcabcabcdadbdbcbdadbcbd12.同分母與異分母的分式加減法法則:

  c;.

  13.含有字母系數(shù)的一元一次方程:在方程ax+b=0(a≠0)中,x是未知數(shù),a和b是用字母表示的已知數(shù),對(duì)x來(lái)說(shuō),字母a是x的系數(shù),叫做字母系數(shù),字母b是常數(shù)項(xiàng),我們稱它為含有字母系數(shù)的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知數(shù),用x、y、z等表示未知數(shù).

  14.公式變形:把一個(gè)公式從一種形式變換成另一種形式,叫做公式變形;注意:公式變形的本質(zhì)就是解含有字母系數(shù)的方程.特別要注意:字母方程兩邊同時(shí)乘以含字母的代數(shù)式時(shí),一般需要先確認(rèn)這個(gè)代數(shù)式的值不為0.

  15.分式方程:分母里含有未知數(shù)的方程叫做分式方程;注意:以前學(xué)過(guò)的,分母里不含未知數(shù)的方程是整式方程.

  16.分式方程的增根:在解分式方程時(shí),為了去分母,方程的兩邊同乘以了含有未知數(shù)的代數(shù)式,所以可能產(chǎn)生增根,故分式方程必須驗(yàn)增根;注意:在解方程時(shí),方程的兩邊一般不要同時(shí)除以含未知數(shù)的代數(shù)式,因?yàn)榭赡軄G根.

  17.分式方程驗(yàn)增根的方法:把分式方程求出的根代入最簡(jiǎn)公分母(或分式方程的每個(gè)分母),若值為零,求出的根是增根,這時(shí)原方程無(wú)解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數(shù)的值可能是原方程的增根.18.分式方程的應(yīng)用:列分式方程解應(yīng)用題與列整式方程解應(yīng)用題的方法一樣,但需要增加“驗(yàn)增根”的程序.數(shù)的開(kāi)方

  1.平方根的定義:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方數(shù),(2)已知x求a叫乘方,已知a求x叫開(kāi)方,乘方與開(kāi)方互為逆運(yùn)算.2.平方根的性質(zhì):

 。1)正數(shù)的平方根是一對(duì)相反數(shù);(2)0的平方根還是0;(3)負(fù)數(shù)沒(méi)有平方根.

  3.平方根的表示方法:a的平方根表示為也可以認(rèn)為是一個(gè)數(shù)開(kāi)二次方的運(yùn)算.

  4.算術(shù)平方根:正數(shù)a的正的平方根叫a的算術(shù)平方根,表示為平方根還是0.

  5.三個(gè)重要非負(fù)數(shù):a2≥0,|a|≥0,0.

  6.兩個(gè)重要公式:(1)aa2a和a.注意:

  a可以看作是一個(gè)數(shù),

  a.注意:0的算術(shù)

  a≥0.注意:非負(fù)數(shù)之和為0,說(shuō)明它們都是

  2a;(a≥0)

  (a0)aaa(a0)

  .

  7.立方根的定義:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方數(shù);(2)a的立方根表示為8.立方根的性質(zhì):

 。1)正數(shù)的立方根是一個(gè)正數(shù);(2)0的立方根還是0;

  -3-

  3a;即把a(bǔ)開(kāi)三次方.(3)負(fù)數(shù)的立方根是一個(gè)負(fù)數(shù).9.立方根的特性:

  3a3a.

  10.無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫做無(wú)理數(shù).注意:和開(kāi)方開(kāi)不盡的數(shù)是無(wú)理數(shù).

  11.實(shí)數(shù):有理數(shù)和無(wú)理數(shù)統(tǒng)稱實(shí)數(shù).

  12.正有理數(shù)0負(fù)有理數(shù)有限小數(shù)與無(wú)限循環(huán)小數(shù)正無(wú)理數(shù)無(wú)限不循環(huán)小數(shù)負(fù)無(wú)理數(shù)(2)

  13.?dāng)?shù)軸的性質(zhì):數(shù)軸上的點(diǎn)與實(shí)數(shù)一一對(duì)應(yīng).

  14.無(wú)理數(shù)的近似值:實(shí)數(shù)計(jì)算的結(jié)果中若含有無(wú)理數(shù)且題目無(wú)近似要求,則結(jié)果應(yīng)該用無(wú)理數(shù)表示;如果題目有近似要求,則結(jié)果應(yīng)該用無(wú)理數(shù)的近似值表示.注意:(1)近似計(jì)算時(shí),中間過(guò)程要多保留一位;(2)要求記憶:21.414

  52.236.

  31.732

  正實(shí)數(shù)實(shí)數(shù)0負(fù)實(shí)數(shù)三角形

  幾何A級(jí)概念:(要求深刻理解、熟練運(yùn)用、主要用于幾何證明)1.三角形的角平分線定義:三角形的一個(gè)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線.(如圖)2.三角形的中線定義:在三角形中,連結(jié)一個(gè)頂點(diǎn)和它的對(duì)邊的中點(diǎn)的線段叫做三角形的中線.(如圖)3.三角形的高線定義:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊畫(huà)垂-4-

  BDCA幾何表達(dá)式舉例:(1)∵AD平分∠BAC∴∠BAD=∠CADBDC(2)∵∠BAD=∠CAD∴AD是角平分線幾何表達(dá)式舉例:A(1)∵AD是三角形的中線∴BD=CD(2)∵BD=CD∴AD是三角形的中線幾何表達(dá)式舉例:(1)∵AD是ΔABC的高線,頂點(diǎn)和垂足間的線段叫做三角形的高線.(如圖)※4.三角形的三邊關(guān)系定理:三角形的兩邊之和大于第三邊,三角形的兩邊之差小于第三邊.(如圖)5.等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.(如圖)6.等邊三角形的定義:有三條邊相等的三角形叫做等邊三角形.(如圖)BBBA∴∠ADB=90°(2)∵∠ADB=90°∴AD是ΔABC的高BDC幾何表達(dá)式舉例:(1)∵AB+BC>AC∴(2)∵AB-BC<ACAC∴幾何表達(dá)式舉例:A(1)∵ΔABC是等腰三角形∴AB=AC(2)∵AB=ACC∴ΔABC是等腰三角形幾何表達(dá)式舉例:(1)∵ΔABC是等邊三角形∴AB=BC=AC(2)∵AB=BC=ACAC∴ΔABC是等邊三角形幾何表達(dá)式舉例:(1)∵∠A+∠B+∠C=180°∴∴∠A+∠B=90°∴7.三角形的內(nèi)角和定理及推論:(1)三角形的內(nèi)角和180°;(如圖)(2)直角三角形的兩個(gè)銳角互余;(如圖)(如圖)角.BCA(3)三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;(2)∵∠C=90°※(4)三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)(3)∵∠ACD=∠A+∠B(4)∵∠ACD>∠A∴CBBCDAA(1)(2)(3)(4)8.直角三角形的定義:有一個(gè)角是直角的三角形叫直角三角形.(如圖)CBA幾何表達(dá)式舉例:(1)∵∠C=90°∴ΔABC是直角三角形(2)∵ΔABC是直角三角形∴∠C=90°9.等腰直角三角形的定義:腰直角三角形.(如圖)A幾何表達(dá)式舉例:(1)∵∠C=90°CA=CB∴ΔABC是等腰直角三角形(2)∵ΔABC是等腰直角三角CB兩條直角邊相等的直角三角形叫等形∴∠C=90°CA=CB10.全等三角形的性質(zhì):(1)全等三角形的對(duì)應(yīng)邊相等;(如圖)(2)全等三角形的對(duì)應(yīng)角相等.(如圖)BAE幾何表達(dá)式舉例:(1)∵ΔABC≌ΔEFG∴AB=EF(2)∵ΔABC≌ΔEFG∴∠A=∠ECFG幾何表達(dá)式舉例:(1)∵AB=EF∵∠B=∠F又∵BC=FG∴ΔABC≌ΔEFG(2)(3)在RtΔABC和RtΔEFG中∵AB=EF又∵AC=EG∴RtΔABC≌RtΔEFG11.全等三角形的判定:“SAS”“ASA”“AAS”“SSS”“HL”.(如圖)BCFG(1)(2)CBF(3)GAEAE12.角平分線的性質(zhì)定理及逆定理:(1)在角平分線上的點(diǎn)到角的兩邊距離相等;(如圖)(2)到角的兩邊距離相等的點(diǎn)在角平分線上.(如圖)13.線段垂直平分線的定義:-6-

  OEBDCA幾何表達(dá)式舉例:(1)∵OC平分∠AOB又∵CD⊥OACE⊥OB∴CD=CE(2)∵CD⊥OACE⊥OB又∵CD=CE∴OC是角平分線幾何表達(dá)式舉例:垂直于一條線段且平分這條線段的直線,叫做這條線段的垂直平分線.(如圖)14.線段垂直平分線的性質(zhì)定理及逆定理:(1)線段垂直平分線上的點(diǎn)和這條線段的兩個(gè)端點(diǎn)的距離相等;(如圖)(2)和一條線段的兩個(gè)端點(diǎn)的距離相等的點(diǎn),在這條線段的垂直平分線上.(如圖)15.等腰三角形的性質(zhì)定理及推論:AAOE(1)∵EF垂直平分AB∴EF⊥ABOA=OBB(2)∵EF⊥ABOA=OB∴EF是AB的垂直平分線幾何表達(dá)式舉例:(1)∵M(jìn)N是線段AB的垂直平FMP分線∴PA=PBBC(2)∵PA=PB∴點(diǎn)P在線段AB的垂直平分線上幾何表達(dá)式舉例:N(1)等腰三角形的兩個(gè)底角相等;(即等邊對(duì)等角)(如圖)(1)∵AB=AC(2)等腰三角形的“頂角平分線、底邊中線、底邊上的高”∴∠B=∠C三線合一;(如圖)(3)等邊三角形的各角都相等,并且都是60°.(如圖)A(2)∵AB=AC又∵∠BAD=∠CAD∴BD=CDAAAD⊥BC(3)∵ΔABC是等邊三角形CBC(1)BDC(2)B(3)∴∠A=∠B=∠C=60°幾何表達(dá)式舉例:∴AB=AC(2)∵∠A=∠B=∠C16.等腰三角形的判定定理及推論:也相等;(即等角對(duì)等邊)(如圖)(2)三個(gè)角都相等的三角形是等邊三角形;(如圖)(1)如果一個(gè)三角形有兩個(gè)角都相等,那么這兩個(gè)角所對(duì)邊(1)∵∠B=∠C(3)有一個(gè)角等于60°的等腰三角形是等邊三角形;(如圖)∴ΔABC是等邊三角形(4)在直角三角形中,如果有一個(gè)角等于30°,那么它所對(duì)(3)∵∠A=60°的直角邊是斜邊的一半.(如圖)A又∵AB=AC∴ΔABC是等邊三角形AA(4)∵∠C=90°∠B=30°1CBC(1)B(2)(3)CB(4)∴AC=2AB17.關(guān)于軸對(duì)稱的定理(1)關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形;(如圖)(2)如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線.(如圖)18.勾股定理及逆定理:的平方和等于斜邊c的平方,即a2+b2=c2;(如圖)(2)如果三角形的三邊長(zhǎng)有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形.(如圖)19.RtΔ斜邊中線定理及逆定理:是斜邊的一半;(如圖)(2)如果三角形一邊上的中線是這邊的一半,那么這個(gè)三角形是直角三角形.(如圖)

  MAOCFE幾何表達(dá)式舉例:(1)∵ΔABC、ΔEGF關(guān)于MN軸對(duì)稱∴ΔABC≌ΔEGFGNB(2)∵ΔABC、ΔEGF關(guān)于MN軸對(duì)稱∴OA=OEMN⊥AE幾何表達(dá)式舉例:(1)∵ΔABC是直角三角形A(1)直角三角形的兩直角邊a、b∴a2+b2=c2(2)∵a2+b2=c2∴ΔABC是直角三角形CB幾何表達(dá)式舉例:∵ΔABC是直角三角形∵D是AB的中點(diǎn)A(1)直角三角形中,斜邊上的中線D1∴CD=CB2AB(2)∵CD=AD=BD∴ΔABC是直角三角形幾何B級(jí)概念:(要求理解、會(huì)講、會(huì)用,主要用于填空和選擇題)一基本概念:

  三角形、不等邊三角形、銳角三角形、鈍角三角形、三角形的外角、全等三角形、角平分線的集合定義、原命題、逆命題、逆定理、尺規(guī)作圖、輔助線、線段垂直平分線的集合定義、軸對(duì)稱的定義、軸對(duì)稱圖形的定義、勾股數(shù).二常識(shí):

  1.三角形中,第三邊長(zhǎng)的判斷:另兩邊之差<第三邊<另兩邊之和.

  2.三角形中,有三條角平分線、三條中線、三條高線,它們都分別交于一點(diǎn),其中前兩個(gè)交點(diǎn)都在三角形內(nèi),而第三個(gè)交點(diǎn)可在三角形內(nèi),三角形上,三角形外.注意:三角形的角平分線、中線、高線都是線段.

  3.如圖,三角形中,有一個(gè)重要的面積等式,即:若CD⊥AB,BE⊥CA,則CDAB=BECA.

  4.三角形能否成立的條件是:最長(zhǎng)邊<另兩邊之和.

  5.直角三角形能否成立的條件是:最長(zhǎng)邊的平方等于另兩邊的平方和.

  -8-

  BDECA6.分別含30°、45°、60°的直角三角形是特殊的直角三角形.

  7.如圖,雙垂圖形中,有兩個(gè)重要的性質(zhì),即:(1)ACCB=CDAB;(2)∠1=∠B,∠2=∠A.8.三角形中,最多有一個(gè)內(nèi)角是鈍角,但最少有兩個(gè)外角是鈍角.邊是對(duì)應(yīng)邊.

  10.等邊三角形是特殊的等腰三角形.

  11.幾何習(xí)題中,“文字?jǐn)⑹鲱}”需要自己畫(huà)圖,寫(xiě)已知、求證、證明.12.符合“AAA”“SSA”條件的三角形不能判定全等.

  13.幾何習(xí)題經(jīng)常用四種方法進(jìn)行分析:(1)分析綜合法;(2)方程分析法;(3)代入分析法;(4)圖形觀察法.

  14.幾何基本作圖分為:(1)作線段等于已知線段;(2)作角等于已知角;(3)作已知角的平分線;(4)過(guò)已知點(diǎn)作已知直線的垂線;(5)作線段的中垂線;(6)過(guò)已知點(diǎn)作已知直線的平行線.

  15.會(huì)用尺規(guī)完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等邊三角形”、“等腰直角三角形”的作圖.

  16.作圖題在分析過(guò)程中,首先要畫(huà)出草圖并標(biāo)出字母,然后確定先畫(huà)什么,后畫(huà)什么;注意:每步作圖都應(yīng)該是幾何基本作圖.

  17.幾何畫(huà)圖的類型:(1)估畫(huà)圖;(2)工具畫(huà)圖;(3)尺規(guī)畫(huà)圖.※18.幾何重要圖形和輔助線:(1)選取和作輔助線的原則:

 、贅(gòu)造特殊圖形,使可用的定理增加;②一舉多得;

  ③聚合題目中的分散條件,轉(zhuǎn)移線段,轉(zhuǎn)移角;④作輔助線必須符合幾何基本作圖.

 。2)已知角平分線.(若BD是角平分線)

  ①在BA上截取BE=BC構(gòu)造全等,轉(zhuǎn)②過(guò)D點(diǎn)作DE∥BC交AB于E,構(gòu)造等移線段和角;

 。3)已知三角形中線(若AD是BC的中線)

 、龠^(guò)D點(diǎn)作DE∥AC交AB②延長(zhǎng)AD到E,使DE=AD③∵AD是中線

  -9-

  BEDEDAAD12CB9.全等三角形中,重合的點(diǎn)是對(duì)應(yīng)頂點(diǎn),對(duì)應(yīng)頂點(diǎn)所對(duì)的角是對(duì)應(yīng)角,對(duì)應(yīng)角所對(duì)的

  腰三角形.ACBCABDC于E,構(gòu)造中位線;

  BDCAE連結(jié)CE構(gòu)造全等,轉(zhuǎn)移線段和角;∴SΔABD=SΔADC(等底等高的三角形等面積)ABDC(4)已知等腰三角形ABC中,AB=AC

  ①作等腰三角形ABC底邊的中線AD②作等腰三角形ABC一邊的平行線DE,構(gòu)造(頂角的平分線或底邊的高)構(gòu)造全等三角形;

 。5)其它作等邊三角形ABC一邊的平行線DE,構(gòu)造新的等邊三角形;

 、芏噙呅无D(zhuǎn)化為三角⑤延長(zhǎng)BC到D,使⑥若a∥b,AC,BC是角平形;

  BCEADOBDCBDC新的等腰三角形.AAAEDEBC②作CE∥AB,轉(zhuǎn)移角;③延長(zhǎng)BD與AC交于E,AE不規(guī)則圖形轉(zhuǎn)化為規(guī)則圖形;BCDDAEAEBDCBCCD=BC,連結(jié)AD,直角三角形轉(zhuǎn)化為等腰三角形;ABCD分線,則∠C=90°.BAaCb

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  一.定義

  1.一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.a叫做被開(kāi)方數(shù).

  2.一般地,如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)叫做a的平方根或二次方根,求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開(kāi)平方.

  3.一般地,如果一個(gè)數(shù)的立方等于a,那么這個(gè)數(shù)叫做a的立方根或三次方根.求一個(gè)數(shù)的立方根的運(yùn)算,叫做開(kāi)立方.

  4.任何一個(gè)有理數(shù)都可以寫(xiě)成有限小數(shù)或無(wú)限循環(huán)小數(shù)的形式.任何有限小數(shù)或無(wú)限循環(huán)小數(shù)也都是有理數(shù).

  5.無(wú)限不循環(huán)小數(shù)又叫無(wú)理數(shù).

  6.有理數(shù)和無(wú)理數(shù)統(tǒng)稱實(shí)數(shù).

  7.數(shù)軸上的點(diǎn)與實(shí)數(shù)一一對(duì)應(yīng).平面直角坐標(biāo)系中與有序?qū)崝?shù)對(duì)之間也是一一對(duì)應(yīng)的

  二.重點(diǎn)

  1.平方與開(kāi)平方互為逆運(yùn)算.

  2.正數(shù)的平方根有兩個(gè),它們互為相反數(shù),其中正的平方根就是這個(gè)數(shù)的算術(shù)平方根.

  3.當(dāng)被開(kāi)方數(shù)的小數(shù)點(diǎn)向右每移動(dòng)兩位,它的算術(shù)平方根的`小數(shù)點(diǎn)就向右移動(dòng)一位.

  4.當(dāng)被平方數(shù)小數(shù)點(diǎn)每向右移動(dòng)三位,它的立方根小數(shù)點(diǎn)向右移動(dòng)一位.

  5.數(shù)a的相反數(shù)是-a[a為任意實(shí)數(shù)],一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)實(shí)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0.

  三.注意

  1.被開(kāi)方數(shù)一定是非負(fù)數(shù).

  2.0,1的算術(shù)平方根是它本身;0的平方根是0,負(fù)數(shù)沒(méi)有平方根;正數(shù)的立方根是正數(shù),負(fù)數(shù)的立方根是負(fù)數(shù),0的立方根是0.

  3.帶根號(hào)的無(wú)理數(shù)的整數(shù)倍或幾分之幾仍是無(wú)理數(shù);帶根號(hào)的數(shù)若開(kāi)之后是有理數(shù)則是有理數(shù);任何一個(gè)有理數(shù)都能寫(xiě)成分?jǐn)?shù)的形式.

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  等腰三角形

  1.性質(zhì):等腰三角形的兩個(gè)底角相等(等邊對(duì)等角).

  2.判定:有兩個(gè)角相等的三角形是等腰三角形(等角對(duì)等邊).

  3.推論:等腰三角形、、互相重合(即“”).

  4.等邊三角形的性質(zhì)及判定定理

  性質(zhì)定理:等邊三角形的三個(gè)角都相等,并且每個(gè)角都等于;等邊三角形是軸對(duì)稱圖形,有條對(duì)稱軸.

  判定定理:(1)有一個(gè)角是60°的等腰三角形是等邊三角形;

  (2)三個(gè)角都相等的三角形是等邊三角形.

  直角三角形

  1.勾股定理及其逆定理

  定理:直角三角形的兩條直角邊的等于的平方.

  逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是.

  2.含30°的直角三角形的邊的性質(zhì)

  定理:在直角三角形中,如果一個(gè)銳角等于30°,那么等于的一半.

  3.直角三角形斜邊上的中線等于的一半。

  要點(diǎn)詮釋:①勾股定理的逆定理在語(yǔ)言敘述的時(shí)候一定要注意,不能說(shuō)成“兩條邊的平方和等于斜邊的平方”,應(yīng)該說(shuō)成“三角形兩邊的平方和等于第三邊的平方”。

 、谥苯侨切蔚娜扰卸ǚ椒,HL還有SSS,SAS,ASA,AAS,一共有5種判定方法。

  線段的垂直平分線

  1.線段垂直平分線的性質(zhì)及判定

  性質(zhì):線段垂直平分線上的點(diǎn)到的距離相等.

  判定:到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的

  2.三角形三邊的垂直平分線的性質(zhì)

  三角形三條邊的垂直平分線相交于一點(diǎn),并且這一點(diǎn)到三個(gè)頂點(diǎn)的距離相等。

  角平分線

  1.角平分線的性質(zhì)及判定定理

  性質(zhì):角平分線上的.點(diǎn)到的距離相等;

  判定:在一個(gè)角的內(nèi)部,且到角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上。

  2.三角形三條角平分線的性質(zhì)定理

  性質(zhì):三角形的三條角平分線相交于一點(diǎn),并且這一點(diǎn)到三條邊的距離相等。這個(gè)點(diǎn)叫內(nèi)心。

【初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10-28

初二物理知識(shí)點(diǎn)總結(jié)01-18

初二物理知識(shí)點(diǎn)總結(jié)12-10

初二物理下冊(cè)知識(shí)點(diǎn)總結(jié)02-05

數(shù)學(xué)集合知識(shí)點(diǎn)總結(jié)03-11

初二年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-13

初二下物理知識(shí)點(diǎn)總結(jié)01-20

初二物理知識(shí)點(diǎn)總結(jié)(精選15篇)12-21

初二物理知識(shí)點(diǎn)總結(jié)(15篇)12-11