因數(shù)和倍數(shù)教學反思(15篇)
作為一名人民教師,教學是我們的工作之一,通過教學反思可以有效提升自己的教學能力,那么什么樣的教學反思才是好的呢?以下是小編為大家收集的因數(shù)和倍數(shù)教學反思,歡迎大家借鑒與參考,希望對大家有所幫助。
因數(shù)和倍數(shù)教學反思1
本節(jié)課是在學生已經(jīng)學習了一定的整數(shù)知識的基礎(chǔ)上進行教學的。
課堂中,我首先讓學生理解分類標準,明確因數(shù)和倍數(shù)的`含義。在例1教學中,首先根據(jù)不同的除法算式讓學生進行分類,同時思考其標準依據(jù)是什么。通過學生的獨立思考和小組交流學生得出:
第一種是分為兩類:
一類是商是整數(shù),另一類是商是小數(shù);
第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學生在爭論與交流中達成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強調(diào)的是對于因數(shù)和倍數(shù)的含義要符合兩個條件:
一是必須在整數(shù)除法中,
二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。
其次,厘清概念倍數(shù)和幾倍,注重強調(diào)倍數(shù)和因數(shù)的相互依存性。在教學中可以直接告訴學生因數(shù)和倍數(shù)都不能單獨存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。
對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進行研究,它的研究范圍較之倍數(shù)范圍大一些。
本節(jié)課的不足之處:
1、練習設(shè)計容量少了一些,導致課堂有剩余時間。
2、對因數(shù)和倍數(shù)的含義還應該進行歸納總結(jié)上升到用字母來表示。
因數(shù)和倍數(shù)教學反思2
我在教學時做到了以下幾點:
(1)密切聯(lián)系生活中的數(shù)學,幫助學生理解概念間的關(guān)系。
今天在教學前,我讓學生學說話,就是培養(yǎng)學生對語言的概括能力和對事物間關(guān)系的理解能力。于是我利用課前談話讓學生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學生感受到了數(shù)學與生活的聯(lián)系,又幫助學生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學生更深一步的認識倍數(shù)與因數(shù)的關(guān)系,
(2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。
我改變了例題,用杯子翻動的次數(shù)與杯口朝上的次數(shù)之間的關(guān)系,列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學習如何找一個數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。這樣不僅溝通了乘法和除法的關(guān)系,也讓學生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
(3)根據(jù)學生的`實際情況,教學找一個數(shù)的因數(shù)的方法
雖然學生不能有序地找出來,但是基本能全部找到,再此基礎(chǔ)上讓體會有序找一個數(shù)因數(shù)的辦法學生容易接受,這樣的設(shè)計由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。
(4)設(shè)計有趣游戲活動,擴大學生思維的空間,培養(yǎng)學生發(fā)散思維的能力。
譬如“找朋友”游戲,答案不唯一,學生思考問題的空間很大,培養(yǎng)了學生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學生判斷自己的學號數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),,如果學生的學號數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來。最后問能不能想個辦法讓所有的學生都站起來。出示地卡片應該是幾,找的朋友應該是倍數(shù)還是因數(shù)?學生面對問題積極思考,享受了數(shù)學思維的快樂
因數(shù)和倍數(shù)教學反思3
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。(1)新課標教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學習,而是反其道而行之,通過乘法算式來導入新知。(2)“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在?我認真研讀教材,通過學習了解到以下信息:簽于學生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的知識基礎(chǔ),對整除的含義已經(jīng)有了比較清楚的認識,不出現(xiàn)整除的定義并不會對學生理解其他概念產(chǎn)生任何影響。因此,本套教材中刪去了“整除”的數(shù)學化定義,而是借助整除的'模式na=b直接引出因數(shù)和倍數(shù)的概念。
雖然學生已接觸過整除與有余數(shù)的除法,但我班學生對“整除”與“除盡”的內(nèi)涵與外延并不清晰。因此在教學時,補充了兩道判斷題請學生辨析:
11÷2=5……1。問:11是2的倍數(shù)嗎?為什么?因為5×0.8=4,所以5和0.8是4的因數(shù),4是5和0.8的倍數(shù),對嗎?為什么?
特別是第2小題極具價值。價值不僅體現(xiàn)在它幫助學生通過辨析明確了在研究因數(shù)和倍數(shù)時,我們所說的數(shù)都是指整數(shù)(一般不包括0),及時彌補了未進行整除概念教學的知識缺陷,還通過此題對“因數(shù)”與乘法算式名稱中的“因數(shù)”,倍數(shù)與倍進行了對比。
因數(shù)和倍數(shù)教學反思4
這是自入職以來第一堂得到李老師指點的課。感覺得到李老師課堂上對學生信任。也讓我更深一步的體會到,只有學生自己找出來的規(guī)律,特點,才能理解的更透徹,掌握的更牢固,應用起來更有效率。平日里,沒有給學生充分的時間,很多規(guī)律甚至是老師直接告訴學生的,雖然課堂教學的速度有了,但是效率并不高,后期教師要花費的時間更多。那才是真正的丟了西瓜撿芝麻!
下面從幾點來分析本節(jié)課
一、優(yōu)點
課堂掌控力不錯,教師的個人素質(zhì)也不錯。
二、不足
1、 是除不盡的。但是課堂上,我卻當做了能除盡的'。思考出現(xiàn)這個錯誤的原因,是自己對課堂、對學生的預設(shè)不足!
2、26是13和2的倍數(shù),13和2是26的因數(shù)------大家發(fā)現(xiàn)沒有,大的是倍數(shù),小的是因數(shù)!
我非常清楚,倍數(shù)、因數(shù)是有依存關(guān)系的,而不能單獨說,但是課堂上卻說出了“大的是倍數(shù),小的是因數(shù)”這樣一句有問題的話。失!
歸結(jié)原因,還是課堂太想投機取巧。作為一個引導學生入門的老師,在知識的門口,真的不能有絲毫差池,更不能為了一時的省事,而為后面的教學買下禍根!
三、除了錯誤,還有很多做的復雜、不到位的地方。
1、開篇之時,復習自然數(shù),是為本節(jié)課作知識鋪墊用的,但是,問題中的“自然數(shù)有什么特點?”卻是一個設(shè)計失敗的問題。已經(jīng)學到高等數(shù)學的我,自然之道,自然數(shù)的特點到底有多龐雜!根本不是一兩句話說的清的,但是我卻問了這樣一個問題。
2、給定12張卡片列除法算式求商時,可以限定時間30秒,看說寫的又多又準確。也就是說能全員參與的,就單獨。讓學生在數(shù)學作業(yè)紙上寫完后,可以抓條,然后教師可以挑選著在摘錄一些。這樣準備充分,也可以為后面的分類打下堅實的基礎(chǔ)。
3、找個一個數(shù)的因數(shù)時,要先找,在訂正,最后讓學生說說做法。而后更正練習,接著判斷,說方法。只有清楚的說出了方法,才能保證學生是真懂了。在這個過程中,還可以鼓勵學生總結(jié)一些自己的做法,比如用乘法找因數(shù),乘到幾就不乘了。用除法也是,除到幾就不除了。ㄟ@個數(shù)的中間位置)
4、本節(jié)課最好的量是到會找一個數(shù)的因數(shù)就可以了,接著歸納一個數(shù)因數(shù)的特點部分就拖堂了。內(nèi)容不能很好的在一堂課中充分的展現(xiàn)!
一堂課教會了我很多,尤其是在教學方法上,李老師后來的引導,讓我清楚的看到了學生的聰明,學生的觀察力!要相信學生------首先要給學生時間去觀察,去思考,去發(fā)現(xiàn)!否則,學生的思維永遠得不到真正的發(fā)展!能力無法得到充分的提升。
因數(shù)和倍數(shù)教學反思5
本節(jié)課的內(nèi)容是在學生已經(jīng)學習了一定的整數(shù)知識(包括整數(shù)的知識、整數(shù)的四則運算及其應用)的基礎(chǔ)上,進一步認識整數(shù)的`性質(zhì)。本單元所涉及的因數(shù)和倍數(shù)都是初等數(shù)論的基礎(chǔ)知識。
成功之處:
1.理解分類標準,明確因數(shù)和倍數(shù)的含義。在例1教學中,首先根據(jù)不同的除法算式讓學生進行分類,同時思考其標準依據(jù)是什么。通過學生的獨立思考和小組交流學生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學生在爭論與交流中達成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強調(diào)的是對于因數(shù)和倍數(shù)的含義要符合兩個條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。
2.厘清概念倍數(shù)和幾倍,注重強調(diào)倍數(shù)和因數(shù)的相互依存性。在教學中可以直接告訴學生因數(shù)和倍數(shù)都不能單獨存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進行研究,它的研究范圍較之倍數(shù)范圍大一些。
不足之處:
1.練習設(shè)計容量少了一些,導致課堂有剩余時間。
2. 對因數(shù)和倍數(shù)的含義還應該進行歸納總結(jié)上升到用字母來表示。
再教設(shè)計:
1.根據(jù)課本的練習相應的進行補充。
2.因數(shù)和倍數(shù)的含義用總結(jié)為a÷b=c(a、b、c均為非0自然數(shù)),a是b和c的倍數(shù),b和c是a的因數(shù)。
因數(shù)和倍數(shù)教學反思6
一、教材與知識點的對比與區(qū)別。
1、對比新版教材知識設(shè)置與傳統(tǒng)教材的區(qū)別。
有關(guān)數(shù)論的這部分知識是傳統(tǒng)教學內(nèi)容,但教材在傳承以往優(yōu)秀做法的同時也進行了較大幅度的改動。無論是從宏觀方面——內(nèi)容的劃分,還是從微觀方面——具體內(nèi)容的設(shè)計上都獨具匠心。“因數(shù)與倍數(shù)”的認識與原教材有以下兩方面的區(qū)別:
。1)新課標教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學習,而是反其道而行之,通過乘法算式來導入新知。
(2)“約數(shù)”一詞被“因數(shù)”所取代。
這樣的變化原因何在?教師必須要認真研讀教材,深入了解編者意圖,才能夠正確、靈活駕馭教材。因此,我通過學習教參了解到以下信息:
學生的原有知識基礎(chǔ)是在已經(jīng)能夠區(qū)分整除與余數(shù)除法,對整除的含義有比較清楚的認識,不出現(xiàn)整除的定義并不會對學生理解其他概念產(chǎn)生任何影響。因此,本教材中刪去了“整除”的數(shù)學化定義。
2、相似概念的對比。
。1)彼“因數(shù)”非此“因數(shù)”。
在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù)。而后者是相對于“倍數(shù)”而言的,與以前所說的“約數(shù)”同義,說“X是X的因數(shù)”時,兩者都只能是整數(shù)。
。2)“倍數(shù)”與“倍”的區(qū)別。
“倍”的概念比“倍數(shù)”要廣。我們可以說“1.5是0.3的5倍”,但不能說”1.5是0.3的倍數(shù)”。我們在求一個數(shù)的倍數(shù)時,運用的方法與“求一個數(shù)的幾倍是多少”是相同的,只是這里的“幾倍”都是指整數(shù)倍。
二、教法的運用實踐
1、“因數(shù)與倍數(shù)”概念的數(shù)的應用范圍的規(guī)定直接運用講述法。對與本知識點的概念是人為規(guī)定的一個范圍,因此,對于學生和第一接觸的印象是沒有什么可以探究和探索的要求,而且給學生一個直觀的感受。“因數(shù)與倍數(shù)”的運用范圍就是在非0自然數(shù)的范疇之內(nèi),與小數(shù)無關(guān),與分數(shù)無關(guān),與負數(shù)無關(guān)(雖沒學,但有小部分學生了解)。同時強調(diào)——非0——因為0乘任何數(shù)得0,0除以任何數(shù)得0。研究它的.因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗就是對于數(shù)學當中規(guī)定性的概念用直接講述法,讓學生清晰明確。因此,用直接導入法,先復習自然數(shù)的概念,再寫出乘法算式3x4=12,說明在這個算式中,3和4是12的因數(shù),12是3和4的倍數(shù)。
2、在進行延續(xù)性教學中,可以讓學生探究怎么樣找一個數(shù)的因數(shù)和倍數(shù),在板書要講究一個格式與對稱性,這樣在對學生發(fā)現(xiàn)倍數(shù)與因數(shù)個數(shù)的有限與無限的對比,再就是發(fā)現(xiàn)一個數(shù)的因數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。一個數(shù)的倍數(shù)的最小的倍數(shù)是它本身,而沒有最大的倍數(shù)。這些都是上課時應該要注意的細節(jié),這對于學生良好的學習慣的培養(yǎng)也是很重要的。
因數(shù)和倍數(shù)教學反思7
教學目標:
1、使學生結(jié)合具體情境初步理解倍數(shù)和因數(shù)的含義,初步理解倍數(shù)和因數(shù)相互依存的關(guān)系。
2、使學生依據(jù)倍數(shù)和因數(shù)的含義以及已有的乘法和除法知識,通過嘗試和交流等活動,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,能在1-100的自然數(shù)中找出10以內(nèi)某個數(shù)的所有倍數(shù),找出100以內(nèi)某個數(shù)的所有因數(shù)。
3、使學生在認識倍數(shù)和因數(shù)以及找一個數(shù)的倍數(shù)和因數(shù)的過程中,進一步感受數(shù)學知識的內(nèi)在聯(lián)系,提高數(shù)學思考的水平。
教學重點:
理解倍數(shù)和因數(shù)的含義。
教學難點:
探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。
教學過程:
一、理解倍數(shù)和因數(shù)
。、用12個同樣大的正方形拼成一個長方形,可以怎樣擺?
先獨立思考,在同桌交流自己的看法,再集體交流。根據(jù)學生的回答,教師出示相應的拼法,并列式。
2、在4×3=12中,12是4的倍數(shù),12也是3的倍數(shù),3和4都是12的因數(shù)。你能照老師的樣子試著說一說嗎?如果有學生只說倍數(shù)和因數(shù),讓學生通過爭論明白倍數(shù)和因數(shù)表示的是兩個數(shù)之間的關(guān)系,因此一定要說誰是誰的倍數(shù),誰是誰的因數(shù)。
3、下面這些算式也能用倍數(shù)和因數(shù)表示嗎?
16÷2=85+6=1118-6=12
學生如果有爭論,讓學生說說自己的理由。由16÷2=8可以得到2×8=16,實際上16是2和8的乘積,所以也可以用倍數(shù)和因數(shù)來表示。
4、你能自己寫出一條算式,用倍數(shù)和因數(shù)來說一說嗎?學生自己思考,寫一寫,然后集體交流。
二、探索找一個數(shù)的倍數(shù)的方法
1、談話:3的倍數(shù)有哪些呢?我們來找找看。一分鐘內(nèi)完成。
1分鐘內(nèi)你們寫完了嗎?如果再給半分鐘呢?為什么?
2、3的倍數(shù)有很多,我們不能都寫出來,就用省略號來代替。下面,誰來說說看,3的倍數(shù)是怎么找的?小結(jié):找一個數(shù)的'倍數(shù),只要用這個數(shù)去乘以1、2、3、。就能得到它的倍數(shù)。
3、填一填:2的倍數(shù)有________________________
5的倍數(shù)有________________________
4、觀察上面的幾個例子,你有什么發(fā)現(xiàn)?
先小組交流,再指名回答。
指出:一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
三、探索找一個數(shù)因數(shù)的方法
1、嘗試:用自己的方法找出36的所有因數(shù)。
。1)先思考再嘗試。
。2)交流和評價
2、用這樣的方法,找找16的因數(shù)和7的因數(shù)。
3、討論:一個數(shù)的因數(shù)有哪些特征?
指出:一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身。
四、練習
練習一、二、三。
五、總結(jié)
這節(jié)課你有什么收獲?
反思:
讓學生借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學生已有的知識基礎(chǔ)上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學到數(shù)學,讓學生自主體驗數(shù)與形的結(jié)合,進而形成因數(shù)與倍數(shù)的意義.使學生初步建立了“因數(shù)與倍數(shù)”的概念。
在教學找一個數(shù)的倍數(shù)時,讓學生在1分鐘內(nèi)寫3的倍數(shù),再組織交流:3的倍數(shù)有哪些呢?同學互評,交流形成自己的學習成果,提高形成了知識的整體性教學,加大了探索的力度,提高了思維的難度,“1分鐘內(nèi)你們寫完了嗎?如果再給半分鐘呢?為什么?”設(shè)疑,置疑,激發(fā)學生的反思力度,有效地激發(fā)了學生的求知欲望,從而積極主動地獲得知識。
找一個數(shù)因數(shù)的方法是本節(jié)課的難點,如何做到既不重復又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學生來說有一定困難,這里可以充分發(fā)揮小組學習的優(yōu)勢。先讓學生自己獨立找36的因數(shù),我巡視了一下五分之一的學生能有序的思考,多數(shù)學生寫的算式不按一定的次序進行。接著讓學生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復也不遺漏。在小組交流的過程中,學生對自己剛才的方法進行反思,吸收同伴中好的方法,這時老師再給予有效的指導和總結(jié)。
因數(shù)和倍數(shù)教學反思8
這個單元課時數(shù)比較多,對于學生數(shù)感的要求比較高,對于學生觀察能力,比較能力,推理能力的培養(yǎng)是個很好的訓練。通過一個單元的教學,發(fā)現(xiàn)學生在以下知識點的學習和掌握上還存在一些問題:
1、最大公因數(shù)和最小公倍數(shù)
教學中,我讓學生經(jīng)歷了三種方法:法一是先找各數(shù)的因數(shù)(或倍數(shù)),再找兩個數(shù)的公因數(shù)(或公倍數(shù)),最后再找最大公因數(shù)和最小公倍數(shù);二是介紹短除法;三是對于特殊關(guān)系的數(shù)(倍數(shù)關(guān)系或互質(zhì)數(shù))直接根據(jù)規(guī)律寫結(jié)果。根據(jù)復習和練習反饋,發(fā)現(xiàn)學生對數(shù)的感覺比較欠缺,特殊關(guān)系的數(shù)不容易看出來,且兩個概念有時還會出現(xiàn)混淆情況,也就是對因數(shù)和倍數(shù)的理解不夠透徹與深刻。如果學生對找最大公因數(shù)和最小公倍數(shù)學不扎實,將直接影響到后面的約分和通分。所以我準備在平時每節(jié)課都有三到五個訓練,并進行專項過關(guān)。在應用這個知識解決實際問題時,有少數(shù)后進生比較難以理解,需要輔助圖形來分析,也需要一個時間的積淀過程。
2、質(zhì)數(shù)合數(shù)與奇數(shù)偶數(shù)
這四個概念按照兩個不同的標準分類所得。學生在分類思考時對概念的理解比較清晰,但混同在一起容易出現(xiàn)概念的交叉,如2既是質(zhì)數(shù)又是偶數(shù),9既是合數(shù)又是奇數(shù)。
3、235倍數(shù)的.特征
如果單獨讓學生去說去判斷一個數(shù)是不是235的倍數(shù),學生比較清楚,但在靈活應用時就比較遲鈍,特別是用短除法尋找公因數(shù)時,不能很快的進行反應,數(shù)的感覺不佳。
以上是本單元學生在學習過程中的主要障礙,數(shù)感的培養(yǎng)需要一個過程,而概念的理解加深還需要平時不斷的訓練。多給學生一點耐心,再堅持一份恒心,相信學生們會有提高,會有改變。
因數(shù)和倍數(shù)教學反思9
因數(shù)和倍數(shù)是蘇教版五年級下冊第三單元的內(nèi)容。這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認識因數(shù)倍數(shù)。而教材是通過用12個小正方形拼長方形并寫乘法算式來引入因數(shù)和倍數(shù)。我在教學時做了一些下的改動,例題從12個相同的正方形拼長方形開始教學,學生對這個活動已經(jīng)很熟悉,幾乎人人都知道有不同的拼法,都能順利地拼出三種不同的長方形。因此,我要求不用12個正方形拼,而是在腦子里“想像拼”,不能想象的就在本子上“畫拼”,“拼”好后,我也要求只用一個乘法算式表示你的拼法,這樣不僅節(jié)省了不少時間,更主要的是我覺得這樣的操作活動,雖然看起來不熱鬧,但學生的學習興趣被激發(fā)了、思維被調(diào)動起來了,主動參與到了知識的學習中去了。
能不重復、不遺漏,有序地找出一個數(shù)的因數(shù),是本課的教學難點。在教學中,我是這樣設(shè)計的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,教師緊接著提問:12的因數(shù)有哪些?學生看著黑板上的算式很快可找出12的因數(shù),接著再提問:你是怎么看出來的?根據(jù)一個乘法算式可以得到12的幾個因數(shù)?在學生回答之后,我接著請同學們用剛才的方法自己找一找36的因數(shù)有哪些。在匯報時,重點解決如何有序、不重復、不遺漏地找出一個數(shù)的因數(shù)。雖然這樣的教學設(shè)計,看起來學生的主動探索過程好像削弱了好多,但根據(jù)試上這課時的.情況看,這樣的設(shè)計比直接讓學生自主探索36的因數(shù)有哪些學習效果要好一些。直接探索36的因數(shù)有哪些,放得太開,學生無從下手,暴露出了許多問題,有的不知道該如何找因數(shù),有的沒有找全,而學生在教師的引導下,發(fā)現(xiàn)了找一個數(shù)因數(shù)的方法后接著去找36的因數(shù),那么他所關(guān)注的是如何有序地找出一個數(shù)的因數(shù),這樣的思考更有針對性,目標也更明確,對知識的掌握也能做得更好。
因數(shù)和倍數(shù)教學反思10
教學中我發(fā)現(xiàn)倍數(shù)和因數(shù)這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認識因數(shù)倍數(shù)。而這里的處理的方法有所不同,我在教學時做了一些改動,讓學生用12個小正方形擺長方形,然后自己用算式把擺法表示出來。這樣學生的算是就不局限于乘法,有一部分學生寫了除法算式。這樣學生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。因為現(xiàn)在也有很多學生學習奧賽,所以我從整除的角度也介紹了因數(shù)與倍數(shù)的概念.
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學生完全被動的接受。如讓學生思考:你覺得3和12、4和12之間有什么關(guān)系呢?(對乘除法學生有著相當豐富的經(jīng)驗,因此不少學生能說出倍數(shù)關(guān)系,可能說得不很到位,但那是學生自己的東西)。當學生認識了倍數(shù)之后,我進行了設(shè)問:12是3的倍數(shù),那反過來3和12是什么關(guān)系呢?盡管學生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學生體會到12是3的倍數(shù),反過來3就是12的因數(shù),接下來4和12的關(guān)系,學生都爭者要回答。
如何做到既不重復又不遺漏地找36的`因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學生來說有一定困難,這里可以充分發(fā)揮小組學習的優(yōu)勢。先讓學生自己獨立找36的因數(shù),我巡視了一下五分之一的學生能有序的思考,多數(shù)學生寫的算式不按一定的次序進行。接著讓學生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復也不遺漏。在小組交流的過程中,學生對自己剛才的方法進行反思,吸收同伴中好的方法,這不比老師給予的有效得多。
因數(shù)和倍數(shù)教學反思11
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。本節(jié)課又是這一單元的的教學重點。為讓學生很好的感受因數(shù)與倍數(shù)的意義,能夠熟練的找出一個數(shù)的因數(shù)與倍數(shù),靈活地處理了教材,分為兩課時進行。第一課時只讓學生認識了因數(shù)和倍數(shù)的意義及找一個數(shù)的因數(shù)的方法,效果不錯。
一、設(shè)計情境,引起思考。
改變教材的情境圖,用學生有興趣的情意引入課題:有12個小方塊,要求擺成一個長方體,你想怎么擺。引起學生思考,學生想到有3種擺法,每種擺法怎么列式求出一共有多少方塊?由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。從而理解決因數(shù)與倍數(shù)的意義。
二、引導學生探求找因數(shù)的'方法,使探索有方向。
如何找一個數(shù)的因數(shù)是這節(jié)課的重點,首先放手讓學生找出24的因數(shù),由于個人經(jīng)驗和思維的差異,出現(xiàn)了不同的方法與答案,在探索這些方法和答案的過程中,學生明白了如何求出一個數(shù)的因數(shù)的方法,從而掌握了知識點。
根據(jù)學生的學習特點,靈活的應用教材,使之服務于教學,讓教學有效的進行,才能達到教學的目的。
因數(shù)和倍數(shù)教學反思12
《公倍數(shù)和公因數(shù)》在新教材中改動很大,新教材將數(shù)的整除中有關(guān)分解質(zhì)因數(shù)、互質(zhì)數(shù)、用短除法求幾個數(shù)的最大公因數(shù)和最小公倍數(shù)的教學內(nèi)容精簡掉了,新教材突出了讓學生在現(xiàn)實情境中探究認識公倍數(shù)和最小公倍數(shù),公因數(shù)和最大公因數(shù),突出了運用數(shù)學概念,讓學生探索找兩個數(shù)的最小公倍數(shù)、最大公因數(shù)的方法,注重讓學生在解決問題的過程中,主動探索簡潔的方法,進行有條理的思考,加強了數(shù)學與現(xiàn)實生活的聯(lián)系。教學以后與以前的教材相比,主要的體會有以下幾點。
一是在現(xiàn)實的情境中教學概念,讓學生通過操作領(lǐng)會公倍數(shù)、公因數(shù)的含義。例1教學公倍數(shù)和最小公倍數(shù),例3教學公因數(shù)和最大公因數(shù),都是形成新的數(shù)學概念,都讓學生在操作活動中領(lǐng)會概念的`含義。學生通過操作活動,感受公倍數(shù)和公因數(shù)的實際背景,縮短了抽象概念與學生已有知識經(jīng)驗之間的距離,有利于學生運用公倍數(shù)、最小公倍數(shù)、公因數(shù)和最大公因數(shù)的知識解決實際問題。
二是有利于改善學習方式,便于學生通過操作和交流經(jīng)歷學習過程。在教學中,讓學生按要求自主操作,發(fā)現(xiàn)用怎樣的長方形可以正好鋪滿一個正方形;用邊長幾厘米的正方形可以正好鋪滿一個長方形。在對所發(fā)現(xiàn)的不同的結(jié)果的過程中,引導學生聯(lián)系除法算式進行思考,對直觀操作活動進行初步的抽象。再把初步發(fā)現(xiàn)的結(jié)論進行類推,在此基礎(chǔ)上,引導學生思考正方形的邊長與長方形的長和寬有什么關(guān)系,再揭示公倍數(shù)和公因數(shù),最小公倍數(shù)與最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。并在此基礎(chǔ)上,借助直觀的集合等圖式,顯示公倍數(shù)與公因數(shù)的意義。讓學生經(jīng)歷了概念的形成過程。
三是刪掉了一些與學生實際聯(lián)系不夠緊密、對后繼學習沒有影響的內(nèi)容后,確實減輕了學生的負擔,但是找兩個數(shù)的最小公倍數(shù)和最大公因數(shù)時由于采用了列舉法,學生得花較多的時間去找,當碰到的兩個數(shù)都比較大時,不僅花時多,而且還容易出現(xiàn)遺漏或算錯的情況。相比之下,用短除法來求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)就不會出現(xiàn)這方面的問題,所以我在實際教學中,先根據(jù)概念采用一一列舉的方法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù),待學生熟悉之后就教學生運用短除法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù),這樣的安排效果不錯,學生也沒感到增加了負擔。
因數(shù)和倍數(shù)教學反思13
一、教材與知識點的對比與區(qū)別。
1、對比新版教材知識設(shè)置與傳統(tǒng)教材的區(qū)別。有關(guān)數(shù)論的這部分知識是傳統(tǒng)教學內(nèi)容但教材在傳承以往優(yōu)秀做法的同時也進行了較大幅度的改動。無論是從宏觀方面——內(nèi)容的劃分還是從微觀方面——具體內(nèi)容的設(shè)計上都獨具匠心!耙驍(shù)與倍數(shù)”的認識與原教材有以下兩方面的區(qū)別1新課標教材不再提“整除”的概念也不再是從除法算式的觀察中引入本單元的學習而是反其道而行之通過乘法算式來導入新知。2“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在教師必須要認真研讀教材深入了解編者意圖才能夠正確、靈活駕馭教材。因此我通過學習教參了解到以下信息學生的原有知識基礎(chǔ)是在已經(jīng)能夠區(qū)分整除與余數(shù)除法對整除的含義有比較清楚的認識不出現(xiàn)整除的定義并不會對學生理解其他概念產(chǎn)生任何影響。因此本教材中刪去了“整除”的數(shù)學化定義。
2、相似概念的對比。1彼“因數(shù)”非此“因數(shù)”。在同一個乘法算式中兩者都是指乘號兩邊的.整數(shù)但前者是相對于“積”而言的與“乘數(shù)”同義可以是小數(shù)。而后者是相對于“倍數(shù)”而言的與以前所說的“約數(shù)”同義說“X是X的因數(shù)”時兩者都只能是整數(shù)。2“倍數(shù)”與“倍”的區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣。我們可以說“1.5是0.3的5倍”但不能說”1.5是0.3的倍數(shù)”。我們在求一個數(shù)的倍數(shù)時運用的方法與“求一個數(shù)的幾倍是多少”是相同的只是這里的“幾倍”都是指整數(shù)倍。
二、教法的運用實踐
1、“因數(shù)與倍數(shù)”概念的數(shù)的應用范圍的規(guī)定直接運用講述法。對與本知識點的概念是人為規(guī)定的一個范圍因此對于學生和第一接觸的印象是沒有什么可以探究和探索的要求而且給學生一個直觀的感受。“因數(shù)與倍數(shù)”的運用范圍就是在非0自然數(shù)的范疇之內(nèi)與小數(shù)無關(guān)與分數(shù)無關(guān)與負數(shù)無關(guān)雖沒學但有小部分學生了解。同時強調(diào)——非0——因為0乘任何數(shù)得00除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗就是對于數(shù)學當中規(guī)定性的概念用直接講述法讓學生清晰明確。因此用直接導入法先復習自然數(shù)的概念再寫出乘法算式3×4=12說明在這個算式中3和4是12的因數(shù)12是3和4的倍數(shù)。
2、在進行延續(xù)性教學中可以讓學生探究怎么樣找一個數(shù)的因數(shù)和倍數(shù)在板書要講究一個格式與對稱性這樣在對學生發(fā)現(xiàn)倍數(shù)與因數(shù)個數(shù)的有限與無限的對比再就是發(fā)現(xiàn)一個數(shù)的因數(shù)的最小因數(shù)是1最大因數(shù)是其本身。
【篇三:因數(shù)和倍數(shù)2教學反思】
因數(shù)和倍數(shù)是五年級下冊第二單元的教學內(nèi)容,由于知識較為抽象,學生不易理解,因此我在教學時做到了以下幾點:
(1)密切聯(lián)系生活中的數(shù)學,幫助學生理解概念間的關(guān)系。
今天在教學前,我讓學生學說話,就是培養(yǎng)學生對語言的概括能力和對事物間關(guān)系的理解能力。于是我利用課前談話讓學生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學生感受到了數(shù)學與生活的聯(lián)系,又幫助學生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學生更深一步的認識倍數(shù)與因數(shù)的關(guān)系,
。2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。我改變了例題,用杯子翻動的次數(shù)與杯口朝上的次數(shù)之間的.關(guān)系,列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學習如何找一個數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。這樣不僅溝通了乘法和除法的關(guān)系,也讓學生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
(3)根據(jù)學生的實際情況,教學找一個數(shù)的因數(shù)的方法,雖然學生不能有序地找出來,但是基本能全部找到,再此基礎(chǔ)上讓體會有序找一個數(shù)因數(shù)的辦法學生容易接受,這樣的設(shè)計由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。
。4)設(shè)計有趣游戲活動,擴大學生思維的空間,培養(yǎng)學生發(fā)散思維的能力。譬如“找朋友”游戲,答案不唯一,學生思考問題的空間很大,培養(yǎng)了學生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學生判斷自己的學號數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),如果學生的學號數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來。最后問能不能想個辦法讓所有的學生都站起來。出示地卡片應該是幾,找的朋友應該是倍數(shù)還是因數(shù)?學生面對問題積極思考,享受了數(shù)學思維的快樂。
因數(shù)和倍數(shù)教學反思14
《數(shù)學課程標準》倡導“自主——合作——探究”的學習方式,強調(diào)學習是一個主動建構(gòu)的過程。因此,應注重培養(yǎng)學生學習的獨立性和自主性,讓學生在教師的指導下主動地參與學習,親歷學習過程,從而學會學習。
1、以“理”為基點,將學生帶入新知的學習。
概念教學重在“理”。學生理解“因數(shù)”、“倍數(shù)”概念有個逐步形成的過程,為了促進這一意識建構(gòu),我先讓學生通過自己已有的認知結(jié)構(gòu),經(jīng)過“排列整齊的隊形——形成乘法算式——抽象出倍數(shù)因數(shù)概念——再由乘法或除法算式——深化理解”,使學生在輕松、簡約并充滿自信中學習新知,在數(shù)與形的結(jié)合中,深刻體驗因數(shù)倍數(shù)的概念。
2、以“序”為站點,培養(yǎng)學生的思維方式。
概念形成得在“序”。學生對于概念的形成是一個由表及里、由形象到抽象的過程。當學生對概念有了初步認識后,讓學生探索如何找一個數(shù)的倍數(shù)的因數(shù),這既是對概念內(nèi)涵的深化,也是對概念外延的探索。這時思維和排列上的有序性是教學的關(guān)鍵,也是本節(jié)課的深度之一。在教學時,分為兩個層次:第一個層次是讓學生在已有的知識基礎(chǔ)上找12的因數(shù),并在交流中,經(jīng)歷了一個從無序到有序、從把握個別到統(tǒng)攬整體、從思維混沌走向思維清晰的過程。抓住教學的.難點“如何找全,并且不重復不遺漏”,讓學生自由地說,再引導學生說出想的過程,并加以調(diào)整。表面看來僅僅是組合的變換,實質(zhì)上是思維的提高和方法的優(yōu)化,并讓學生在對比中感受“一對一對”找因數(shù)的方法,經(jīng)歷了互相討論、相互補充、對比優(yōu)化的過程。第二個層次是在學生已經(jīng)有了探索一個數(shù)因數(shù)的方法,具備了一定有序思考的能力之后,啟發(fā)學生“能像找因數(shù)那樣有序的找一個數(shù)的倍數(shù)”,提高了學生的思維能力。
3、以“思”為落腳點,培養(yǎng)學生發(fā)現(xiàn)思考的能力。
概念的生成重在“思”,規(guī)律的形成重在“觀察”,教師如果能在此恰到好處的“引導”,一定會讓學生收獲更多,感悟更多。因此設(shè)計時,我借助了“找自己學號的因數(shù)和倍數(shù)”這個活動,在大量的有代表性的例子面前,在學生親自的嘗試中,在有目的的對比觀察中,學生的思維被逐步引導到了最深處,知道了一個數(shù)的最大因數(shù)和最小倍數(shù)都是它本身,反過來也是正確的。教師在這里提供了有效的素材,可操作的素材,促使學生對所學的概念進行了有意義的建構(gòu),促進和發(fā)展了他們的思維。
因數(shù)和倍數(shù)教學反思15
《倍數(shù)和因數(shù)》這一章是人教版五年級下冊的內(nèi)容。由于這一單元概念較多,學生要掌握的知識較多,所以掌握起來較難。我上的這節(jié)復習課分以下四部分。
1、先從自然數(shù)入手,由自然數(shù)的概念讓學生總結(jié)自然數(shù)的個數(shù)是無限的,最小的自然數(shù)是0,沒有最大的自然數(shù)。又根據(jù)生活實際試著讓學生把自然數(shù)分成奇數(shù)和偶數(shù)。點名說出什么數(shù)是奇數(shù),什么數(shù)是偶數(shù),是根據(jù)什么分的`,這樣有一種水到渠成的感覺。
2、由偶數(shù)都是2的倍數(shù),復習2的倍數(shù)的特征,5的倍數(shù)的特征,3的倍數(shù)的特征。學生邊復習老師邊板書,由于大家共同協(xié)作,很快找出一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。然后總結(jié)同時能被2、3整除的數(shù)就是6的倍數(shù),引出倍數(shù)和因數(shù)的意義。讓學生隨便說一個算式,說明誰是誰的倍數(shù),誰是誰的因數(shù)”,學生列舉乘法或除法算式,準確表達倍數(shù)與因數(shù)的關(guān)系,加深了學生對倍數(shù)與因數(shù)相互依存關(guān)系的理解和認識。
3、隨便給出一個數(shù)找出它的所有因數(shù),得出一個數(shù)最小的因數(shù)是1,最大的因數(shù)是它身。根據(jù)因數(shù)的個數(shù)把自然數(shù)分成質(zhì)數(shù)、合數(shù)和1。復習什么是質(zhì)數(shù),什么是合數(shù)。最小的質(zhì)數(shù)是幾,最小的合數(shù)是幾。20以內(nèi)的質(zhì)數(shù)。為什么1既不是質(zhì)數(shù)也不是合數(shù)。這是根據(jù)什么分類的呢?任意給出一個數(shù)判斷是質(zhì)數(shù)還是合數(shù),若是合數(shù)讓學生分解質(zhì)因數(shù)。先說分解質(zhì)因數(shù)的方法,然后點名學生板演,教師巡視。指出錯誤。
4、帶領(lǐng)學生一起做練習,讓學生邊做邊說思路。這節(jié)課比較好的地方是條理清晰、內(nèi)容全面;練習的設(shè)計不僅緊緊圍繞教學重點,而且注意到了練習的層次性、趣味性。
不足之處是我缺乏個性化的語言評價激活學生的情感,以后需多努力。
【因數(shù)和倍數(shù)教學反思】相關(guān)文章:
倍數(shù)和因數(shù)的教學反思03-06
因數(shù)和倍數(shù)的教學反思02-14
《3的倍數(shù)的特征》教學反思07-29