亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

因數(shù)和倍數(shù)教學(xué)反思

時間:2024-08-24 15:10:05 教學(xué)反思 我要投稿

因數(shù)和倍數(shù)教學(xué)反思匯編15篇

  身為一名剛到崗的教師,課堂教學(xué)是我們的任務(wù)之一,通過教學(xué)反思可以很好地改正講課缺點,教學(xué)反思應(yīng)該怎么寫才好呢?下面是小編精心整理的因數(shù)和倍數(shù)教學(xué)反思,僅供參考,歡迎大家閱讀。

因數(shù)和倍數(shù)教學(xué)反思匯編15篇

因數(shù)和倍數(shù)教學(xué)反思1

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。本節(jié)課又是這一單元的的教學(xué)重點。為讓學(xué)生很好的感受因數(shù)與倍數(shù)的意義,能夠熟練的找出一個數(shù)的因數(shù)與倍數(shù),靈活地處理了教材,分為兩課時進(jìn)行。第一課時只讓學(xué)生認(rèn)識了因數(shù)和倍數(shù)的意義及找一個數(shù)的因數(shù)的方法,效果不錯。

  一、設(shè)計情境,引起思考。

  改變教材的情境圖,用學(xué)生有興趣的情意引入課題:有12個小方塊,要求擺成一個長方體,你想怎么擺。引起學(xué)生思考,學(xué)生想到有3種擺法,每種擺法怎么列式求出一共有多少方塊?由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。從而理解決因數(shù)與倍數(shù)的`意義。

  二、引導(dǎo)學(xué)生探求找因數(shù)的方法,使探索有方向。

  如何找一個數(shù)的因數(shù)是這節(jié)課的重點,首先放手讓學(xué)生找出24的因數(shù),由于個人經(jīng)驗和思維的差異,出現(xiàn)了不同的方法與答案,在探索這些方法和答案的過程中,學(xué)生明白了如何求出一個數(shù)的因數(shù)的方法,從而掌握了知識點。

  根據(jù)學(xué)生的學(xué)習(xí)特點,靈活的應(yīng)用教材,使之服務(wù)于教學(xué),讓教學(xué)有效的進(jìn)行,才能達(dá)到教學(xué)的目的。

因數(shù)和倍數(shù)教學(xué)反思2

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這局部內(nèi)容同學(xué)初次接觸,對于同學(xué)來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨存在,不是很好理解。我通過捕獲生活與數(shù)學(xué)之間的聯(lián)系,協(xié)助同學(xué)理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意和小朋友們玩了一個小游戲。用“ 我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。同學(xué)對相互依存理解了,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下面幾個細(xì)節(jié)來協(xié)助同學(xué)理解因數(shù)和倍數(shù)的概念。

  一是教材雖然不是從過去的整除定義動身,而是通過一個乘法算式來引出因數(shù)和倍數(shù)的概念,但實質(zhì)上任是以“整除”為基礎(chǔ)。所以我上課時特別注意讓同學(xué)明白什么情況下才干討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明。二是要同學(xué)注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的'整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學(xué)過的“倍”的聯(lián)系與區(qū)別。“倍”的概念比“倍數(shù)”要廣。可以說“15是3的5倍”,也可以說“1。5是0。3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1。5是0。3的倍數(shù)”。我在課堂上反復(fù)強(qiáng)調(diào),協(xié)助小朋友們認(rèn)真理解辨析,所以同學(xué)一節(jié)課下來對這組概念就理解透徹了,不會模糊了。

因數(shù)和倍數(shù)教學(xué)反思3

  XXXX小學(xué) XXXXX

  教學(xué)內(nèi)容:教材例1、例2

  教學(xué)目標(biāo)

  1.知識與技能:讓學(xué)生初步理解因數(shù)和倍數(shù)的概念,掌握找因數(shù)和倍數(shù)的方法。學(xué)會用列舉法找一個數(shù)的因數(shù)和倍數(shù)。

  2.過程與方法:借助直觀圖,先引導(dǎo)學(xué)生觀察后列出乘法算式,最后結(jié)合乘法算式來理解因數(shù)與倍數(shù)的概念。

  3.情感、態(tài)度與價值觀:理解因數(shù)和倍數(shù)的意義能及兩者之間相互依存的關(guān)系。

  教學(xué)重點:理解因數(shù)和倍數(shù)的概念。

  教學(xué)難點:掌握求一個數(shù)的因數(shù)和倍數(shù)的方法。

  教學(xué)方法:啟發(fā)式教學(xué)法、指導(dǎo)自主學(xué)習(xí)法。

  教學(xué)準(zhǔn)備:多媒體。

  教學(xué)過程:

  一、新課導(dǎo)入:

  1.出示教材第5頁例1。

  12÷2=6 9÷5=1.830÷6=5 2÷3=0.6

  26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7

  (1)觀察: 引導(dǎo)觀察例1中的算式,你發(fā)現(xiàn)了什么?(都是除法算式)

  (2)分類:你能把上面的除法算式分類嗎?

  學(xué)生分類后,教師組織學(xué)生交流,引導(dǎo)學(xué)生根據(jù)是否整除分為以下兩類

  第一類 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二類 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25

  2.引入課題。這節(jié)課我們就來學(xué)習(xí)有關(guān)數(shù)的整除的相關(guān)知識。(板書課題:因數(shù)和倍數(shù))

  二、探索新知:

 。ㄒ唬⒚鞔_因數(shù)與倍數(shù)的意義。(教學(xué)例1)

  1. 教師引導(dǎo)。教師指出:在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們

  就說被除數(shù)是除數(shù)和商的倍數(shù),除數(shù)和商是被除數(shù)的因數(shù)。例如:12÷2=6,我們說12是2和6的倍數(shù),2和6是12的因數(shù)。

  2. 學(xué)生嘗試。

  教師讓學(xué)生說一說第一類的每個算式中,誰是誰的因數(shù)?誰是誰的倍數(shù)?先同桌互相說一說,再組織全班交流。

  3. 深化認(rèn)識。師:通過剛才的說一說活動,你發(fā)現(xiàn)了什么?

  引導(dǎo)學(xué)生體會:因數(shù)和倍數(shù)雖是兩個不同的概念,但又是相互依存的,二者不能單獨存在。我們不能說誰是因數(shù),誰是倍數(shù),而應(yīng)該說誰是誰的因數(shù),誰是誰的倍數(shù)。例如,30÷6=5,30是6和5的倍數(shù),6和5是30的因數(shù)。教師強(qiáng)調(diào),并讓學(xué)生注意:為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括O)。

  4. 即時練習(xí)。指導(dǎo)學(xué)生完成教材第5頁“做一做”。

  小結(jié):如果a÷b =c(a,b,c均是不為0的自然數(shù)),那么a就是b和c的倍數(shù),b和c是a的因數(shù)。因數(shù)和倍數(shù)是相互依存的。

  (二)、探索找一個數(shù)因數(shù)的方法。(教學(xué)例2)

  1. 出示例2:18的因數(shù)有哪幾個?

  (1) 學(xué)生獨立思考。

  師:根據(jù)因數(shù)和倍數(shù)的意義,想一想18除以哪些整數(shù)的結(jié)果是整數(shù)。

  18÷1=18,l和18是18的因數(shù);18÷2=9, 2和9是18的因數(shù);18÷3=6, 3和6是18的因數(shù)。引導(dǎo)學(xué)生把18的因數(shù)按從小到大的順序排列,每兩個因數(shù)之間用逗號隔開,全部寫完后用句號結(jié)束,即18的因數(shù)有:1,2,3,6,9 ,18。

  (2)小組合作交流。交流時教師要讓學(xué)生說明找的方法,引導(dǎo)學(xué)生認(rèn)識:只要想18除以哪些整數(shù)的結(jié)果是整數(shù),并且要從1開始,一對一對地找,避免遺漏。如果學(xué)生還有其他想法,只要合理,教師都應(yīng)給予肯定。

  (3)采用集合圖的方法。

  教師指出也可用右面的集合圖來表示18的全部因數(shù)。明確:用圖示法表示18的因數(shù)時,先畫一個橢圓,在橢圓的上面寫上“18的因數(shù)”,再把18的因數(shù)按從小到大的順序有規(guī)律地寫在橢圓里,每兩個因數(shù)之間也用逗號隔開,全部寫完后不加句號。

  (4)練習(xí)。讓學(xué)生找出30的因數(shù)和36的因數(shù),并組織交流。

  30的因數(shù)有1,2,3,5,6,10,15,30。

  36的因數(shù)有1,2,3,4,6,9,12,18,36。

  三、鞏固練習(xí)

  指導(dǎo)學(xué)生完成教材“練習(xí)二”第1、6題。學(xué)生獨立完成全部練習(xí)后教師組織學(xué)生進(jìn)行集體證正。

  四、課堂小結(jié)

  師:通過本節(jié)課的學(xué)習(xí),你有什么收獲?

  板書設(shè)計:

  因數(shù)和倍數(shù)

  12÷2=6 12是2和6的倍數(shù)

  2和6是12的因數(shù) 18的因數(shù)有1,2,3,6,9,18。

  一個數(shù)的`因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。

  作業(yè):教材第7頁“練習(xí)二”第2(1)題。

  第二單元:因數(shù)和倍數(shù)

  第二課時:因數(shù)與倍數(shù)(2)

  教學(xué)內(nèi)容:教材P6例3及練習(xí)二第2(1)、3~8題。

  教學(xué)目標(biāo):

  知識與技能:通過學(xué)習(xí),使學(xué)生能自主探究,找出求一個數(shù)的倍數(shù)的方法。 過程與方法:結(jié)合具體情境,使學(xué)生進(jìn)一步認(rèn)識自然數(shù)之間存在因數(shù)和倍數(shù)的關(guān)系,掌握求一個數(shù)的因數(shù)和倍數(shù)的方法。

  情感、態(tài)度與價值觀:初步學(xué)會從數(shù)學(xué)的角度提出問題、理解問題,并能用所學(xué)知識解決問題。在解決問題的過程中,培養(yǎng)學(xué)生概括、分析和比較的能力,使學(xué)生體會數(shù)學(xué)知識的內(nèi)在聯(lián)系。

  教學(xué)重點:掌握求一個數(shù)的倍數(shù)的方法。

  教學(xué)難點:理解因數(shù)和倍數(shù)兩者之間的關(guān)系。

  教學(xué)方法:啟發(fā)式教學(xué)法、指導(dǎo)自主學(xué)習(xí)法。

  教學(xué)準(zhǔn)備:多媒體。

  教學(xué)過程:

  一、復(fù)習(xí)導(dǎo)入

  10,28,42的因數(shù)有哪些?你是用什么方法找出這些數(shù)的因數(shù)個數(shù)的?一個數(shù)的因數(shù)中,最大的是幾?最小的是幾?

  二、探索新

  1.探索找倍數(shù)的方法。(教學(xué)例3)

  出示例3:2的倍數(shù)有哪些?

  師:你會找2的倍數(shù)嗎?給你們1分鐘的時間,看誰寫得又對、又快、又多!準(zhǔn)備好了嗎?開始!

  師:時間到,你寫了多少個2的倍數(shù)?生1:15個。生2:24個。

  師:大家都是用的什么方法呢?

  生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。

  生2:我也是用乘法,用2去乘1、乘2……

  師:哪些同學(xué)也是用乘法做的?

  師:你們都是用2去乘一個數(shù),所得的積就是2的倍數(shù)。還有不同的方法嗎?

  生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。

  師:很好!如果給你更長的時間,你能把2的倍數(shù)全部寫出來嗎?

  師:為什么?(因為2的倍數(shù)有無數(shù)個)

  師:怎么辦?(用省略號)

  師:通過交流,你有什么發(fā)現(xiàn)?

  引導(dǎo)學(xué)生初步體會2的倍數(shù)的個數(shù)是無限的。

  追問:你能用集合圖表示2的倍數(shù)嗎?

  學(xué)生填完后,教師組織學(xué)生進(jìn)行核對。

  (4)即時練習(xí)。讓學(xué)生找出3的倍數(shù)和5的倍數(shù),并組織交流。學(xué)生舉例時可能會產(chǎn)生錯誤,教師要引導(dǎo)學(xué)生根據(jù)錯例進(jìn)行適時剖析。

  4.反思提煉。師:從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?

  先讓學(xué)生在小組內(nèi)交流,再組織全班集體交流,通過全班交流,引導(dǎo)學(xué)生認(rèn)識以下三點:

  (1)一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。

  (2)一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。

  (3)一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。

  三、鞏固提升

  1.指導(dǎo)學(xué)生完成教材第7~8頁“練習(xí)二”第4、5、6、7題。

  學(xué)生獨立完成全部練習(xí)后教師組織學(xué)生進(jìn)行集體證正。

  集體訂正時,教師著重引導(dǎo)學(xué)生認(rèn)識以下幾點:

  (1)第4題“15的因數(shù)有哪些?”和“15是哪些數(shù)的倍數(shù)”答案是一樣的。

  (2)第5題中的第(2)小題是錯的,因為一個數(shù)的倍數(shù)的個數(shù)是無限的,第(4)小題也是錯的,因為在研究因數(shù)和倍數(shù)時,我們所說的數(shù)指的是自然數(shù),不含小數(shù)。

  (3)思考題:兩數(shù)如果都是7(或9)倍數(shù),它們的和也一定是7(或9)的倍數(shù),即如果兩數(shù)都是n的倍數(shù),它的和也是n的倍數(shù)。

  2.利用求倍數(shù)的方法解決生活中的實際問題

  出示:媽媽買來幾個西瓜,2個2個地數(shù),正好數(shù)完,5個5個地數(shù),也正好數(shù)完。這些西瓜最少有多少個?

  理解題意,分析解答。

  教師提示“2個2個地數(shù),正好數(shù)完,說明西瓜的個數(shù)是2的倍數(shù),5個5

因數(shù)和倍數(shù)教學(xué)反思4

  《因數(shù)和倍數(shù)》這一教學(xué)內(nèi)容是一節(jié)概念課。教材在引入因數(shù)和倍數(shù)的概念時是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。數(shù)學(xué)中的“起始概念”一般比較難教,我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩了難度,這一環(huán)節(jié)的教學(xué),我覺得還是收到了預(yù)設(shè)的效果。

  能不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù),是本課的教學(xué)難點。在教學(xué)中,我是這樣設(shè)計的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,教師緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學(xué)生說出方法后,為了讓學(xué)生探索出找一個因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報時,能借此解決如何有序、不重復(fù)、不遺漏地找出一個數(shù)的因數(shù)。但在實際交流時,學(xué)生的方法出現(xiàn)了兩種意見,并且各抒己見,因為15的因數(shù)只有兩對,無論怎樣找都不會遺漏。作為老師,我這時沒有把我的意見強(qiáng)加給學(xué)生,而是以男女生比賽的形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運(yùn)用從小到大一對一對地找很快找出這兩個數(shù)的因數(shù),另一部分卻在無序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù)的`方法,學(xué)生就能夠很好地接受并掌握。同時在練習(xí)中我設(shè)計了其中一道題是猜我的電話號碼,激發(fā)起學(xué)生的興趣,我是這樣想的:重在培養(yǎng)學(xué)生善于聯(lián)想,勇于探索的習(xí)慣。由個體現(xiàn)象聯(lián)想到同類現(xiàn)象并能深入探索,這是創(chuàng)造的源泉。雖然在這個環(huán)節(jié)上花了比較多的時間,但對學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進(jìn)作用。

  這節(jié)課另一個給我感觸最深的是:就是在引導(dǎo)學(xué)生歸納總結(jié)出一個數(shù)的因數(shù)的特點時,由于及時跟上個性化的語言評價,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來。借助這一學(xué)習(xí)熱情讓學(xué)生自己探索找一個數(shù)的倍數(shù)的方法。教師相信學(xué)生,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點。這一環(huán)節(jié)教學(xué)的成功,也使我改變了教學(xué)的觀念——適時放手,會看到學(xué)生更精彩的一面。以后教學(xué)需大膽相信學(xué)生,深入鉆研教材,既備教材又了解學(xué)情,作到收放自如,充分發(fā)揮學(xué)生的潛能。

  由于本節(jié)課的容量比較大,練習(xí)題設(shè)計綜合性比較強(qiáng),學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應(yīng)努力改進(jìn)教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。

因數(shù)和倍數(shù)教學(xué)反思5

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,在以往的教材中,都是通過除法算式來引出整除的概念,而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。對于學(xué)生來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)是一對相互依存的概念,不能單獨存在,不是很好理解。我通過生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意舉一些生活中的實例來幫助學(xué)生對相互依存的理解,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下面幾個細(xì)節(jié)來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。

  1、是我上課時特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。

  2、是要學(xué)生注意區(qū)分乘法算式中的"因數(shù)"和本單元中的"因數(shù)"的'聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對"積"而言的,與"乘數(shù)"同義,可以是小數(shù),而后者是相對于"倍數(shù)"而言的,兩者都只能是整數(shù)。

  3、是要注意區(qū)分"倍數(shù)"與前面學(xué)過的"倍"的聯(lián)系和區(qū)別。"倍"的概念比"倍數(shù)"要廣?梢哉f"15是3的倍數(shù)",也可以說"1.5是0.3的5倍",但我們只能說"15是3的倍數(shù)",卻不能說"1.5是0.的倍數(shù)"。在課堂中反復(fù)強(qiáng)調(diào),幫助學(xué)生認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,就不會模糊了。


因數(shù)和倍數(shù)教學(xué)反思6

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨存在,不是很好理解。我通過捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意和孩子們玩了一個小游戲。用“我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。學(xué)生對相互依存理解了,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下面幾個細(xì)節(jié)來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。

  一是教材雖然不是從過去的整除定義出發(fā),而是通過一個乘法算式來引出因數(shù)和倍數(shù)的概念,但本質(zhì)上任是以“整除”為基礎(chǔ)。所以我上課時特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明.二是要學(xué)生注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學(xué)過的“倍”的聯(lián)系與區(qū)別。“倍”的概念比“倍數(shù)”要廣。可以說“15是3的5倍”,也可以說“1.5是0.3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1.5是0.3的倍數(shù)”。我在課堂上反復(fù)強(qiáng)調(diào),幫助孩子們認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,不會模糊了。

  《倍數(shù)和因數(shù)》教學(xué)反思2

  本單元的重點是讓學(xué)生掌握因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)等概念,以及它們之間的聯(lián)系和區(qū)別,內(nèi)容較為抽象,為讓學(xué)生理清各概念間的前后承接關(guān)系,達(dá)到融會貫通的程度,在學(xué)習(xí)《因數(shù)和倍數(shù)》這節(jié)課時,我注意做到以下幾點:

  一、加強(qiáng)對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念。

  因數(shù)和倍數(shù)是最基本的兩個概念,理解了因數(shù)和倍數(shù)的含義對于一個數(shù)的因數(shù)的個數(shù)是有限的.、倍數(shù)的個數(shù)是無限的等結(jié)論自然也就掌握了。因此,教學(xué)時,我引導(dǎo)學(xué)生觀察生活中的情景圖引出乘法算式2×6=12,讓學(xué)生在多說中體會、理解乘法算式中兩數(shù)之間的因數(shù)與倍數(shù)的關(guān)系。學(xué)生在交流中輕松地理解了兩數(shù)之間因數(shù)與倍數(shù)之間的關(guān)系,同時引出12的所有因數(shù),讓孩子感受到用乘法算式找一個數(shù)的因數(shù)的方法,為后面學(xué)習(xí)找一個數(shù)的因數(shù)做好鋪墊。

  二,引導(dǎo)孩子在自主探究中學(xué)習(xí)新知

  在學(xué)習(xí)找一個數(shù)的因數(shù)時,讓孩子們動腦思考,小組合作中探究方法,孩子們想出的方法很多,充分發(fā)揮了他們智慧,然后在老師的引導(dǎo)中優(yōu)化了方法,孩子們在體驗中逐步掌握了方法,學(xué)得深刻,方法熟練。

  三、注意培養(yǎng)學(xué)生的抽象思維能力

  教學(xué)中,注重學(xué)生的動腦思考、觀察,讓學(xué)生在自主的探究學(xué)習(xí)中表達(dá)自己的想法,通過一些特殊的例子,引導(dǎo)學(xué)生用數(shù)學(xué)的語言總結(jié)概括一些概念,逐步形成從特殊到一般的歸納推理能力。

因數(shù)和倍數(shù)教學(xué)反思7

  《公倍數(shù)和公因數(shù)》的教學(xué)已接近尾聲,但練習(xí)反饋,部分學(xué)生求兩個數(shù)的最大公因數(shù)和最小公倍數(shù)錯誤百出,細(xì)細(xì)思量,用課本上列舉的方法,真的很難一下子準(zhǔn)確找到最大公因數(shù)或最小公倍數(shù)。如:8和10的最小公倍數(shù),有學(xué)生寫80,25和50的'最大公因數(shù)有學(xué)生寫5!胰枂枌W(xué)生找兩個數(shù)公倍數(shù)和最小公倍數(shù),或者兩個數(shù)的公因數(shù)和最大公因數(shù)的感受,他們都說“煩”,“很煩”,“太麻煩了”。

  在了解了學(xué)生的感受以后,我又重新通過練習(xí)概括出了一些特殊情況:

 。1)兩個數(shù)是倍數(shù)關(guān)系的,這兩個數(shù)的最小公倍數(shù)是其中較大的一個數(shù),最大公因數(shù)是其中較小的一個數(shù);

 。2)三種最大公因數(shù)是1,最小公倍數(shù)是兩數(shù)乘積的情況(“互質(zhì)數(shù)”這個概念學(xué)生沒有學(xué)到):

  ①兩個不同的素數(shù);

  ②兩個連續(xù)的自然數(shù);

 、1和任何自然數(shù)。

  另外,我又結(jié)合教材后面的“你知道嗎?”,指導(dǎo)了一下用短除法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)的方法。在完成練習(xí)時,讓學(xué)生根據(jù)情況,用自己喜歡的方法來求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)。這樣,給學(xué)生結(jié)合題目中兩個數(shù)的特點,自主選擇方法的空間,學(xué)生比較喜歡。

  想來想去,還是真得很懷念舊教材上的“短除法”。

因數(shù)和倍數(shù)教學(xué)反思8

  教學(xué)目標(biāo):

  1、使學(xué)生結(jié)合具體情境初步理解倍數(shù)和因數(shù)的含義,初步理解倍數(shù)和因數(shù)相互依存的關(guān)系。

  2、使學(xué)生依據(jù)倍數(shù)和因數(shù)的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數(shù)倍數(shù)和因數(shù)的方法,能在1—100的自然數(shù)中找出10以內(nèi)某個數(shù)的所有倍數(shù),找出100以內(nèi)某個數(shù)的所有因數(shù)。

  3、使學(xué)生在認(rèn)識倍數(shù)和因數(shù)以及找一個數(shù)的倍數(shù)和因數(shù)的過程中進(jìn)一步感受數(shù)學(xué)知識的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。

  教學(xué)重點:

  理解因數(shù)和倍數(shù)的含義。

  教學(xué)難點:

  探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。

  教學(xué)過程:

  一、認(rèn)識倍數(shù)和因數(shù)

  1、操作活動。

 。1)小黑板出示要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法表示出來。

 。2)整理:全班交流,分別板書4×3=1212×1=126×2=12

  3、學(xué)習(xí)“倍數(shù)”和“因數(shù)”的概念

 。1)談話:剛才同學(xué)們通過不同的擺法擺出了不同的長方形,而且還寫出了3個不同的乘法算式,今天,我們就一起來研究乘法算式中,數(shù)與數(shù)之間的關(guān)系。(出示:倍數(shù)和因數(shù))

 。2)根據(jù)4×3=12,你能說出誰是誰的倍數(shù)嗎?12是4的幾倍?12是3的幾倍?你能說出誰是誰的因數(shù)嗎?

  板書:12是4的倍數(shù),12是3的倍數(shù)

  4是12的因數(shù),3是12的因數(shù)

 。3)根據(jù)6×2=12,你能說出哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)嗎?根據(jù)12×1=12呢?

  (4)練一練:從3×6=1836÷4=9中任選一題說一說。

  為什么4和9是36的因數(shù)?

  4、小結(jié):根據(jù)乘法或除法算式我們可以確定誰是誰的因數(shù),誰是誰的倍數(shù)。為了方便,在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù)。

  二、探索找一個數(shù)的.倍數(shù)的方法

  1、談話:在剛才的談話中,我們知道了12是3的倍數(shù),18也是3的倍數(shù)

  提問:3的倍數(shù)只有這兩個嗎?

  你還能再寫出幾個3的倍數(shù)?

  你是怎樣想的?

  你能按照從小到大的順序有條理地說出3的倍數(shù)嗎?

  你能把3的倍數(shù)全都說完嗎?

  可以怎樣表示?

  2、議一議:你有沒有發(fā)現(xiàn)找3的倍數(shù)的小竅門?(在找3的倍數(shù)時,可以按從小到大的順序,依次用1、2、3……與3相乘,每次乘得的積都是3的倍數(shù))

  3、試一試:

 。1)2的倍數(shù)有

 。2)5的倍數(shù)有

  4、想一想:觀察上面幾個例子,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?

  5、練一練:想想做做2

  三、探索求一個數(shù)的因數(shù)的方法

  1、提出問題:你能找出36的所有因數(shù)嗎?

  2、四人小組合作完成

  3、交流整理找一個數(shù)的因數(shù)的方法。

  4、試一試(既要一組一組地找,又要按次序排列)

  15的因數(shù)

  16的因數(shù)

  5、比一比:根據(jù)上面幾個例子,你發(fā)現(xiàn)一個數(shù)的因數(shù)有什么特點?和同桌說一說

  6、練一練:想想做做

  四、課堂總結(jié)。

  1、這節(jié)課,你有什么收獲?

  五、鞏固提高

  1、判斷

 。1)12是倍數(shù),3是因數(shù)

 。2)6既是2的倍數(shù),又是3的倍數(shù)。

 。3)25以內(nèi)4的倍數(shù)有:4,8,12,16,20,24……

 。4)6的最小倍數(shù)是12,12的最小因數(shù)是6。

  2、看誰反應(yīng)快

  游戲準(zhǔn)備:學(xué)生按學(xué)號編成連續(xù)的自然數(shù)。(課前)

  游戲規(guī)則:凡是學(xué)號符合以下要求的,請站起來,看誰反應(yīng)快?

  (1)誰的學(xué)號是5的倍數(shù)

 。2)誰的學(xué)號是24的因數(shù)

  (3)誰的學(xué)號是30的因數(shù)

 。4)誰的學(xué)號是1的倍數(shù)

  反思:

  在教學(xué)過程中出現(xiàn)了一個問題:是在提問:“根據(jù)4×3=12,你能說出誰是誰的倍數(shù)嗎?12是4的幾倍?12是3的幾倍?你能說出誰是誰的因數(shù)嗎?”時,發(fā)現(xiàn)學(xué)生根本不能回答,本來以為學(xué)生在三年級的時候應(yīng)該對這部分的內(nèi)容有所了解,能順利回答,但是在課后與三年級的教師交流后發(fā)現(xiàn)沒有這方面的內(nèi)容安排。由此,我想:新課程實施了五年,我其實還是門外漢,還不能很好地適應(yīng)新課程的要求,新課程的教材編排具有連續(xù)性,而老版本經(jīng)常是一個知識點安排在一起,注重深度。看來教師不光要關(guān)心自己年級的教材內(nèi)容,還得知道整個教材編排體系,知道各個年級知識點之間的聯(lián)系。這樣才能更好地完成教學(xué)任務(wù),使學(xué)生得到應(yīng)有的發(fā)展而不是降低要求的發(fā)展或者是被強(qiáng)行提高要求的發(fā)展。

因數(shù)和倍數(shù)教學(xué)反思9

  教學(xué)內(nèi)容:青島版教材小學(xué)數(shù)學(xué)五年級上冊88—91頁。

  教學(xué)目標(biāo):

  1、使學(xué)生初步認(rèn)識因數(shù)和倍數(shù)的含義,探索求一個數(shù)的因數(shù)或倍數(shù)的方法,發(fā)現(xiàn)一個數(shù)的因數(shù)、倍數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征。

  2、使學(xué)生在認(rèn)識因數(shù)和倍數(shù)以及探索一個數(shù)的因數(shù)或倍數(shù)的過程中,進(jìn)一步體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平,對數(shù)學(xué)產(chǎn)生好奇心,培養(yǎng)學(xué)習(xí)興趣。

  教學(xué)重點:理解因數(shù)和倍數(shù)的意義,探索求一個數(shù)因數(shù)或倍數(shù)的方法。

  教學(xué)難點:探索求一個數(shù)因數(shù)或倍數(shù)的方法。

  教具準(zhǔn)備:多媒體課件、學(xué)生練習(xí)題

  教學(xué)過程:

  一、談話導(dǎo)入。

  師:同學(xué)們看這是什么?

  生:小正方形。

  師:想不想知道王老師給大家?guī)砹硕嗌賯這樣的小正方形?

  生:想。

  師:多少個?

  生:12個。

  師:想一想你能不能把這12個完全一樣的小正方形拼成一個長方形呢?

  生:能。

  【設(shè)計意圖】:以學(xué)生熟悉情景引入,激發(fā)學(xué)生的好奇心。

  二、教學(xué)因數(shù)和倍數(shù)的意義

  師:增加一點難度,用一道算式說明你的想法,讓其他同學(xué)猜一猜你是怎么擺的,好嗎?

  生:好!

  學(xué)生匯報:

  生1:1×12=12

  師:他是怎么擺的?

  生:一行擺1個,擺了12行;也可以一行擺12個,擺1行。

  課件出示擺法。

  師:把第一種擺法豎起來就和第二種擺法一樣了,我們把這兩種擺法算作一種擺法。(用課件舍去一種)

  生2:2×6=12

  師:猜一猜他是在怎么擺的?

  生:一行擺2個,擺了6行;也可以一行擺6個,擺2行。

  師:這兩種情況,我們也算一種。

  生3: 3×4=12

  師:他又是怎么擺的?

  生:一行擺3個,擺了4行;也可以一行擺4個,擺3行。

  師:還有其他擺法嗎?

  生:沒有了。

  師:對,如果把12個同樣大小的正方形拼成一個長方形,就只有這三種擺法,大家千萬不要小看了這三種擺法,更不要小看了這三種擺法下面的三道乘法算式,今天我們的新課就藏在這三道乘法算式里面。因數(shù)和倍數(shù)(板書課題)

  2.教學(xué)“因數(shù)和倍數(shù)”的意義。

  師:我們以3×4=12為例,在數(shù)學(xué)上可以說3是12的因數(shù),4也是12的因數(shù),12是3的倍數(shù),12也是4 的倍數(shù)。這里還有兩道算式,同桌兩個同學(xué)先互相說一說誰是誰的因數(shù),誰是誰的倍數(shù)。

  學(xué)生匯報:任選一道回答。

  生1:12是12的因數(shù),1是12的因數(shù),12是2的倍數(shù),12是1的倍數(shù)。

  師:說的多好。‰m然有點像繞口令,但數(shù)學(xué)上確實是這樣的。我們再一起說一遍。

  師:還有一道算式,誰來說一說?

  生:2是12的因數(shù),6是12的因數(shù),12是2的倍數(shù),12也是6的倍數(shù)。

  師明確:為了研究方便,我們所說的因數(shù)和倍數(shù)都是指自然數(shù),(0除外)。

  師:通過剛才的練習(xí),你有沒有發(fā)現(xiàn)12的因數(shù)一共有哪些? (生邊說老師邊有序的用課件出示12的所有的因數(shù)。)

  師:好了,剛才我們已經(jīng)初步研究了因數(shù)和倍數(shù),屏幕顯示:試一試:你能從中選兩個數(shù),說一說誰是誰的因數(shù)?誰是誰因數(shù)和倍數(shù)?行不行?先自己試一試。

  3、5、18、20、36

  【設(shè)計意圖】讓學(xué)生經(jīng)歷知識的形成過程。通過實際例子,讓學(xué)生進(jìn)一步理解,因數(shù)和倍數(shù)之間存在著相互依存的關(guān)系。

  三、教學(xué)尋找因數(shù)的方法。

  1、找一個數(shù)的因數(shù)。

  師:看來同學(xué)們對于因數(shù)和倍數(shù)已經(jīng)掌握的不錯了。不過剛才老師在聽的時候發(fā)現(xiàn)一個奧秘,好幾個數(shù)都是36的因數(shù),你發(fā)現(xiàn)了嗎?誰能在五個數(shù)中把哪些數(shù)是36的因數(shù)一口氣說完?

  師:說出幾個36的因數(shù)并不難,關(guān)鍵是怎樣找的既有序又全面,有沒有信心挑戰(zhàn)一下?

  生:有。

  師:老師提個要求:

  1)、可以獨立完成,也可以同桌交流。

  2)、把這個數(shù)的因數(shù)找全以后,把你的方法記錄在下面。并總結(jié)你是怎樣找的。

  2、探索交流找一個數(shù)的因數(shù)的方法。

  找一名有代表性的.作業(yè)板書在黑板上。

  師:他找對了嗎?

  生:沒有,漏下了一對。

  師:為什么會漏掉?僅僅是因為粗心嗎?

  生:不是,他沒有按照一定的順序找!

  師:那么要找到36所有的因數(shù)關(guān)鍵是什么?

  生:有序。

  師生共同邊說邊有序的把36的所有的因數(shù)板書出來。 師:還有問題嗎?

  生:沒有了。

  生:你們沒有,老師有一個問題,你們?yōu)槭裁凑业?就不再接著往下找了?

  生:再接著找就重復(fù)了。

  師:那么找到什么時候就不找了?

  生:找到重復(fù)了,就不在往下找了。

  師、生共同總結(jié)找因數(shù)的方法。(一對一對有序的找,一直找到重復(fù)為止)。

  師:有失誤的學(xué)生對自己的錯誤進(jìn)行調(diào)整。

  3、鞏固練習(xí)。

  找出下面各數(shù)的因數(shù)。

  4、尋找一個數(shù)的因數(shù)的特點。

  【設(shè)計意圖】放手讓學(xué)生自主找一個數(shù)的因數(shù),并總結(jié)找一個數(shù)因數(shù)的方法。學(xué)生非常喜歡,而且也能夠讓學(xué)生在活動中提升。

  四、教學(xué)尋找倍數(shù)的方法。

  1、找一個數(shù)的倍數(shù)。

  師:剛才我們學(xué)習(xí)了找一個數(shù)的因數(shù),那么你能像剛才一樣有序的找出一個數(shù)的所有倍數(shù)嗎?

  生:能!

  師:試試看,找個小的可以嗎?

  生:行!

  師:找一下3的倍數(shù)。30秒時間,把答案寫在練習(xí)紙上。 ??

  師:有什么問題嗎?

  生:老師,寫不完。

  師:為什么寫不完?

  生:有很多個!

  師:那怎么才能全都表示出來呢?

  生:可以加省略號。

  師:你太厲害了!你把語文上的知識都用上了,太真聰明了!難道不該再來點掌聲嗎?

  師:誰能總結(jié)一下你是怎樣找到的?

  生:從小到大依次乘自然數(shù)。

  師:你真會思考!

  課件出示3的倍數(shù)。

  2、找5、7的倍數(shù)。

  師:我們再來練習(xí)找一下5的倍數(shù)。

  生:5的倍數(shù)有:5、10、15、20、25??

  生:7的倍數(shù)有:7、14、21、28、35??

  師:你能像總結(jié)一個數(shù)因數(shù)的特點一樣,來總結(jié)一下一個數(shù)的倍數(shù)有什么特征嗎?

  生:能!

  學(xué)生總結(jié):一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。

  【設(shè)計意圖】在探索求一個數(shù)的倍數(shù)和因數(shù)的方法時,創(chuàng)設(shè)具體的情境讓學(xué)生去合作交流,并結(jié)合具體事例,讓學(xué)生自己觀察并發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征,豐富了教學(xué)方式,讓學(xué)生在觀察中發(fā)現(xiàn),在合作中體驗成功的喜悅,在主動參與、樂于探究中發(fā)展自我。

  四、知識拓展

  認(rèn)識“完美數(shù)”。

  師:(課件出示6的因數(shù))在6的因數(shù)中還藏著另外一個秘密,(這是孩子們都瞪大眼睛在看,在聽。┪覀儼6的因數(shù)中最大的一個去掉,剩下1、2、3,然后把它們再加起來又回到6本身,數(shù)學(xué)家給這樣的數(shù)起了一個名字,叫“完美數(shù)”。依次出示第二個、第三個一直到第六個完美數(shù)。

  小結(jié):其實有關(guān)因數(shù)和倍數(shù)的秘密還有很多,它們在等待著同學(xué)們在以后的學(xué)習(xí)中去研究、去探索。

  【設(shè)計意圖】豐富學(xué)生的知識,陶冶學(xué)生的情操。

  教學(xué)反思:

  找一個數(shù)因數(shù)的方法是本節(jié)課的難點,如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有一定困難,這里充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這時如果再給予有效的指導(dǎo)和總結(jié)就更好了。

因數(shù)和倍數(shù)教學(xué)反思10

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,在以往的教材中,都是通過除法算式來引出整除的概念,而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。對于學(xué)生來說是比較難掌握的.內(nèi)容。

  尤其對因數(shù)和倍數(shù)是一對相互依存的概念,不能單獨存在,不是很好理解。我通過生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意舉一些生活中的實例來幫助學(xué)生對相互依存的理解,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下面幾個細(xì)節(jié)來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。

  1.是我上課時特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念.

  2.是要學(xué)生注意區(qū)分乘法算式中的"因數(shù)"和本單元中的"因數(shù)"的聯(lián)系和區(qū)別.在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對"積"而言的,與"乘數(shù)"同義,可以是小數(shù),而后者是相對于"倍數(shù)"而言的,兩者都只能是整數(shù).

  3.是要注意區(qū)分"倍數(shù)"與前面學(xué)過的"倍"的聯(lián)系和區(qū)別."倍"的概念比"倍數(shù)"要廣.可以說"15是3的倍數(shù)",也可以說"1.5是0.3的5倍",但我們只能說"15是3的倍數(shù)",卻不能說"1.5是0.3的倍數(shù)".在課堂中反復(fù)強(qiáng)調(diào),幫助學(xué)生認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,就不會模糊了.

因數(shù)和倍數(shù)教學(xué)反思11

  簡單的內(nèi)容中蘊(yùn)藏著復(fù)雜的關(guān)系,由于新教材把“整除”的概念去掉,再也不提誰被誰整除,而改成借助整除模式na=b,直接引出因數(shù)和倍數(shù)的概念,這部分內(nèi)容顯得比較容易了,學(xué)生在學(xué)因數(shù)時,對于求一個數(shù)的因數(shù),及理解一個數(shù)的因數(shù)最小是1,最大因數(shù)是它本身,及一個數(shù)的因數(shù)的個數(shù)是有限的,感覺很清楚,明白。在學(xué)倍數(shù)時,對求一個數(shù)的倍數(shù)及理解一個數(shù)的倍數(shù)中最小的是它本身,沒有最大的倍數(shù)也認(rèn)為容易簡單,但有關(guān)因數(shù)、倍數(shù)的綜合練習(xí)不少學(xué)生開始猶豫、混淆。如判斷一個數(shù)的因數(shù)的個數(shù)是無限的,不少學(xué)生判斷為對。練習(xí)中:18是的倍數(shù),個別學(xué)生選擇了18、36、54……。針對這種情況,我調(diào)整了練習(xí),組織學(xué)生研究了以下幾個問題:

  1、寫出12的因數(shù)和倍數(shù),寫出16的因數(shù)和倍數(shù)。

  2、觀察比較,會打消列問題:一個數(shù)的因數(shù)和它本身的.關(guān)系,

  3、為什么一個數(shù)的因數(shù)的個數(shù)是有限的?最小是1,最大是它本身,也就是1和它本身之間的整數(shù)。為什么一個數(shù)的倍數(shù)的個數(shù)是無限的?最小是它本身,沒有最大的。

  通過對這幾個問題的討論,多數(shù)學(xué)生較好的區(qū)分了一個數(shù)的因數(shù)和倍數(shù)

因數(shù)和倍數(shù)教學(xué)反思12

  今天這堂課其實是有點匆忙的。課前的一個小游戲忘了,忘了讓學(xué)生體會因數(shù)和倍數(shù)之間的相互聯(lián)系和依存關(guān)系了。明天的課上補(bǔ)上。

  滿意的一點:模式的提練

  在讓學(xué)生根據(jù)算式說了誰是誰的倍數(shù),誰是誰的因數(shù)之后,出示了想想做做的第一題,我加了一道:A×B=C,并且讓學(xué)生用一道算式提練出因數(shù)和倍數(shù)之間的關(guān)系。結(jié)果學(xué)生都不知道如何表達(dá)。我把算式板書上黑板上,是因數(shù)×因數(shù)=倍數(shù)。而后,我又轉(zhuǎn)過去用一道除法算式36÷9=4來讓學(xué)生找一找誰是誰的因數(shù),誰是誰的倍數(shù),學(xué)生的反應(yīng)都不錯,馬上就明白了因數(shù)和倍數(shù)之間的關(guān)系。

  不滿意的地方在于:對于找出36所有因數(shù)的有序思考沒有強(qiáng)調(diào)。當(dāng)我讓學(xué)生們自主找出36的所有因數(shù)時,許多學(xué)生就茫然不知所謂,但是他們并不是不懂,只是不知道如何去寫,所以我在黑板上挑選了一些學(xué)生的作業(yè)加以板書,讓學(xué)生進(jìn)行比較。

  如:1、36、2、18、3、12、4、9、6

 。薄ⅲ、3、4、6、9、12、18、36

  和36÷1=36,36÷2=18,36÷3=12

 。常丁拢矗剑,36÷6=6

  尤其是最后一種方法,我特別注意讓學(xué)生評價一下這種思考方法的正確性。得出結(jié)論是這樣思考是可行的。那么我接著告訴他們,這樣思考的確是可以,不過,缺少的因數(shù)的提取,由此過渡到評價第一種方案和第二種方案,在這兒,我特別示范了一下寫因數(shù)的方法,即從兩邊向中間包圍。學(xué)生們在比較中找出了寫因數(shù)的方法,明白了寫出因數(shù)的格式。本來可以相機(jī)在這一步讓學(xué)生體會尋找因數(shù)的有序性,結(jié)果一急,只是帶過了一句。今天在補(bǔ)充習(xí)題上出現(xiàn)了問題,我抓了幾個學(xué)生問為什么強(qiáng)調(diào)有序性,學(xué)生告訴我:因為可以看得清楚,因為不會遺漏?雌饋戆嗌系膶W(xué)生有這方面的意識,在做題目的時候還應(yīng)該再稍稍提點一下,應(yīng)該也就不成問題了。

  《因數(shù)和倍數(shù)的練習(xí)》教學(xué)反思 4月14日

  昨天新學(xué)了因數(shù)和倍數(shù),我覺得課上學(xué)生表現(xiàn)還可以,很會說,但到了家自己做家作時,問題很多。今天進(jìn)行了練習(xí)后,效果截然不同。我在練習(xí)前,首先對昨天的內(nèi)容進(jìn)行了復(fù)習(xí)。讓學(xué)生進(jìn)一步明確:1、講因數(shù)和倍數(shù)時應(yīng)該講清誰是誰的倍數(shù)或因數(shù)。2、找一個數(shù)的倍數(shù)和因數(shù)時,倍數(shù)最小的是它本身,其它都比它大,因數(shù)最大的是它本身,其它都比它小,最小是1。學(xué)生書上練習(xí)時,提醒學(xué)生弄清每題的具體要求,有些題只要寫出一個數(shù)部分的倍數(shù),而有些題需要寫出全部的倍數(shù)。有些符合要求的數(shù)不止1個,要盡可能把這些數(shù)都找出來。但學(xué)生有時找不全,我就教會學(xué)生這樣思考:找一個數(shù)的倍數(shù)時用乘法,找一個數(shù)的因數(shù)時用除法。效果還可以。

  今天教學(xué)了因數(shù)和倍數(shù)一課,這節(jié)課的內(nèi)容關(guān)鍵是讓學(xué)生在掌握因數(shù)、倍數(shù)的概念的基礎(chǔ)上學(xué)會找一個數(shù)的因數(shù)和倍數(shù)。就總體情況而言教學(xué)效果還可以,但多少還是存在遺憾。

  存在問題:在寫出了算式3*4=12后出示“3是12的因數(shù),4也是12的因數(shù);12是3的倍數(shù),12也是4的倍數(shù)!焙笞寣W(xué)生閱讀,復(fù)述后讓學(xué)生觀察尋找記憶的方法,學(xué)生總結(jié):像這樣的乘法算式我們可以說兩個乘數(shù)都是積的因數(shù),積是兩個乘數(shù)的倍數(shù)。再讓學(xué)生用因數(shù)、倍數(shù)同桌復(fù)述算式2*6=12,1*12=12中數(shù)與數(shù)的關(guān)系,全班交流復(fù)述,學(xué)生說的蠻好的,可是在分層練習(xí)時再讓學(xué)生描述其他算式中各數(shù)的關(guān)系時,又部分學(xué)生混淆了因數(shù)、倍數(shù)的概念。看來開始的復(fù)述學(xué)生純粹是無意識的.模仿,是為模仿而模仿,教師沒有在學(xué)生模仿復(fù)述后進(jìn)一步讓學(xué)生思考為什么可以這樣描述這些數(shù)之間的關(guān)系,例如:為什么12是3和4的倍數(shù),還能說12是2和6的倍數(shù)?……如果加了這層思考,學(xué)生就會理解只要是兩個整數(shù)相乘等于12,12就是這兩個整數(shù)的倍數(shù),這兩個整數(shù)就都是12的因數(shù)。這樣才能讓學(xué)生真正理解乘法算式中各整數(shù)之間的關(guān)系。

  滿意之處:學(xué)生在找一個數(shù)的因數(shù)和倍數(shù)時花費的時間不多,但在交流方法時我舍得花費較多的時間讓學(xué)生比較各自的方法,在此基礎(chǔ)上選出不會重復(fù)、遺漏的簡便方便用學(xué)生的名字命名這些方法。再讓學(xué)生分別使用這些方法尋找,真實感受這些方法的好處。學(xué)生郵箱比較深刻,在后面的分層練習(xí)和檢測中沒有學(xué)生出現(xiàn)漏或重復(fù)的,而且速度也很快。學(xué)生的積極性很高,學(xué)生的積極性的大小與他獲得成功的概率的大小有直接關(guān)系的。

因數(shù)和倍數(shù)教學(xué)反思13

  在上學(xué)期的白紙備課活動中,我們高年段數(shù)學(xué)抽到的教學(xué)內(nèi)容就是因數(shù)與倍數(shù),這個內(nèi)容是我沒有教過的,在看到教學(xué)內(nèi)容時,我心里不禁在打鼓,我能找準(zhǔn)教學(xué)重難點嗎?能突破重難點嗎?一連串問題涌了上來,最后我還是讓自己冷靜下來,靜下心來認(rèn)真分析教材,盡自己最大的努力梳理出教學(xué)重難點,創(chuàng)設(shè)情境、設(shè)計游戲來突出重點、突破難點。在設(shè)計完教學(xué)過程后,我也與同組的老師交流了活動體會。原來在老教材中沒有因數(shù)這個概念,只有約數(shù)和倍數(shù),而且是由整除的概念引入的,但因為我是第一次教學(xué)這個內(nèi)容,很自然的就沒有被以往教材的教學(xué)定式所束縛,嘗到了新教材的甜頭,F(xiàn)在剛好又教了這個內(nèi)容,仔細(xì)參考了教學(xué)用書我才真正領(lǐng)悟到了新教材的.新穎所在。

  新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。實際上,由于乘除法本身就存在著互逆關(guān)系,用乘法算式(如b=na)同樣可以表示整除的含義。因此,新教材中沒有用數(shù)學(xué)化的語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,學(xué)生不必通過12÷2=6得出12能被2整除,進(jìn)而2是12的因數(shù),12是2的倍數(shù)。再通過12÷6=2得出12能被6整除,進(jìn)而6是12的因數(shù),12是6的倍數(shù),大大簡化了敘述和記憶的過程。在這兒,用一個乘法算式2×6=12可以同時說明“2和6都是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)!

  這樣的設(shè)計既減輕了學(xué)生的學(xué)習(xí)負(fù)擔(dān)又讓學(xué)生在學(xué)習(xí)時盡量避免出現(xiàn)概念混淆、理解困難的問題。學(xué)生對新知掌握較牢,在實際教學(xué)中我就是這樣處理的,學(xué)生樂學(xué),思路清晰。

因數(shù)和倍數(shù)教學(xué)反思14

  《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級下冊第二單元的起始課,也是一節(jié)重要的數(shù)學(xué)概念課,所涉及的知識點較多,內(nèi)容較為抽象,對于學(xué)生來說是比較難掌握的內(nèi)容,在這樣的前提下,如何能充分發(fā)揮學(xué)生的主體作用,讓他們自主探索,自己感悟概念的內(nèi)涵,并靈活地運(yùn)用“先學(xué)后教”的模式,達(dá)到課堂的高效,在課堂中我做了以下的嘗試。

  一、領(lǐng)會意圖,做到用教材教。

  我覺得作為一名教師,重要的是領(lǐng)會教材的編寫意圖,靈活的運(yùn)用教材,讓每個細(xì)節(jié)都能發(fā)揮它應(yīng)有的作用。如教材是利用了一個簡單的實物圖(2行飛機(jī),每行6架;3行飛機(jī),每行4架)引出了要研究的兩個乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的因數(shù),誰是誰的倍數(shù)”的概念。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的方法,二是利用數(shù)與數(shù)之間的關(guān)系明確的看到因數(shù)倍數(shù)這種相互依存的關(guān)系。

  但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機(jī),你可以怎樣去排列?”學(xué)生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學(xué)生得到“2×6=12、3×4=12、1×12=12”三個算式,而這些算式不僅能夠清晰地體現(xiàn)因數(shù)倍數(shù)間的關(guān)系,更是后面“如何求一個數(shù)的因數(shù)”的方法的滲透和引導(dǎo)?磥盱`活的運(yùn)用教材,深放領(lǐng)會意圖,才能使教學(xué)更為輕松、高效!

  二、模式運(yùn)用,做到靈活自然。

  模式是一種思想或是引子,面對不同的`課型,我們應(yīng)該大膽嘗試,不斷的積累經(jīng)驗,使模式不再是僵化的,機(jī)械的。只要是能促進(jìn)學(xué)生能力形成的東西,我們不能因為要運(yùn)用模式而把它們淡化,反之,應(yīng)該想方設(shè)法,在不知不覺中體現(xiàn)出來。

  如本課中例1是“求18的因數(shù)有哪些”,例2是“求2的倍數(shù)有哪些”教材的設(shè)計已經(jīng)能夠體現(xiàn)學(xué)生自主探索知識的軌跡,那我們何不通過一句簡短的過渡語讓學(xué)生進(jìn)入到下面的學(xué)習(xí)中呢?而沒有必要非要設(shè)計出兩個“自學(xué)指導(dǎo)”讓學(xué)生按步就搬地往下走,而且讓學(xué)生對比著去感受一個數(shù)“因數(shù)和倍數(shù)”的求法的不同,比先學(xué)例1再學(xué)例2的方式更容易讓學(xué)生發(fā)現(xiàn)不同,得到方法,加深對知識的理解,同時也更加體現(xiàn)了學(xué)生的自主性,這才是模式的真正目的所在。內(nèi)涵比形式更重要,發(fā)現(xiàn)比引導(dǎo)更有效!

因數(shù)和倍數(shù)教學(xué)反思15

  這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:

  一、尊重教材,引導(dǎo)學(xué)生實現(xiàn)從形象向抽象的飛躍。

  教材中首先引導(dǎo)學(xué)生理解數(shù)與數(shù)之間的關(guān)系,進(jìn)而用乘法算式把不同的列法表示出來,再根據(jù)乘法算式教學(xué)倍數(shù)和因數(shù)的意義。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。

  這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的'有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,

  二、細(xì)化過程,讓學(xué)生在充分交流中感悟理解倍數(shù)和因數(shù)的意義。

  倍數(shù)和因數(shù)的意義是本單元的重要知識,其他內(nèi)容的教學(xué)都以此為基礎(chǔ)。在學(xué)生得出乘法算式后,首先引導(dǎo)學(xué)生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數(shù)”,然后啟發(fā)學(xué)生“看著算式你還能想到什么?”很多學(xué)生已經(jīng)領(lǐng)會12也是4的倍數(shù),指名說后,再強(qiáng)化一下讓學(xué)生連起來說說誰是誰的倍數(shù)。接著教學(xué)“3是12的因數(shù)”,再啟發(fā)“這時你又能想到什么?”學(xué)生很容易聯(lián)想到“4也是12的因數(shù)”,而且學(xué)生的學(xué)習(xí)興趣濃厚、求知欲強(qiáng)。這時再讓學(xué)生完整的說一說誰是誰的倍數(shù),誰是誰的因數(shù),已經(jīng)“水到渠成”。在初步感受倍數(shù)和因數(shù)的意義是與乘法有聯(lián)系的,表達(dá)的是自然數(shù)之間的關(guān)系之后,接著練一練讓學(xué)生根據(jù)2×6=12先同桌互相說說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),在全班交流。最后根據(jù)1×12=12先指名說一說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),再讓學(xué)生輕聲地說說有點特別的兩句。

  整個過程處理細(xì)致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時、兼顧學(xué)困生,讓學(xué)生在遷移中理解倍數(shù)和因數(shù)的意義。

  三、由點及面,巧架平臺,讓學(xué)生在師生互動中建立完整的數(shù)學(xué)模型。

  找一個數(shù)的倍數(shù)或因數(shù),既能鞏固倍數(shù)和因數(shù)的意義,也為研究倍數(shù)的特征及意義作準(zhǔn)備。探索找一個數(shù)的倍數(shù)或因數(shù)的方法時,重點是幫助學(xué)生建立相應(yīng)的數(shù)學(xué)模型。

  探索求一個數(shù)因數(shù)的方法是本課的難點,例題直接安排找24的因數(shù)更是困難。教學(xué)中我還是利用3×4=12做鋪墊,引導(dǎo)學(xué)生先找一找12的因數(shù),初步感知了找因數(shù)的方法。然后層層推進(jìn),先讓學(xué)生想一道算式找24的因數(shù),引出根據(jù)除法找因數(shù)的方法,再讓學(xué)生按除法通過自主探究找出24的所有因數(shù),接著組織學(xué)生比較、討論、優(yōu)化提升出找一個數(shù)的因數(shù)的方法。

  教學(xué)4的倍數(shù)時,學(xué)生在4×4=16的鋪墊下,很容易找到一個或幾個4的倍數(shù),但是想要“一個不漏且有序的找全,并體會出4的倍數(shù)的個數(shù)是無限的”卻很難。如何引導(dǎo)學(xué)生建構(gòu)完整的倍數(shù)的數(shù)學(xué)模型呢?我遵循學(xué)生的認(rèn)知規(guī)律,然后引導(dǎo)學(xué)生按從小到大的順序整理,接著向兩頭延伸:有比4更小的嗎?接著4×2=8,4×3=12,4×4=16,…像這樣說下去說得完嗎?4的倍數(shù)的特點逐步在學(xué)生的腦海中得以完善、合理建構(gòu)。

  這樣搭建了有效的平臺、形成了師生互動生成的過程,學(xué)生經(jīng)歷了無序、不完整逐步由點及面向有序、完整的思維邁進(jìn),有效的建構(gòu)了數(shù)學(xué)模型。

【因數(shù)和倍數(shù)教學(xué)反思】相關(guān)文章:

《因數(shù)和倍數(shù)》教學(xué)反思11-15

倍數(shù)和因數(shù)的教學(xué)反思03-06

《倍數(shù)和因數(shù)》教學(xué)反思04-11

因數(shù)和倍數(shù)的教學(xué)反思02-14

因數(shù)和倍數(shù)教學(xué)反思15篇11-25

因數(shù)和倍數(shù)教學(xué)反思(15篇)02-21

五年級因數(shù)和倍數(shù)教學(xué)反思04-11

五年級下冊因數(shù)和倍數(shù)教學(xué)反思04-04

《3的倍數(shù)特征》教學(xué)反思04-11