高中數(shù)學(xué)立體幾何有哪些知識點
立體幾何生是高考教學(xué)中的重點,同時也是高考試卷中的必考題目。以下是小編為大家整理的高中數(shù)學(xué)立體幾何有哪些知識點,希望能幫到大家!
高中數(shù)學(xué)立體幾何知識點
數(shù)學(xué)知識點1、柱、錐、臺、球的結(jié)構(gòu)特征
1、棱柱:幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
2、棱錐幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。
3、棱臺:幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點
4、圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。
5、圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。
6、圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。
7、球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點到球心的.距離等于半徑。
數(shù)學(xué)知識點2、空間幾何體的三視圖
定義三視圖:正視圖光線從幾何體的前面向后面正投影、;側(cè)視圖從左向右、俯視圖從上向下。
注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。
數(shù)學(xué)知識點3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;
、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。
高中數(shù)學(xué)立體幾何必考知識點
一、平面
通常用一個平行四邊形來表示。
平面常用希臘字母α、β、γ…或拉丁字母M、N、P來表示,也可用表示平行四邊形的兩個相對頂點字母表示,如平面AC。
在立體幾何中,大寫字母A,B,C,…表示點,小寫字母,a,b,c,…l,m,n,…表示直線,且把直線和平面看成點的集合,因而能借用集合論中的符號表示它們之間的關(guān)系,例如:
a、A∈l—點A在直線l上;Aα—點A不在平面α內(nèi);
b、lα—直線l在平面α內(nèi);
c、aα—直線a不在平面α內(nèi);
d、l∩m=A—直線l與直線m相交于A點;
e、α∩l=A—平面α與直線l交于A點;
f、α∩β=l—平面α與平面β相交于直線l。
二、平面的基本性質(zhì)
公理1如果一條直線上的兩點在一個平面內(nèi),那么這條直線上所有的點都在這個平面內(nèi)。
公理2如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線。
公理3經(jīng)過不在同一直線上的三個點,有且只有一個平面。
根據(jù)上面的公理,可得以下推論。
推論1經(jīng)過一條直線和這條直線外一點,有且只有一個平面。
推論2經(jīng)過兩條相交直線,有且只有一個平面。
推論3經(jīng)過兩條平行直線,有且只有一個平面。
公理4平行于同一條直線的兩條直線互相平行
高中數(shù)學(xué)知識點
空間幾何體的類型
1、多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點。
2、旋轉(zhuǎn)體:把一個平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為旋轉(zhuǎn)體的軸。高中數(shù)學(xué)知識點:幾種空間幾何體的結(jié)構(gòu)特征棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。
棱柱的面積和體積公式
S直棱柱側(cè)面=c·hc為底面周長,h為棱柱的高、
S直棱柱全=c·h+2S底
V棱柱=S底·h
【高中數(shù)學(xué)立體幾何有哪些知識點】相關(guān)文章:
數(shù)學(xué)立體幾何知識點08-01
中考語文的知識點有哪些11-22
小升初語文必備知識點有哪些12-20
小升初英語必考知識點有哪些12-18
小升初語文必考知識點有哪些12-16
小考語文必備知識點有哪些12-16