- 相關(guān)推薦
整數(shù)指數(shù)冪的人教版八年級(jí)數(shù)學(xué)教案
教學(xué)目標(biāo):
1.知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù)).
2.掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì).
3.會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).
教學(xué)重點(diǎn):
掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì).
難點(diǎn):
會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).
情感態(tài)度與價(jià)值觀:
通過學(xué)習(xí)課堂知識(shí)使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來源于實(shí)踐,服務(wù)于實(shí)踐.能利用事物之間的類比性解決問題.
教學(xué)過程:
一、課堂引入
1.回憶正整數(shù)指數(shù)冪的運(yùn)算性質(zhì): (1)同底數(shù)的冪的乘法:am?an = am+n (m,n是正整數(shù)); (2)冪的乘方:(am)n = amn (m,n是正整數(shù)); (3)積的乘方:(ab)n = anbn (n是正整數(shù)); (4)同底數(shù)的冪的除法:am÷an = am?n ( a≠0,m,n是正整數(shù),m>n); (5)商的乘方:()n = (n是正整數(shù));
2.回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時(shí),a0 = 1.
3.你還記得1納米=10?9米,即1納米=米嗎?
4.計(jì)算當(dāng)a≠0時(shí),a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個(gè)條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0).
二、總結(jié): 一般地,數(shù)學(xué)中規(guī)定: 當(dāng)n是正整數(shù)時(shí),=(a≠0)(注意:適用于m、n可以是全體整數(shù)) 教師啟發(fā)學(xué)生由特殊情形入手,來看這條性質(zhì)是否成立. 事實(shí)上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運(yùn)算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n (m,n是整數(shù))這條性質(zhì)也是成立的.
三、科學(xué)記數(shù)法: 我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來表示,例如:0.000012 = 1.2×10?5. 即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù). 啟發(fā)學(xué)生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012 = 1.2×10?9,即對(duì)于一個(gè)小于1的正數(shù),如果小數(shù)點(diǎn)后到第一個(gè)非0數(shù)字前有8個(gè)0,用科學(xué)記數(shù)法表示這個(gè)數(shù)時(shí),10的指數(shù)是?9,如果有m個(gè)0,則10的指數(shù)應(yīng)該是?m?1.
【整數(shù)指數(shù)冪的八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
數(shù)學(xué)教案之分?jǐn)?shù)乘整數(shù)10-06
整數(shù)的認(rèn)識(shí)教學(xué)設(shè)計(jì)07-11
整數(shù)除法教學(xué)設(shè)計(jì)10-06
分?jǐn)?shù)乘以整數(shù)的教學(xué)設(shè)計(jì)07-17
同底數(shù)冪的乘法的教案設(shè)計(jì)案例06-10
分?jǐn)?shù)乘整數(shù)教學(xué)反思總結(jié)08-18
小學(xué)數(shù)學(xué)小數(shù)整數(shù)教學(xué)設(shè)計(jì)09-02