《圓柱的體積》數(shù)學(xué)教案(通用18篇)
作為一位兢兢業(yè)業(yè)的人民教師,通常需要準備好一份教案,通過教案準備可以更好地根據(jù)具體情況對教學(xué)進程做適當(dāng)?shù)谋匾恼{(diào)整。來參考自己需要的教案吧!下面是小編為大家收集的《圓柱的體積》數(shù)學(xué)教案,希望對大家有所幫助。
《圓柱的體積》數(shù)學(xué)教案 1
教學(xué)目標(biāo):
1、使學(xué)生能夠運用公式正確地計算圓柱的體積和容積。
2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力
4、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。
教學(xué)重點:掌握圓柱體積的計算公式。
教學(xué)難點:靈活應(yīng)用圓柱的體積公式解決實際問題。
教學(xué)過程:
一、復(fù)習(xí)
1、復(fù)習(xí)圓柱體積的推導(dǎo)過程
長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。
長方體的體積=底面積高,所以圓柱的`體積=底面積高,即V=Sh。
2、復(fù)習(xí)長方體的體積公式后,讓學(xué)生獨立完成練習(xí)三第6題,并指名板演。
二、解決實際問題
1、練習(xí)三第7題。
學(xué)生思考:要求糧囤所能裝的玉米的重量,需先知道什么?然后獨立完成。
2、練習(xí)三第5題。
。1)指導(dǎo)學(xué)生變換公式:因為V=Sh,所以h=VS。也可以列方程解答。
。2)學(xué)生選擇喜愛的方法解答這道題目。
3、練習(xí)三第8題。
。1)學(xué)生讀題后,指名說說對題意的理解:求減少的土方石就是求月亮門所占的空間,而月亮門所占的空間是一個底面直徑為2米,高為0.25米的圓柱。
。2)在充分理解題意后學(xué)生獨立完成,集體訂正。
4、練習(xí)三第9、10題
。1)學(xué)生獨立審題,完成9、10兩題。
。2)評講第9題:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?(需先求出圓柱形玻璃杯的容積,用公式V=Sh)
。3)指名說說解答第10題的思路:根據(jù)兩個圓柱的底面積相等這一條件,先求出其中一個圓柱的底面積。利用這個底面積再求出另一個圓柱的體積。
三、布置作業(yè)
完成一課三練的相關(guān)練習(xí)。
《圓柱的體積》數(shù)學(xué)教案 2
教學(xué)目標(biāo)
1.理解圓柱體體積公式的推導(dǎo)過程,掌握計算公式.
2.會運用公式計算圓柱的體積.
教學(xué)重點
圓柱體體積的計算.
教學(xué)難點
理解圓柱體體積公式的推導(dǎo)過程.
教學(xué)過程
一、復(fù)習(xí)準備
。ㄒ唬┙處熖釂
1.什么叫體積?怎樣求長方體的體積?
2.圓的面積公式是什么?
3.圓的面積公式是怎樣推導(dǎo)的?
。ǘ┱勗拰(dǎo)入
同學(xué)們,我們在研究圓面積公式的推導(dǎo)時,是把它轉(zhuǎn)化成我們學(xué)過的長方形知識的來解決的.那圓柱的體積怎樣計算呢?能不能也把它轉(zhuǎn)化成我們學(xué)過的立體圖形來計算呢?這節(jié)課我們就來研究這個問題.(板書:圓柱的體積)
二、新授教學(xué)
(一)教學(xué)圓柱體的體積公式.(演示動畫“圓柱體的體積1”)
1.教師演示
把圓柱的底面分成了16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積大小相等,底面是扇形的形體.
2.學(xué)生利用學(xué)具操作.
3.啟發(fā)學(xué)生思考、討論:
(1)圓柱體切開后可以拼成一個什么形體?(近似的長方體)
(2)通過剛才的實驗?zāi)惆l(fā)現(xiàn)了什么?
、倨闯傻慕频拈L方體和圓柱體相比,體積大小沒變,形狀變了.
②拼成的近似的長方體和圓柱體相比,底面的形狀變了,由圓變成了近似的長方形,而底面的面積大小沒有發(fā)生變化.
、劢崎L方體的高就是圓柱的高,沒有變化.
4.學(xué)生根據(jù)圓的.面積公式推導(dǎo)過程,進行猜想.
(1)如果把圓柱的底面平均分成32份,拼成的長方體形狀怎樣?
。2)如果把圓柱的底面平均分成64份,拼成的長方體形狀怎樣?
。3)如果把圓柱的底面平均分成128份,拼成的長方體形狀怎樣?
5.啟發(fā)學(xué)生說出通過以上的觀察,發(fā)現(xiàn)了什么?
。1)平均分的份數(shù)越多,拼起來的形體越近似于長方體.
。2)平均分的份數(shù)越多,每份扇形的底面就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體.
6.推導(dǎo)圓柱的體積公式
。1)學(xué)生分組討論:圓柱體的體積怎樣計算?
。2)學(xué)生匯報討論結(jié)果,并說明理由.
因為長方體的體積等于底面積乘高.(板書:長方體的體積=底面積×高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積),近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高.(板書:圓柱的體積=底面積×高)
(3)用字母表示圓柱的體積公式.(板書:V=Sh)
。ǘ┙虒W(xué)例4.
1.出示例4
例4.一根圓柱形鋼材,底面積是50平方厘米,高是2.1米,它的體積是多少?
2.1米=210厘米
50×210=10500(立方厘米)
答:它的體積是10500立方厘米.
2.反饋練習(xí)
。1)一根圓柱形木料,底面積是75平方厘米,長90厘米,它的體積是多少?
(2)一個圓柱形罐頭盒的內(nèi)底面半徑是5厘米,高15厘米,它的容積是多少?
。ㄈ┙虒W(xué)例5.
1.出示例5
例5.一個圓柱形水桶,從里面量底面直徑是20厘米,高是25厘米,這個水桶的容積是多少立方分米?
水桶的底面積:
=3.14×
。3.14×100
。314(平方厘米)
水桶的容積:
314×25
。7850(立方厘米)
=7.8(立方分米)
答:這個水桶的容積大約是7.8立方分米.
三、課堂小結(jié)
通過本節(jié)課的學(xué)習(xí),你有什么收獲?
1.圓柱體體積公式的推導(dǎo)方法.
2.公式的應(yīng)用.
四、課堂練習(xí)
。ㄒ唬┨畋
底面積S(平方米)15
高h(米)3
圓柱的體積V(立方米)6.4
。ǘ┣笙旅娓鲌A柱的體積.
。ㄈ┮粋圓柱形水池,半徑是10米,深1.5米.這個水池占地面積是多少?水池的容積是多少立方米?
五、課后作業(yè)
。ㄒ唬┣笙铝袌D形的表面積和體積.(圖中單位:厘米)
(二)兩個底面積相等的圓柱,一個圓柱的高為4.5分米,體積為81立方分米.另一個圓柱的高為3分米,體積是多少?
《圓柱的體積》數(shù)學(xué)教案 3
探究目標(biāo):
1、組織學(xué)生開展測量、計算、估測等數(shù)學(xué)實踐活動,使學(xué)生進一步掌握圓柱體積計算公式,并能運用公式正確地計算圓柱的體積。
2、在探索空間與圖形的過程中,培養(yǎng)學(xué)生初步的空間觀念及實踐能力,同時結(jié)合具體的情境培養(yǎng)其估測意識。
3、使學(xué)生學(xué)會與他人合作,并能比較清楚地表達和交流解決問題的過程和結(jié)果。
4、讓學(xué)生體驗解決策略的多樣性,不斷激發(fā)其對數(shù)學(xué)的好奇心和求知欲,使其積極地參與數(shù)學(xué)學(xué)習(xí)活動。
教學(xué)重難點:
學(xué)生會應(yīng)用圓柱體積公式解決實際問題。
探究過程:
一、遷移引入
提問:一個圓柱的`底面積是80平方厘米,高是20厘米,求它的體積。
提問:如果已知的是底面半徑和高,該怎么求呢?
二、自主探究
1、出示長方體魚缸。
要計算這個長方體魚缸能裝多少水,就是求什么?
怎樣求這個長方體的容積呢?
2、出示圓柱形魚缸。
、殴罍y。這個圓柱形魚缸的容積大約是多少?
、撇僮鳌R報。如果忽略容器的壁厚,這個圓柱形魚缸的容積到底是多少呢?學(xué)生分小組進行操作計算,各小組派代表演示操作過程,并展示計算過程。
學(xué)生可能的回答有:
生1:這個圓柱的底面周長是94.5厘米,它的高是12厘米,計算過程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)
生2:我們小組測量的是底面直徑和高。底面直徑長30厘米,高是12厘米,計算過程如下:3.14×(30÷2)2×12=8478(立方厘米)
生3:我們測量的是底面半徑和高。3.14×152×12=8478(立方厘米)
⑷評價。
組織學(xué)生間進行評價。你最喜歡哪個小組的操作方案?為什么?每一步列式的意義是什么?使學(xué)生進一步掌握圓柱體積的計算方法。
、煞此。引導(dǎo)學(xué)生將實際計算結(jié)果與自己的估測結(jié)果進行對比。自己矯正偏差。
、恃由。如果每立方分米水重1千克,這個魚缸大約能裝水多少千克?
3、自學(xué)例題。
組織學(xué)生自學(xué)課本例5。同桌的兩名同學(xué)結(jié)合例5的解答過程提出相關(guān)的數(shù)學(xué)問題,進行互問互答。
三、鞏固練習(xí)
做教科書第80頁“做一做”中的第2題、練習(xí)二十一的第5題。
學(xué)生獨立完成,指名板演,集體評講。
四、創(chuàng)意作業(yè)
學(xué)生綜合運用所學(xué)的知識,進行計算、繪圖、裁剪、粘貼等多項操作活動。
在一張長30厘米,寬20厘米的長方形紙上進行合理的裁剪,做一個無蓋的圓柱形筆筒。比一比,誰做的筆筒容積最大?
《圓柱的體積》數(shù)學(xué)教案 4
教學(xué)目標(biāo):
1、使學(xué)生掌握圓柱體積公式,會用公式計算圓柱體積,能解決一些實際問題。
2、讓學(xué)生經(jīng)歷觀察、操作、討論等數(shù)學(xué)活動過程,理解圓柱體積公式的推導(dǎo)過程,引導(dǎo)學(xué)生探討問題,體驗轉(zhuǎn)化和極限的思想。
3、在圖形的變換中,培養(yǎng)學(xué)生的遷移能力、邏輯思維能力,并進一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習(xí)數(shù)學(xué)的方法,激發(fā)學(xué)生興趣,滲透事物是普遍聯(lián)系的唯物辨證思想。
教學(xué)重點:
圓柱體積計算公式的推導(dǎo)過程并能正確應(yīng)用。
教學(xué)難點:
借助教具演示,弄清圓柱與長方體的關(guān)系。
教具準備:
多媒體課件、長方體、圓柱形容器若干個;學(xué)生準備推導(dǎo)圓柱體積計算公式用學(xué)具。
教學(xué)設(shè)想:
《 圓柱的體積 》是學(xué)生在有了圓柱、圓和長方體的相關(guān)的基礎(chǔ)上進行教學(xué)的。在知識與技能上,通過對圓柱的具體研究,理解圓柱的體積公式的推導(dǎo)過程,會計算圓柱的體積,在方法的選擇上,抓住新舊知識的聯(lián)系,通過想象、課件演示、實踐操作,從經(jīng)歷和體驗中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識從生活中來到生活去的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對科學(xué)知識的求知欲,使學(xué)生樂于探索,善于探索。
教學(xué)過程:
一、創(chuàng)設(shè)情境,激疑引入
水是生命之源!節(jié)約用水是我們每個公民應(yīng)盡的義務(wù)。前兩天,老師家的水龍頭出了問題,擰上閥門之后,還是不停的滴水,你們看,一刻鐘就滴了這么多的水。
1、出示裝了水的圓柱容器。
。1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積?
。2)討論后匯報
生1:用量筒或量杯直接量出它的體積;
生2:用秤稱出水的重量,然后進一步知道體積;
生3:把它倒入長方體容器中,從里面量出長、寬和水面的高后再計算。
師:現(xiàn)在老師只有這些工具(圓柱形容器,長方形容器,半圓形容器和其他不規(guī)則容器),你怎么辦?
生1:把水到入長方體容器中
生2:我們學(xué)過了長方體的體積計算,只要量出長、寬、高就行
[設(shè)計意圖:通過本環(huán)節(jié),給學(xué)生創(chuàng)設(shè)一個生活中的情境,提出問題,學(xué)習(xí)身邊的數(shù)學(xué),激起學(xué)生的學(xué)習(xí)興趣;根據(jù)需要滲透圓柱體(新問題)和長方體(已知)的知識聯(lián)系為所學(xué)內(nèi)容作了鋪墊的準備]
2、創(chuàng)設(shè)問題情境。
師:(課件顯示)如果要求某些建筑中圓柱形柱子的體積,或是求壓路機圓柱形大前輪的體積,能用同學(xué)們想出來的辦法嗎?
[設(shè)計意圖:進一步從實際需要提出問題,激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體積的問題的欲望]
師:今天,就讓我們來研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)
二、經(jīng)歷體驗,探究新知
1、回顧舊知,幫助遷移
。1)教師首先提出具體問題:圓柱體和我們以前學(xué)過的哪些幾何圖形有聯(lián)系?
生1:圓柱的上下兩個底面是圓形
生2:側(cè)面展開是長方形
生3:說明圓柱和我們學(xué)過的圓和長方形有聯(lián)系
師:請同學(xué)們想想圓柱的體積與什么有關(guān)?
生1:可能與它的大小有關(guān)
生2:不是吧,應(yīng)該與它的高有關(guān)
[設(shè)計意圖:溫故而知新,既復(fù)習(xí)了舊知識又引出了新知識,學(xué)生在不知不覺中就學(xué)到了新知。]
(2)請大家回憶一下:在學(xué)習(xí)圓的面積時,我們是怎樣將圓轉(zhuǎn)化成已學(xué)過的圖形,來推導(dǎo)出圓面積公式的。
配合學(xué)生回答演示課件。
[設(shè)計意圖:通過想象,進一步發(fā)展學(xué)生的空間觀念,由形到體;同時使學(xué)生感悟圓柱的體積與它的底面積和高的聯(lián)系,通過圓面積推導(dǎo)過程的再現(xiàn),為實現(xiàn)經(jīng)驗和方法的遷移作鋪墊]
2、小組合作,探究新知
。1)啟發(fā)猜想:我們要解決圓柱的體積的問題,可以怎么辦?(引導(dǎo)學(xué)生說出圓柱可能轉(zhuǎn)化成我們學(xué)過的長方體。并通過討論得出:反圓柱的底面積分成許多相等的扇形,然后反圓柱切開,再拼起來,就轉(zhuǎn)化近似的.長方體了。)
。2)學(xué)生以小組為單位操作體驗。
把圓柱的底面積分成許多相等的扇形,然后把圓柱切開,再把它拼起來,就轉(zhuǎn)化成近似的長方體了。使學(xué)生進一步明確分的份數(shù)越多,形體中的 越接近 ,也就越接近長方體。同時演示一組動畫(將圓柱底面等分成32份、64等份、128等份)
[設(shè)計意圖:教師提出問題,學(xué)生帶著問題大膽猜測、動手體驗。這樣學(xué)生在自主探索、體驗、領(lǐng)悟的過程中成為了發(fā)現(xiàn)者和創(chuàng)造者。]
。3)學(xué)生小組匯報交流
近似的長方體的體積等于圓柱的體積, 近似的長方體的底面積等于圓柱的底面積,近似的長方體的高就是圓柱的高。根據(jù)長方體的體積等于底面積乘高,得出圓柱的體積也等于底面積乘高。
教師根據(jù)學(xué)生匯報,用教具進行演示。
(4)概括板書:根據(jù)圓柱與近似長方體的關(guān)系,推導(dǎo)公式
長方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計算公式V= sh
[設(shè)計意圖:首先通過學(xué)生的聯(lián)想建立圓柱體和長方體的聯(lián)系,初步建立轉(zhuǎn)化的雛形,然后再通過實踐操作,動畫演示,驗證了學(xué)生的發(fā)現(xiàn),從學(xué)生的認識和發(fā)現(xiàn)中,圍繞著圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學(xué)生從形象具體的知識形成過程(想象、操作、演示)中,認識得以升華(較抽象的認識 公式)]
三、實踐應(yīng)用,鞏固新知。
1、火眼金睛判對錯。
。1)長方體、正方體、圓柱的體積都等于底面積乘高。( )
。2)圓柱的高越大,圓柱的體積就越大。( )
。3)如果兩個圓柱的體積相等,則它們一定等底等高。( )
[設(shè)計意圖:加深對剛學(xué)知識的分析和理解。]
2、計算下面各圓柱的體積。
。1)底面積是30平方厘米,高4厘米。
。2)底面周長是12.56米,高是2米。
(3)底面半徑是2厘米,高10厘米。
[設(shè)計意圖:讓學(xué)生靈活運用公式進行計算。]
3、實踐練習(xí)。
提供在創(chuàng)設(shè)情景中圓柱形接水容器的內(nèi)底面直徑和高。
這個圓柱形容器,內(nèi)底面直徑是10厘米,高12厘米,水面高度10厘米。
[設(shè)計意圖:讓學(xué)生領(lǐng)悟數(shù)學(xué)與現(xiàn)實生活的聯(lián)系。]
4、課堂作業(yè)。
為了美化環(huán)境,陽光小區(qū)在樓前的空地上建了四個同樣大小的圓柱形花壇;▔牡酌鎯(nèi)直徑為4米,高為0、6米,如果里面填土的高度是0、4米,這四個花壇共需要填土多少立方米?
[設(shè)計意圖:使學(xué)生進一步感受到生活中處處有數(shù)學(xué),同時培養(yǎng)學(xué)生的環(huán)保意識。]
四、反思回顧
師:通過本節(jié)課的學(xué)習(xí),你有什么收獲嗎?
[設(shè)計意圖:讓不同層次的學(xué)生談學(xué)習(xí)收獲,可使每個學(xué)生都體驗到成功的喜悅。這樣,學(xué)生的收獲不僅只有知識,還包括能力、方法、情感等,學(xué)生體驗到學(xué)習(xí)的樂趣,增強了學(xué)好數(shù)學(xué)的信心。]
板書設(shè)計:
圓柱的體積
根據(jù)圓柱與近似長方體的關(guān)系,推導(dǎo)公式
長方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計算公式V= sh
教學(xué)反思:
本節(jié)的教學(xué)從生活的實際創(chuàng)設(shè)情境,提出問題,讓學(xué)生學(xué)習(xí)有用的數(shù)學(xué),提高了學(xué)生運用數(shù)學(xué)知識解決身邊問題的能力,從學(xué)數(shù)學(xué)的角度,注意了數(shù)學(xué)知識的特點。運用已有的知識(長方體體積的計算)經(jīng)驗(圓面積公式的推導(dǎo))解決新的問題,在新舊知識的聯(lián)系上,巧妙的利用想象、課件演示將圓和圓柱有機的聯(lián)系到一起,使學(xué)生想象合理、聯(lián)系有方。在探究新知中,通過想象和操作,讓學(xué)生充分經(jīng)歷了知識的形成過程,為較抽象的理論概括提供了必要而有效的感性材料,加強了實踐與知識的聯(lián)系,并創(chuàng)造性的補充了一些與學(xué)生身邊實際生活相聯(lián)系的練習(xí)題,提高了學(xué)生的學(xué)習(xí)興趣。
《圓柱的體積》數(shù)學(xué)教案 5
教材簡析:
本節(jié)內(nèi)容包括圓柱的體積計算公式的推導(dǎo),利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學(xué)生學(xué)過的知識作鋪墊,采用遷移法,引導(dǎo)學(xué)生將圓柱體化成已學(xué)過的立體圖形,再通過觀察、比較找兩個圖形之間的關(guān)系,可推導(dǎo)出圓柱的體積計算公式。
教學(xué)目的:
1、運用遷移規(guī)律,引導(dǎo)學(xué)生借助因面積計算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計算公式,并理解這個過程。
2、會用圓柱的體積計算圓柱形物體的體積和容積,運用公式解決一些簡單的問題。
3、引導(dǎo)學(xué)生逐步學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實際問題的能力
4、借助實物演示,培養(yǎng)學(xué)生抽象、概括的思維能力。
教 具:圓柱的體積公式演示教具,多媒體課件
教學(xué)過程:
一、情景引入
1、出示圓柱形水杯。
。1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?(2)你能用以前學(xué)過的方法計算出這些水的體積嗎?
(3)討論后匯報:把水倒入長方體容器中,量出數(shù)據(jù)后再計算。(4)說一說長方體體積的計算公式。
2、創(chuàng)設(shè)問題情景。(課件顯示)
如果要求壓路機圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?剛才的方法不是一種普遍的方法,那么在求圓柱體積的時候,有沒有像求長方體或正方體體積那樣的計算公式呢?
今天,我們就來一起研究圓柱體積的計算方法。(出示課題:圓柱的體積)(設(shè)計意圖:問題是思維的動力。通過創(chuàng)設(shè)問題情景,可以引導(dǎo)學(xué)生運用已有的生活經(jīng)驗和舊知,積極思考,去探索和解決實際問題,并能制造認知沖突,形成"任務(wù)驅(qū)動"的探究氛圍。)
二、新課教學(xué):
設(shè)疑揭題:我們能把一個圓采用化曲為直、化圓為方的方法推導(dǎo)出了圓面積的計算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學(xué)過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。
1。探究推導(dǎo)圓柱的體積計算公式。
課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份……),讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。C、依次解決上面三個問題。①把圓柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積) ②拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。)③圓柱的體積=底面積×高 字母公式是V=Sh(板書公式)
討論并得出結(jié)果。你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?讓學(xué)生再討論:圓柱體通過切拼,圓柱體轉(zhuǎn)化成近似的 體。這個長方體的底面積與圓柱體的底面積 ,這個長方體的高與圓柱體的高 。因為長方體的體積等于底面積乘以高,所以,圓柱體的體積計算公式是: 。(板書:圓柱的體積=底面積×高)用字母表示: 。(板書:V=Sh)(設(shè)計意圖:在新課教學(xué)中,先讓學(xué)生通過復(fù)習(xí)舊知識,在觀察中理解,在比較中歸納,通過這些措施可以使學(xué)生切實經(jīng)歷圓柱體積公式充分體現(xiàn)了教師的主導(dǎo)作用和學(xué)生的主體作用。這樣的教學(xué),不僅有利于學(xué)生理解算理,掌握算法,而且在公式的推導(dǎo)過程當(dāng)中,領(lǐng)悟了學(xué)習(xí)方法,培養(yǎng)了學(xué)生的學(xué)習(xí)能力、抽象概括能力和邏輯思維能力)
要用這個公式計算圓柱的體積必須知道什么條件?
填表:請同學(xué)看屏幕回答下面問題,
底面積(㎡)高(m)圓柱體積(m3)
63
0.5 8
52
。ㄔO(shè)計意圖:設(shè)計練習(xí)能使學(xué)生達到舉一反三的效果,從而訓(xùn)練學(xué)生的技能。這是第一層基本練習(xí),通過這道題可以使學(xué)生更好的掌握本課重點,夯實基礎(chǔ)知)
例:一個圓柱形油桶,底面內(nèi)直徑是6分米,高是7分米。它的容積約是多少立方分米?(得數(shù)保留整立方分米)
解: d=6dm,h=7dm。r=3dm
S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)
V =S底h =28.26×7 =197.82198dm3 答:油桶的容積約是198立方分
。ㄔO(shè)計意圖:使學(xué)生注意解題格式,注意體積的單位為三次方)
三.鞏固反饋
1.求下面圓柱體的體積。(單位:厘米)
同學(xué)板演,其余同學(xué)在作業(yè)本上做。板演的同學(xué)講解自己的解題方法題,教師歸納學(xué)生所用的解題方法,強調(diào)在解題的過程當(dāng)中格式。(設(shè)計意圖:這是第二層變式練習(xí)。是讓學(xué)生在掌握公式的基礎(chǔ)上理解公式,學(xué)會靈活運用公式的訓(xùn)練題。通過對公式的拓展性理解,可以進一步加深學(xué)生對圓柱體積公式的理解和掌握,同時也能培養(yǎng)學(xué)生的邏輯思維能力。)
練習(xí):(回到想一想中) 圓柱形水杯的底面直徑是10cm,高是15cm。已知水杯中水的體積是整個水杯體積的 2/3 計算水杯中水的體積?
。ㄔO(shè)計意圖:這是第三層發(fā)展性練習(xí),安排了密切聯(lián)系生活實際的習(xí)題,讓學(xué)生運用公式解決引入環(huán)節(jié)中的兩個問題,切實體驗到數(shù)學(xué)就存在于自己的身邊。)
四.拓展練習(xí)
1.一個長方形的`紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,A是用4分米做底高6分米,B是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(結(jié)果保留π)
2.一個底面直徑是20cm的圓柱形容體里,放進一個不規(guī)則的鑄鐵零件后,容體里的水面升高4cm,求這鑄鐵零件的體積是多少?、
。ㄔO(shè)計意圖:安排了密切聯(lián)系生活實際的習(xí)題,讓學(xué)生運用公式解決引入環(huán)節(jié)中的兩個問題,使學(xué)生認識到數(shù)學(xué)的價值體驗到數(shù)學(xué)對于了解周圍世界和解決實際問題是非常有作用的;能使學(xué)生的思維處于積極的狀態(tài)達到培養(yǎng)學(xué)生思維的靈活性和創(chuàng)造性解決問題能力的目的。)
五.課堂小結(jié):
1.談?wù)勥@節(jié)課你有哪些收獲。
2.解題時需要注意那些方面。
。ㄔO(shè)計意圖:收獲包括知識、能力、方法、情感等全方位的體會,在這里采用提問式小結(jié),使學(xué)生暢談收獲、發(fā)現(xiàn)不足,既能訓(xùn)練學(xué)生的語言表達能力,又能培養(yǎng)學(xué)生的歸納概括能力;同時通過對本節(jié)所學(xué)知識的總結(jié)與回顧,還能使學(xué)生學(xué)到的知識系統(tǒng)化、完整化。)
六.布置作業(yè)
1、A冊習(xí)題2.7
2、拓展練習(xí)2題
教學(xué)反思: 本節(jié)課的教學(xué)體現(xiàn)了:
一、利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;
二、遵循學(xué)生的認知規(guī)律,引導(dǎo)學(xué)生觀察、思考、說理,調(diào)動多種感觀參與學(xué)習(xí);
三、正確處理"兩主"關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好。
達到預(yù)期效果,不足處學(xué)生討論時間控制太少,課后作業(yè)個別學(xué)生還是對公式不會靈活應(yīng)用。
《圓柱的體積》數(shù)學(xué)教案 6
一、教學(xué)目標(biāo)
。ㄒ唬┲R與技能
用已學(xué)的圓柱體積知識解決生活中的實際問題,并滲透轉(zhuǎn)化思想。
。ǘ┻^程與方法
經(jīng)歷探究不規(guī)則物體體積的轉(zhuǎn)化、測量和計算過程,讓學(xué)生在動手操作中初步建立“轉(zhuǎn)化”的數(shù)學(xué)思想,體驗“等積變形”的轉(zhuǎn)化過程。
。ㄈ┣楦袘B(tài)度和價值觀
通過實踐,讓學(xué)生在合作中建立協(xié)作精神,并增強學(xué)生“用數(shù)學(xué)”的意識。
二、教學(xué)重難點
教學(xué)重點:利用所學(xué)知識合理靈活地分析、解決不規(guī)則物體的體積的計算方法。
教學(xué)難點:轉(zhuǎn)化前后的溝通。
三、教學(xué)準備
每組一個礦泉水瓶(課前統(tǒng)一搜集農(nóng)夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。
四、教學(xué)過程
。ㄒ唬⿵(fù)習(xí)舊知,做好鋪墊
1、板書:圓柱的體積。
問:圓柱的.體積怎么計算?體積和容積有什么區(qū)別?
2、揭題:這節(jié)課,我們要根據(jù)這些體積和容積的知識來解決生活中的實際問題。(完整板書:用圓柱的體積解決問題)
【設(shè)計意圖】通過復(fù)習(xí)圓柱的體積計算方法以及體積和容積之間的聯(lián)系和區(qū)別,為學(xué)習(xí)新知做好知識上的準備。
(二)探索實踐,體驗轉(zhuǎn)化過程
1、創(chuàng)設(shè)情境,提出問題。
每個小組桌子上有一個沒有裝滿水的礦泉水瓶。
教師:原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來提一個數(shù)學(xué)問題嗎?(隨機板書)
預(yù)設(shè)1:瓶子還有多少水?(剩下多少水?)
預(yù)設(shè)2:喝了多少水?(也就是瓶子的空氣部分。)
預(yù)設(shè)3:這個瓶子一共能裝多少水?(也就是這個瓶子的容積是多少?)
2、你覺得你能輕松解決什么問題?
(1)預(yù)設(shè)1:瓶子有多少水?(怎么解決?)
學(xué)生:瓶子里剩下的水呈圓柱狀,只要量出這個圓柱的底面直徑和高就能算出它的體積。
教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數(shù)據(jù)?(底面直徑、水的高度)
小結(jié):知道了底面直徑和水的高度,要解決這個問題的確輕而易舉。請你準備好直尺,或許等會兒有用哦!
。2)預(yù)設(shè)2:喝了多少水?
學(xué)生:喝掉部分的形狀是不規(guī)則,沒有辦法計算。
教師:當(dāng)物體形狀不規(guī)則時,我們想求出它的體積可以怎么辦?
教師相機引導(dǎo):能否將空氣部分變成一個規(guī)則的立體圖形呢?
學(xué)生能說出方法更好,不能說出則引導(dǎo):我們不妨把瓶子倒過來看看,你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生發(fā)現(xiàn):在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個圓柱,要求出它的體積需要哪些數(shù)據(jù)?(倒置后空氣的高度)
小結(jié):這個方法不錯,我們利用水的流動性成功地將不規(guī)則的空氣部分轉(zhuǎn)化成了一個圓柱體,得到所需數(shù)據(jù)后能求出它的體積。這樣一來,第3個問題還難得到你嗎?
《圓柱的體積》數(shù)學(xué)教案 7
教學(xué)內(nèi)容:
P19-20頁例5、例6及補充例題,完成做一做及練習(xí)三第1~4題。
教學(xué)目標(biāo):
1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。
2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。
教學(xué)重點:
掌握圓柱體積的計算公式。
教學(xué)難點:
圓柱體積的計算公式的推導(dǎo)。
教學(xué)過程:
一、復(fù)習(xí)
1、長方體的體積公式是什么?正方體呢?(長方體的體積=長寬高,長方體和正方體體積的統(tǒng)一公式底面積高,即長方體的體積=底面積高)
2、拿出一個圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。(刪掉)
3、復(fù)習(xí)圓面積計算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的計算公式導(dǎo)出求圓面積的計算公式。
師小結(jié):圓的面積公式的推導(dǎo)是利用轉(zhuǎn)化的思想把一個曲面圖形轉(zhuǎn)化成以前學(xué)的長方形,今天我們學(xué)習(xí)圓柱體體積公式的推導(dǎo)也要運用轉(zhuǎn)化的思想同學(xué)們猜猜會轉(zhuǎn)化成什么圖形?
二、新課
1、圓柱體積計算公式的推導(dǎo)。
(1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的`立體圖形課件演示)
(2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細分,拼成一個長方體)
反復(fù)播放這個過程,引導(dǎo)學(xué)生觀察思考,討論:在變化的過程中,什么變了什么沒變?
長方體和圓柱體的底面積和體積有怎樣的關(guān)系?
學(xué)生說演示過程,總結(jié)推倒公式。
(3)通過觀察,使學(xué)生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積高,所以圓柱的體積=底面積高,V=Sh)
《圓柱的體積》數(shù)學(xué)教案 8
教學(xué)內(nèi)容:
北師大版小學(xué)數(shù)學(xué)教材六年級下冊第8—10頁。
教學(xué)目標(biāo):
1、結(jié)合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,能夠運用公式正確的計算圓柱的體積和容積。
2、初步學(xué)會用轉(zhuǎn)化的思想和方法,提高解決實際問題的能力。
教學(xué)重點、難點:
重點:掌握圓柱體積的計算公式。
難點:圓柱體積計算公式的推導(dǎo)。
教學(xué)過程:
一、情境導(dǎo)入
1、出示教學(xué)情境:怎樣用學(xué)過的知識測量出老師的水杯里裝了多少毫升的水?
想一想:杯子里的水是什么形狀?準備用什么方法來計算水的體積?
讓學(xué)生討論得出:把杯子里的水倒入長方體或正方體容器,只要量出長方體的長、寬和水的高,就能求出水的體積。
2、出示第二情境:圓柱形的木柱子、壓路機的車輪這樣的圓柱用這種方法還行嗎?怎么辦?
怎樣計算圓柱的體積?這就是我們本節(jié)課要研究的問題。(板書課題:計算圓柱的體積)
二、探究新知:
1、大膽猜想:你覺得圓柱體積的大小和什么有關(guān)?
學(xué)生猜想,教師出示相應(yīng)的課件演示,讓學(xué)生觀察,體會圓柱的體積和它的底面積和高,有關(guān)系,有怎樣的關(guān)系。
2、圓柱的體積可能等于什么?(說說猜想依據(jù))
長方體,正方體的體積都等于“底面積×高”猜想圓柱的體積也可能等于“底面積×高”。
。ㄓ谜n件展示切拼過程,讓學(xué)生觀察等分的份數(shù)越多越接近長方體,彌補直觀操作等分的份數(shù)太多不易操作的缺陷。)
學(xué)生討論交流:
。1)把圓柱拼成長方體后,什么變了,什么沒變?
(2)拼成的長方體與圓柱之間有什么聯(lián)系?
。3)通過觀察得到什么結(jié)論?
得到:圓柱的體積=底面積×高 V=Sh
三、拓展交流
要求圓柱的體積只要找到它的底面積和高就可以,分別討論知道半徑、直徑、地面周長,該怎么求出圓柱的體積,總結(jié)出公式。
四、練習(xí)設(shè)計:
1、想一想,填一填:
把圓柱體切割拼成近似(),它們的()相等。長方體的高就是圓柱體的( ),長方體的底面積就是圓柱體的( ),因為長方體的體積=(),所以圓柱體的體積=()。用字母“V”表示( ),“S”表(),“h”表示( ),那么,圓柱體體積用字母表示為( )
2、判斷正誤,對的畫“√”,錯誤的畫“×”。
(1)圓柱體的.底面積越大,它的體積越大!
(2)圓柱體的高越長,它的體積越大!
(3)圓柱體的體積與長方體的體積相等!
(4)圓柱體的底面直徑和高可以相等!
3、分別計算下列各圖形的體積,再說說這幾個圖形體積計算方法之間的聯(lián)系。
4×3×8
6×6×6
3.14×(5÷2)2×8
。96(cm3)
。216(cm3)
。157(cm3)
4、計算下面各圓柱的體積。
60×4
3.14×12×5
3.14×(6÷2)2×10
=240(cm3)
。15.7(cm3)
。282.6(dm3)
5、這個杯子能否裝下3000mL的牛奶?
3.14×(14÷2)2×20
=3077.2(cm3)
。3077.2(mL)
3077.2mL>3000mL
答:這個杯子能裝下3000mL的牛奶。
五、課堂小結(jié):談?wù)勥@節(jié)課你有哪些收獲?
《圓柱的體積》數(shù)學(xué)教案 9
教學(xué)目標(biāo):
1、了解圓柱體體積(包括容積)的含義,進一步理解體積和容積的含義。
2、經(jīng)歷探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
3、培養(yǎng)初步的空間觀念和思維能力;進一步認識“轉(zhuǎn)化”的思考方法。
教學(xué)重點:
理解和掌握圓柱的體積計算公式,會求圓柱的體積
教學(xué)難點:
理解圓柱體積計算公式的推導(dǎo)過程。
教學(xué)用具:
圓柱體積演示教具。
教學(xué)過程:
一、復(fù)述回顧,導(dǎo)入新課
以2人小組回顧下列內(nèi)容:(要求1題組員給組長說,組長補充。2題同桌互說。說完后坐好。)
1、說一說:(1)什么叫體積?常用的體積單位有哪些?
(2)長方體、正方體的體積怎樣計算?如何用字母表示?
長方體、正方體的體積=()×()用字母表示()
2、求下面各圓的面積(只說出解題思路,不計算。)
(1)r=1厘米;(2)d=4分米;(3)C=6.28米。
(二)揭示課題
你想知道課本第8頁左上方“柱子的體積”嗎?你想知道“一個圓柱形杯子能裝多少水”嗎?今天就來學(xué)習(xí)“圓柱的體積”。(板書課題)
二、設(shè)問導(dǎo)讀
請仔細閱讀課本第8-9頁的內(nèi)容,完成下面問題
(一)以小組合作完成1、2題。
1、猜一猜,圓柱的體積可能等于()×()
2、我們在學(xué)習(xí)圓的面積計算公式時,指出:把一個圓分成若干等份,可以拼成一個近似的長方形。這個長方形的面積就是圓的面積。圓柱的底面也可以像上面說的那樣轉(zhuǎn)化成一個近似的長方形,通過切、拼的方法,把圓柱轉(zhuǎn)化為一個近似的長方體(如課本第8頁右下圖所示)。(用自己手中的學(xué)具進行切、拼)觀察拼成的長方體與原來的圓柱之間的關(guān)系
(1)圓柱的底面積變成了長方體的()。
(2)圓柱的高變成了長方體的()。
(3)圓柱轉(zhuǎn)化成長方體后,體積沒變。因為長方體的體積=()×(),所以圓柱的體積=()×()。如果用字母V代表圓柱的`體積,S代表底面積,h代表高,那么圓柱的體積公式可用字母表示為()
[匯報交流,教師用教具演示講解2題]
(二)獨立完成3、4題。
3、如果已知課本第8頁左上方柱子的底面半徑為0.4米,高5米,怎樣計算柱子的體積?
先求底面積,列式計算()
再求體積,列式計算()
綜合算式()
4、要想知道“一個圓柱形杯子能裝多少水?”可以用杯子的“()×()”(杯子厚度忽略不計)
【要求:完成之后以小組互查,有爭議之處四人大組討論。】
教師根據(jù)學(xué)生做題情況挑選一些小組進行匯報、交流,并對小組學(xué)習(xí)情況進行評價。
三、自我檢測
1、課本9頁試一試
2、課本9頁練一練1題(只列式,不計算)
【要求:完成后小組互查,教師評價】
四、鞏固練習(xí)
課本練一練的2、3、4題
【要求:組長先給組員講解題思路,然后小組內(nèi)共同完成】
教師進行錯例分析。
五、拓展練習(xí)
1、課本練一練的5題
2、有一條圍糧的席子,長6.28米,寬2.5米,把它圍成一個筒狀的糧食囤,怎樣圍盛的糧食多?最多能盛多少立方米的糧食?
【要求:先組內(nèi)討論確定解題思路,再完成】
六、課堂總結(jié),布置作業(yè)
1、總結(jié):這節(jié)我們利用轉(zhuǎn)化的方法,把圓柱轉(zhuǎn)化為長方體來推導(dǎo)其體積公式,切記用“底面積×高”來求圓柱的體積。
2、作業(yè):課本練一練6題
《圓柱的體積》數(shù)學(xué)教案 10
教學(xué)目標(biāo):
1、使學(xué)生理解圓柱側(cè)面積和圓柱表面積的含義,掌握圓柱側(cè)面積和表面積的計算方法。
2、根據(jù)圓柱表面積和側(cè)面積的關(guān)系,使學(xué)生學(xué)會運用所學(xué)的知識解決簡單的實際問題。
教學(xué)重點:目標(biāo)1。
教學(xué)難點:目標(biāo)2。
教學(xué)過程:
活動一:復(fù)習(xí)舊知,鞏固學(xué)過的公式。
1、一個直徑是100毫米的圓,求周長。
2、一個半徑3厘米的圓,求周長和面積。
3、一個長為3米,寬為2米的長方形,它的面積是多少?
4、出示圓柱體的模型,說說它有什么特征?
活動二;探究新知。
1、做一個圓柱形紙盒,至少需要多大面積的`紙板?(接口處不計)
要解決這個問題,就是求什么?
2、圓柱的表面積包括哪幾部分?
3、圓柱的表面積的計算關(guān)鍵在哪一部分?
4、探索圓柱側(cè)面積的計算方法。
1)圓柱的側(cè)面展開后是一個怎樣的圖形呢?用一張長方形的紙,可以卷成圓柱形。
2)圓柱側(cè)面展開圖的長和寬與這個圓柱有什么關(guān)系?怎樣求圓柱的側(cè)面積呢?
3)師;圓柱的側(cè)面積就是求長方形的面積。用長乘寬。
4)長就是圓柱的底面圓的周長,寬就是圓柱的高。
5)請你來總結(jié)一下圓柱側(cè)面積的計算方法。
6)圓柱的側(cè)面積用2∏rh,求圓柱的表面積要用側(cè)面積加兩個底面積。
活動三:新知識的運用。
1、求底面半徑是10厘米,高30厘米的圓柱的表面積。
2、教師板書:
側(cè)面積:2╳3.14╳10╳30=1884(平方厘米)
底面積:3.14╳10╳10=314(平方厘米)
表面積:1884+314╳2=2512(平方厘米)
要求按步驟進行書寫。
2、試一試。
做一個無蓋的圓柱形鐵皮水桶,底面直徑圍分米,高為5分米,至少需要多大面積的鐵皮?
求至少需要多少鐵皮,就是求水桶的表面積。
這道題要注意什么?無蓋就只算一個底面。這種題如果求整數(shù),一般用進一法。
3、練一練。書第6頁第1題。
3個小題:已知底面直徑或底面周長和高,求圓柱的表面積。重點討論:已知底面周長,求表面積。
《圓柱的體積》數(shù)學(xué)教案 11
教學(xué)目標(biāo)
1.使學(xué)生初步理解和掌握圓柱的體積計算公式。會用公式計算圓柱的體積,并能應(yīng)用分式解答一些實際問題。
2.在充分展示體積公式推導(dǎo)過程的基礎(chǔ)上,培養(yǎng)學(xué)生推理歸納能力和自學(xué)能力。
教學(xué)重點和難點
圓柱體積公式推導(dǎo)過程;正確理解圓柱體積公式推導(dǎo)過程。
教學(xué)過程設(shè)計
我們已經(jīng)認識了圓柱體,學(xué)會了圓柱體側(cè)面積和表面積的計算,今天研究圓柱的體積。(板書:圓柱的體積)
(一)復(fù)習(xí)準備
1.什么叫體積?(指名回答)
生:物體所占空間的大小叫做體積。
師:你學(xué)過哪些體積的計算公式?(指名回答)
根據(jù)學(xué)生的回答,板書:
長方體體積=底面積×高
2.圓面積公式是怎樣推導(dǎo)出來的?
生:把一個圓,平均分成數(shù)個扇形,拼成一個近似長方形,長方形的長相當(dāng)于圓周長的一半,寬相當(dāng)于圓的半徑,(根據(jù)學(xué)生的敘述,邊用幻燈片演示。)得到圓面積公式S=πr2。
(二)學(xué)習(xí)新課
1.動腦筋想一想,圓柱的體積,能不能轉(zhuǎn)化成你學(xué)過的形體,推導(dǎo)出計算圓柱體積的公式?
2.看書自學(xué)。
(1)圓柱體是怎樣變成近似長方體的?
(2)切拼成的長方體與圓柱體有什么關(guān)系?
(3)怎樣計算切拼成的長方體體積?
3.推導(dǎo)圓柱體積公式。
(1)討論自學(xué)題(1)。圓柱體是怎樣變成長方體的?(指名敘述)再看看書和你敘述的一樣嗎?
把圓柱體底面分成許多相等的扇形(例如分成16份),然后把圓柱切開,拼成一個近似長方體。(教師加以說明,底面扇形平均分的份數(shù)越多,拼成的立體圖形越接近長方體。)
(2)動手操作切拼,將圓柱體轉(zhuǎn)化成長方體。
出示兩個等底等高圓柱體,讓學(xué)生比一比,底面積大小一樣,高相等,使學(xué)生確信,兩個圓柱體的體積相等。
請兩名同學(xué)按照你們的敘述,把圓柱體切拼成長方體。(如有條件,每四人一個學(xué)具,人人動手切拼,充分展示切拼過程和公式推導(dǎo)過程。)
現(xiàn)在討論自學(xué)題(2)。
師:這個長方體與圓柱體比較一下,什么變了?什么沒變?
生:形狀變了,體積大小沒變。
(3)推導(dǎo)圓柱體積公式。
討論:切拼成的長方體與圓柱體有什么關(guān)系?(引導(dǎo)學(xué)生有順序的進行敘述,分小組討論,讓學(xué)生充分發(fā)言。)
小結(jié):切拼成的長方體的'體積相當(dāng)于圓柱的體積,長方體的底面積相當(dāng)于圓柱體的底面積,長方體的高相當(dāng)于圓柱體的高。
師:圓柱的體積怎樣計算?用字母公式,怎樣表示?
板書: V=Sh
(4)利用公式進行計算。
例1 一根圓柱形鋼材,底面積是50平方厘米,高2。1米,它的體積是多少?
引導(dǎo)學(xué)生審題,說出題目中的已知條件和問題。做這道題還要注意什么?
生:已知圓柱體底面積和高,求圓柱的體積,注意統(tǒng)一單位名稱。
2。1米=210厘米 (①用字母表示已知條件)
S=50 h=210 (②寫出字母公式)
V=Sh (③列式計算)
=50×210 (④寫出答題)
=10500
答:它的體積是10500立方厘米。
引導(dǎo)學(xué)生總結(jié)出做題步驟。
小結(jié):要求圓柱體積,必須知道圓柱的底面積(如果給半徑、直徑、底面周長,會求出底面積)和高。注意統(tǒng)一單位名稱。
(三)鞏固反饋
1.圓柱體的底面積3。14平方分米,高40厘米。它的體積是多少?
2.求下面圓柱體的體積。(單位:厘米)
3.填表:
4.一個圓柱形容器,底面半徑是25厘米,高8分米。它的容積是多少立方分米?
5.一個圓柱形糧囤,從里面量,底面周長是6。28米,高20分米。它的容積是多少立方米?
(四)課堂總結(jié)
這節(jié)課,你學(xué)會了什么?還有什么問題?
生:學(xué)會了圓柱體的體積計算公式,并會用公式解答實際問題。
思考題:
一張長方形的紙長6。28分米,寬4分米。用它分別圍成兩個圓柱體,它們的體積大小一樣嗎?請你計算一下。
課堂教學(xué)設(shè)計說明
本節(jié)教案分三個層次。
第一層次是復(fù)習(xí)。
第二層次,推導(dǎo)圓柱體的計算公式。在學(xué)生自學(xué)的基礎(chǔ)上,親自動手切拼,把圓柱體轉(zhuǎn)化成近似的長方體,找出近似長方體與原圓柱體各部分相對應(yīng)部分,從而推出圓柱體積計算公式。用知識遷移法,把舊知識發(fā)展重新構(gòu)建轉(zhuǎn)化為新知識,使學(xué)生認識到形變質(zhì)沒變的辯證關(guān)系,培養(yǎng)學(xué)生自學(xué)能力,動手能力,觀察分析和歸納能力。
第二層次,針對本節(jié)所學(xué)知識內(nèi)容,安排適度練習(xí),由易到難,由淺入深,使學(xué)生當(dāng)堂掌握所學(xué)的新知識,并通過練習(xí)達到一定技能。
本節(jié)教案特點:充分體現(xiàn)以教師為主導(dǎo),學(xué)生為主體,讓學(xué)生動手、動腦、參與教學(xué)全過程,較好地處理教與學(xué),練與學(xué)的關(guān)系。寓教于玩中學(xué)會新知識,使學(xué)生愛學(xué)、會學(xué),培養(yǎng)了學(xué)生動手操作能力、口頭表達能力和邏輯思維能力,讓學(xué)生充分體驗成功的喜悅。
《圓柱的體積》數(shù)學(xué)教案 12
一、教學(xué)目標(biāo):
1.結(jié)合具體情境,讓學(xué)生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。
2.讓學(xué)生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗數(shù)學(xué)研究的方法。
3.通過圓柱體積計算公式的推導(dǎo)、運用的過程,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
二、教學(xué)重難點:
掌握和運用圓柱體積計算公式, 圓柱體積公式的推導(dǎo)過程。
三、教學(xué)方法:
從生活情境入手,通過組織猜測、操作、交流等數(shù)學(xué)活動,使學(xué)生經(jīng)歷“做數(shù)學(xué)”的過程,鼓勵學(xué)生獨立思考,引導(dǎo)學(xué)生自主探索、合作交流,讓學(xué)生根據(jù)已有的知識經(jīng)驗創(chuàng)造性地建構(gòu)圓柱體積計算公式,鼓勵解決問題策略的多樣化,讓學(xué)生的思維得到發(fā)展,創(chuàng)新精神、實踐能力得到提高。
四、教學(xué)步驟
。ㄒ唬﹦(chuàng)設(shè)情景 提出問題情境引入:
某玩具廠廠長,他們廠新近開發(fā)了一種積木玩具,這三個積木的底面積和高都相等,他想比較一下這三個積木的體積的大小,同學(xué)們有什么方法?
。ǘ﹦邮謱嶒, 探索公式
1.觀察、比較,建立猜想引導(dǎo)生觀察例4中的三個幾何體,提問:
(1)長方體、正方體的體積相等嗎?為什么?
(板書:長方體的體積=底面積×高)
。2)圓柱的體積與長方體、正方體的體積可能相等嗎?這三個幾何體的底面積和高都相等,它們的體積有什么關(guān)系?
2.實驗操作,驗證猜想讓學(xué)生自主探究(材料:圓柱體插拼教學(xué)具、師準備課件),想辦法驗證圓柱的體積與長方體、正方體的體積相等。
教師提示:你能想辦法把圓柱轉(zhuǎn)化成長方體嗎?圓是如何轉(zhuǎn)化成長方形的?可以模仿這樣的方法來轉(zhuǎn)化。
(1)小組合作研究怎樣將圓柱體轉(zhuǎn)化成一個長方體
。2)小組代表匯報,全班交流
。▽W(xué)生按照自己的'方式來轉(zhuǎn)化,會有多種轉(zhuǎn)化方法,教師適時加以鼓勵)
演示操作
a請一名學(xué)生演示用切插拼的方法把圓柱體轉(zhuǎn)化成長方體。其他學(xué)生模仿操作。
b思考:這是一個標(biāo)準的長方體嗎?為什么?如果分割得份數(shù)越多,你會有什么發(fā)現(xiàn)?
c電腦演示圓柱體轉(zhuǎn)化成長方體的過程(從16等份到32等份再到64等份)
3.觀察比較,推導(dǎo)公式
a圓柱體轉(zhuǎn)化成長方體后,什么變了,什么沒有變?
b 根據(jù)學(xué)生的觀察、分析、推想,老師完成板書:
長方體的體積=底面積×高
圓柱的體積 = 底面積×高
d小結(jié):要想求出一個圓柱的體積,需要知道什么條件? e學(xué)生自學(xué)第8頁例4上面的一段話:用字母表示公式。
學(xué)生反饋自學(xué)情況,師板書公式:v=sh
。ㄈ╈柟叹毩(xí), 拓展應(yīng)用
1.出示第26頁試一試,學(xué)生理解題意,獨立完成。集體訂正,說一說每一步列式的根據(jù)是什么?使學(xué)生明確應(yīng)用體積公式求圓柱的體積一般需要兩個條件,即底面積和高。
2.完成第26頁的“練一練”的第1題。
先看圖說說每個圓柱中的已知條件,再各自計算,計算后,說一說計算的過程,強調(diào):計算圓柱體的體積要先算出底面積。
3.完成第26頁的“練一練”的第2題。
讀題后強調(diào)說說為什么電飯煲要從里面量底面直徑和高,然后列式解答。
4、把直尺繞著它的一條邊旋轉(zhuǎn)一圈得到了一個什么圖形?它的體積你會計算嗎?
。ㄋ模┛偨Y(jié)回顧 評價反思
這節(jié)課你學(xué)會了什么?你是怎樣學(xué)會的?
五、板書設(shè)計:
圓柱的體積
切拼成的長方體的體積等于圓柱的體積,長方體的底面積就相當(dāng)于圓柱的底面積,長方體的高就相當(dāng)于圓柱的高。
長方體的體積=底面積×高
圓柱的體積=底面積×高
字母表示:V=Sh=πrh2
《圓柱的體積》數(shù)學(xué)教案 13
教學(xué)內(nèi)容:
人教版小學(xué)數(shù)學(xué)六年級下冊《圓柱的體積》P25-26。
教學(xué)目標(biāo):
1.經(jīng)歷探究和推導(dǎo)圓柱的體積公式的過程。
2.知道并能記住圓柱的體積公式,并能運用公式進行計算。
3.在自主探究圓柱的體積公式的過程中,體驗、感悟數(shù)學(xué)規(guī)律的來龍去脈,知道長方體與圓柱體底面和高各部分間的對應(yīng)關(guān)系。發(fā)展學(xué)生的觀察能力和分析、綜合、歸納推理能力。
4.激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生體驗成功的快樂。
5.培養(yǎng)學(xué)生的轉(zhuǎn)化思想,滲透辯證法和極限的思想。
教學(xué)重點:掌握和運用圓柱體積計算公式
教學(xué)難點:圓柱體積公式的推導(dǎo)過程
教具學(xué)具準備:教學(xué)課件、圓柱體。
教學(xué)過程:
一、復(fù)習(xí)導(dǎo)入
1.同學(xué)們想一想,我們已經(jīng)學(xué)習(xí)了哪些立體圖形的體積?怎樣計算長方體和正方體的體積?長方體的體積和正方體的體積的通用公式是什么呢?用字母怎樣表示?
2.回憶一下圓面積的計算公式是如何推導(dǎo)出來的?
。ńY(jié)合課件演示)這是一個圓,我們把它平均分割,再拼合就變成了一個近似的平行四邊形。我們還可以往下繼續(xù)分割,無限分割就變成了一個長方形。長方形的長相當(dāng)于圓周長的一半,可以用πR表示,長方形的寬就當(dāng)于圓的半徑,用R表示。所以用周長的一半×半徑就可以求出圓的面積,所以推導(dǎo)出圓的面積公式是S=πR。
3.課件出示一個圓柱體
我們把圓轉(zhuǎn)化成了近似的長方形,同學(xué)們猜想一下圓柱可以轉(zhuǎn)化成什么圖形呢?
二、探索體驗
1.學(xué)生猜想可以把圓柱轉(zhuǎn)化成什么圖形?
2.課件演示:把圓柱體轉(zhuǎn)化成長方體
、偈窃鯓悠闯傻?
②觀察是不是標(biāo)準的長方體?
③演示32等份、64等份拼成的長方體,比較一下發(fā)現(xiàn)了什么?引出課題并板書。
3.借鑒圓的面積公式的推導(dǎo)過程試著推導(dǎo)圓柱的體積公式。
課件出示要求:
、倨闯傻拈L方體與原來的圓柱體比較什么變了?什么沒變?
②推導(dǎo)出圓柱體的體積公式。
學(xué)生結(jié)合老師提出的問題自己試著推導(dǎo)。
4.交流展示
小組討論,交流匯報。
生匯報師結(jié)合講解板書。
圓柱體積=底面積×高
‖ ‖ ‖
長方體體積=底面積×高
用字母公式怎樣表示呢? v、s、h各表示什么?
5.知道哪些條件可以求出圓柱的體積?
6.計算下面圓柱的體積。
①底面積24平方厘米,高12厘米
、诘酌姘霃2厘米,高5厘米
、壑睆10厘米,高4厘米
④周長18.84厘米,高12厘米
三、課堂檢測
1.判斷
、賵A柱體、長方體和正方體的體積都可以用底面積乘高的方法來計算。( )
②圓柱的'底面積擴大3倍,體積也擴大3倍。( )
、垡粋長方體與一個圓柱體底面積相等,高也相等,那么它們的體積也相等。( )
④圓柱體的底面直徑和高可以相等。( )
⑤兩個圓柱體的底面積相等,體積也一定相等。( )
、抟粋圓柱形的水桶能裝水15升,我們就說水桶的體積是15立方分米。( )
2.聯(lián)系生活實際解決實際問題。
下面的這個杯子能不能裝下這袋奶?
。ū拥臄(shù)據(jù)從里面量得到直徑8cm,高10cm;牛奶498ml)
學(xué)生獨立思考回答后自己做在練習(xí)本上。
3.一個壓路機的前輪是圓柱形,輪寬2米,半徑1米,它的體積是多少立方米?
4.生活中的數(shù)學(xué)
一個用塑料薄膜蓋的蔬菜大棚,長15米,橫截面是一個半徑2米的半圓。
、俑采w在這個大棚上的塑料薄膜約有多少平方米?
②大棚內(nèi)的空間大約有多大?
獨立思考后小組討論,兩生板演。
四、全課總結(jié)
這節(jié)課你有什么收獲?
五、課后延伸
如果要測量圓柱形柱子的體積,測量哪些數(shù)據(jù)比較方便?試一試吧?
六、板書設(shè)計
圓柱體積= 底面積×高
長方體體積=底面積×高
《圓柱的體積》數(shù)學(xué)教案 14
教學(xué)目標(biāo):
1、理解圓柱體積公式的推導(dǎo)過程。
2、能夠初步地學(xué)會運用體積公式解決簡單的實際問題。
3、進一步提高學(xué)生解決問題的能力。
教學(xué)重、難點:
1、理解圓柱體積公式的推導(dǎo)過程。
2、能夠初步地學(xué)會運用體積公式解決簡單的實際問題。
3、理解圓柱體積公式的推導(dǎo)過程。
教學(xué)準備:
圓柱切割組合模具、小黑板。
教學(xué)過程:
一、創(chuàng)設(shè)情境,生成問題
1、什么是體積?(物體所占空間的大小叫做物體的體積。)
2、長方體的體積該怎樣計算?歸納到底面積乘高上來。
3、圓的面積怎樣計算?
二、探索交流,解決問題
1、計算圓的面積時,是把圓面積轉(zhuǎn)化成我們學(xué)過的長方形進行計算的,能不能把圓柱轉(zhuǎn)化成我們學(xué)過的立體圖形來計算它的體積?
(啟發(fā)學(xué)生思考。)
2、把圓柱的.底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會拼成怎樣的圖形?教師演示,引導(dǎo)學(xué)生進行觀察。
3、思考:
(1)圓柱切開后可以拼成一個什么形體?(長方體)
(2)通過實驗?zāi)惆l(fā)現(xiàn)了什么?小組討論:實驗前后,什么變了?什么沒變?討論后,整理出來,再進行匯報。
(拼成的近似長方體體積大小沒變,形狀變了,拼成的近似長方體和圓柱相比,底面形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。近似長方形的高就是圓柱的高,沒有變化。)
4、推導(dǎo)圓柱體積公式
小組討論:怎樣計算圓柱的體積?
學(xué)生匯報討論結(jié)果。
長方體的體積可以用底面積乘高來計算,而在推導(dǎo)過程中,長方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來計算。
師:圓柱的體積怎樣計算?用字母公式,怎樣表示?
板書:V=Sh
5、算一算:已知一根柱子的底面半徑為0.4米,高為5米。你能算出它的體積嗎?
三、鞏固應(yīng)用練習(xí)。
1、一個圓柱形水桶,從桶內(nèi)量得底面直徑是3分米,高是4分米,這個水桶的容積是多少升?說明:求水桶的容積,就是求水桶的體積。想一想先求什么?
2、一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?先求底面半徑再求底面積,最后求體積。已知底面周長對解決問題有什么幫助嗎?必須先求出什么?
四:課堂小結(jié):
通過這節(jié)課你學(xué)會了哪些知識,有什么收獲?
五:課后作業(yè):
教材第9頁,練一練第1、3、4、題
《圓柱的體積》數(shù)學(xué)教案 15
教學(xué)內(nèi)容:
教材第8-9頁圓柱的體積公式,例4和“試一試”及“練一練”,練習(xí)二第1-4題。
教學(xué)要求:
1、使學(xué)生理解和掌握圓柱的體積計算公式,并能根據(jù)題里的條件,正確地求出圓柱的體積。
2、培養(yǎng)學(xué)生初步的空間觀念和思維能力;讓學(xué)生認識“轉(zhuǎn)化”的思考方法。
教具準備:
圓柱體積演示教具。
教學(xué)過程:
一、復(fù)習(xí)引新
1、求下面各圓的面積(口答)
。1)r=1厘米粉
。2)d=4厘米
。3)c=6.28米
2、想一想,學(xué)習(xí)計算圓的面積時,是怎樣得出圓的面積計算公式的?
3、提問:什么叫體積?常用的體積單位有哪些?
4、已知長方體的底面積S和高h,怎樣計算長方體的體積?
二、教學(xué)新課
1、根據(jù)學(xué)過的體積概念,說說什么是圓柱的體積。
2、怎樣計算圓柱的體積呢?我們能不能根據(jù)圓柱的底面可以像上面說的轉(zhuǎn)化成一個長方形,通過切、拼的'方法,把圓柱轉(zhuǎn)化為已學(xué)過的立體圖形來計算呢?現(xiàn)在我們大家一起來討論。
3、公式推導(dǎo)。
。1)請同學(xué)們指出圓住體的底面積和高。
。2)回顧圓面積公式的推導(dǎo)。(切拼轉(zhuǎn)化)
。3)探索求圓柱體積的公式。
(4)討論并得出結(jié)果。
圓柱體通過切拼,圓柱體轉(zhuǎn)化成近似的()體。
這個長方體的底面積與圓柱體的底面積(),這個長方體的高與圓柱體的高(),這個長方體高與圓柱體的高()。
因為長方體的體積等于底面積乘以高,所以,圓柱體的體積,計算公式是:()。
用字母表示:()。
。5)小結(jié)
4、教學(xué)例4
出示例4,審題。
提問:你能獨立完成這題嗎?
指名一人板演,其余學(xué)生做在練習(xí)本上。
5、做練習(xí)二第1題。
讓學(xué)生做在課本上。
6、教學(xué)“試一試”一個圓柱的底面半徑是2分米,高是8米,求它的體積。
指名一人板演,其余學(xué)生做在練習(xí)本上。
三、鞏固練習(xí)
做“練一練”第1、2題。
讓學(xué)生做在練習(xí)本上。
讓學(xué)生說一說這兩題列式有什么不同,為什么不一樣。
四、課堂小結(jié)
這節(jié)課學(xué)習(xí)了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?
五、布置作業(yè)
課堂作業(yè):練習(xí)二第2、3題。
家庭作業(yè):練習(xí)二第4題
《圓柱的體積》數(shù)學(xué)教案 16
教學(xué)內(nèi)容:
北師大版教學(xué)六年級《圓柱的體積》
教學(xué)目標(biāo):
1、結(jié)合具體的情境和實踐活動,理解圓柱體體積的含義。
2、經(jīng)歷探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
3、培養(yǎng)學(xué)生初步的空間觀念和思維能力;
教學(xué)重點:
理解和掌握圓柱的體積計算公式,會求圓柱的體積。
教學(xué)難點:
理解圓柱體積計算公式的推導(dǎo)過程。
教具準備:
圓柱體積演示教具。
教學(xué)過程:
一、舊知鋪墊
1、談話引入
最近我們認識了圓柱和圓錐,還學(xué)會了計算圓柱的表面積,F(xiàn)在請看老師的這個圓柱形杯子和這個圓柱比較,誰大?這里所說的大小實際是指它們的什么?(生答)
2、提出問題:什么叫體積?我們學(xué)過那些圖形的體積?怎么算的?(生答師隨之板書)
這節(jié)課我們就來學(xué)習(xí)圓柱的體積。
二、自主探究,解決問題
(一)認識圓柱體積的意義。
圓柱的體積到底是指什么?誰能舉例說呢?
(二)圓柱體積的計算公式的推導(dǎo)。
1、我們學(xué)過長方體和正方體體積的計算,圓柱體的體積跟什么有關(guān)呢?你會有怎樣的猜想?(小組內(nèi)說說)
2、回憶圓面積的推導(dǎo)過程。
3、教具演示。
(1)取圓柱體模型。
(2)將圓柱體切成兩半。
(3)分別將兩半均分成若干小塊。
(4)動手拼成一個近似的長方體。
(三)歸納公式。
(板書:圓柱的'體積=底面積×高)
用字母表示:(板書:V=Sh)
三、鞏固新知
1、這個杯子的底面半徑為6厘米,高為16厘米,它的體積是多少?
審題。提問:你能獨立完成這題嗎?指名一同學(xué)板演,其余學(xué)生做在練習(xí)本上。
現(xiàn)在這個杯子裝了2/3的水,裝了多少水呢?
2、完成“試一試”
3、“跳一跳”:統(tǒng)一直柱體的體積的計算方法。
四、課堂總結(jié)、拓展延伸
這節(jié)課學(xué)習(xí)了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?這個公式適合哪些圖形?他們有什么共同特點?
五、布置作業(yè)
練一練1-5題。
《圓柱的體積》數(shù)學(xué)教案 17
一、教學(xué)目標(biāo)
1. 知識與技能目標(biāo)
使學(xué)生理解圓柱體積公式的推導(dǎo)過程,掌握圓柱體積的計算公式。
能夠運用圓柱體積公式解決簡單的實際問題,如計算圓柱形容器的容積等。
2. 過程與方法目標(biāo)
通過觀察、實驗、猜想、驗證等數(shù)學(xué)活動,培養(yǎng)學(xué)生的空間觀念和推理能力。
讓學(xué)生經(jīng)歷圓柱體積公式的推導(dǎo)過程,體會轉(zhuǎn)化思想在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用。
3. 情感態(tài)度與價值觀目標(biāo)
在探索圓柱體積公式的過程中,培養(yǎng)學(xué)生勇于探索、積極思考的學(xué)習(xí)品質(zhì)。
讓學(xué)生感受數(shù)學(xué)與生活的緊密聯(lián)系,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)重難點
1. 教學(xué)重點
圓柱體積公式的推導(dǎo)過程。
圓柱體積公式的應(yīng)用。
2. 教學(xué)難點
理解圓柱體積公式推導(dǎo)過程中轉(zhuǎn)化思想的應(yīng)用。
三、教學(xué)方法
講授法、演示法、討論法、實驗法相結(jié)合
四、教學(xué)過程
1. 導(dǎo)入新課
展示生活中常見的圓柱物體,如圓柱形水杯、易拉罐等,提問學(xué)生:“如何計算這些圓柱物體的體積呢?”從而引出本節(jié)課的主題——圓柱的體積。
復(fù)習(xí)長方體和正方體體積的計算公式,為圓柱體積公式的推導(dǎo)做鋪墊。
2. 探究新知
提出猜想:引導(dǎo)學(xué)生回憶圓的面積公式推導(dǎo)過程,猜想圓柱的'體積是否也可以轉(zhuǎn)化為已學(xué)過的立體圖形來計算。
實驗操作:將圓柱底面平均分成若干個相等的扇形,然后把圓柱切開,拼成一個近似的長方體。讓學(xué)生觀察并思考:拼成的長方體與原來的圓柱有什么關(guān)系?
推導(dǎo)公式:通過小組討論,引導(dǎo)學(xué)生發(fā)現(xiàn)長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高。因為長方體體積 = 底面積×高,所以圓柱體積 = 底面積×高,用字母表示為 V = Sh(其中 S 表示圓柱的底面積,h 表示圓柱的高)。如果已知圓柱底面半徑 r,則 S = πr,那么圓柱體積公式也可表示為 V = πrh。
3. 鞏固練習(xí)
基礎(chǔ)練習(xí):計算底面半徑為 3 厘米,高為 5 厘米的圓柱體積。
提高練習(xí):一個圓柱形水桶,底面直徑是 4 分米,高是 6 分米,這個水桶能裝多少升水?(1 立方分米 = 1 升)
拓展練習(xí):把一個棱長為 6 分米的正方體木塊,削成一個最大的圓柱形,這個圓柱的體積是多少?
4. 課堂小結(jié)
引導(dǎo)學(xué)生回顧圓柱體積公式的推導(dǎo)過程和計算公式。
強調(diào)在解決圓柱體積問題時,要先確定已知條件,然后選擇合適的公式進行計算。
5. 布置作業(yè)
計算底面周長為 12.56 米,高為 2 米的圓柱體積。
尋找生活中至少三個可以用圓柱體積公式解決的實際問題,并記錄下來。
五、教學(xué)反思
在教學(xué)過程中,通過引導(dǎo)學(xué)生回憶圓的面積公式推導(dǎo)過程,啟發(fā)學(xué)生運用轉(zhuǎn)化思想來探究圓柱體積公式,學(xué)生能夠較好地理解和掌握。但在實驗操作環(huán)節(jié),部分學(xué)生對拼成的長方體與圓柱之間的關(guān)系理解不夠深入,需要在今后的教學(xué)中加強引導(dǎo)和個別輔導(dǎo)。同時,在練習(xí)環(huán)節(jié),應(yīng)增加一些與實際生活聯(lián)系更緊密、更具挑戰(zhàn)性的題目,以提高學(xué)生運用知識解決實際問題的能力。
《圓柱的體積》數(shù)學(xué)教案 18
一、教學(xué)目標(biāo)
1. 讓學(xué)生經(jīng)歷觀察、猜想、操作、驗證、交流和歸納等數(shù)學(xué)活動過程,探索并掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
2. 通過圓柱體積計算公式的推導(dǎo)、運用的過程,培養(yǎng)學(xué)生的空間觀念及有序的觀察、分析、綜合、比較、推理能力。
3. 在探究圓柱體積公式的過程中,讓學(xué)生進一步體會轉(zhuǎn)化的數(shù)學(xué)思想方法,感受數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和自信心。
二、教學(xué)重難點
1. 重點
推導(dǎo)圓柱體積計算公式,理解圓柱體積公式的推導(dǎo)過程。
能夠運用圓柱體積公式正確計算圓柱體積,并解決相關(guān)實際問題。
2. 難點
理解圓柱轉(zhuǎn)化成長方體后,長方體的長、寬、高與圓柱的各部分之間的關(guān)系。
三、教學(xué)方法
情境教學(xué)法、啟發(fā)式教學(xué)法、小組合作探究法
四、教學(xué)過程
1. 創(chuàng)設(shè)情境,引發(fā)思考
播放一段工人制作圓柱形花柱的視頻,視頻中展示花柱的底面半徑和高度等數(shù)據(jù),然后提出問題:“要制作這樣一個花柱需要多少材料呢?這實際上是在求圓柱的什么呢?”引出本節(jié)課的課題——圓柱的體積。
展示幾個不同大小的圓柱模型,讓學(xué)生直觀感受圓柱體積有大有小,激發(fā)學(xué)生探究圓柱體積計算方法的欲望。
2. 回顧舊知,鋪墊遷移
引導(dǎo)學(xué)生回顧長方體和正方體體積的計算公式(長方體體積 = 長×寬×高,正方體體積 = 棱長×棱長×棱長),并提問:“這些公式對我們研究圓柱體積有什么啟發(fā)呢?”
回顧圓的面積公式推導(dǎo)過程,強調(diào)轉(zhuǎn)化思想(將圓轉(zhuǎn)化為近似的長方形),為圓柱體積公式的推導(dǎo)做知識和方法上的鋪墊。
3. 動手操作,探究新知
提出問題:“我們能否把圓柱也轉(zhuǎn)化成我們已經(jīng)學(xué)過的立體圖形來計算它的體積呢?”讓學(xué)生分組討論并嘗試操作。
每個小組發(fā)放一個圓柱模型和一把剪刀,學(xué)生嘗試將圓柱沿著底面直徑進行切割,然后拼接成近似的長方體。教師巡視各小組,給予必要的指導(dǎo)和幫助。
組織學(xué)生進行匯報展示,分享自己小組的操作過程和發(fā)現(xiàn)。重點引導(dǎo)學(xué)生觀察并思考:拼成的長方體的長、寬、高分別與圓柱的什么有關(guān)?通過討論和交流,得出長方體的長等于圓柱底面周長的一半(πr),寬等于圓柱底面半徑(r),高等于圓柱的高(h)。
根據(jù)長方體體積公式,推導(dǎo)出圓柱體積公式:V = 長×寬×高 = πr×r×h = πrh。
4. 例題講解,鞏固應(yīng)用
例 1:已知一個圓柱的底面半徑是 2 厘米,高是 5 厘米,求該圓柱的體積。
教師引導(dǎo)學(xué)生分析題目,確定已知條件,然后讓學(xué)生獨立運用公式進行計算,教師巡視并進行個別輔導(dǎo)。
例 2:一個圓柱形水池,底面直徑是 6 米,深 2 米,這個水池能容納多少立方米的水?
先讓學(xué)生找出題目中的關(guān)鍵信息,然后提問學(xué)生在計算時需要注意什么(如單位換算等),學(xué)生完成計算后,教師進行點評和總結(jié)。
鞏固練習(xí):安排一系列不同層次的練習(xí)題,包括已知圓柱底面半徑和高求體積、已知圓柱底面直徑和高求體積、已知圓柱底面周長和高求體積等類型,讓學(xué)生在課堂上進行練習(xí),教師及時反饋學(xué)生的練習(xí)情況,針對問題進行集中講解。
5. 課堂總結(jié),拓展延伸
引導(dǎo)學(xué)生回顧本節(jié)課的學(xué)習(xí)內(nèi)容,包括圓柱體積公式的推導(dǎo)過程、計算公式以及應(yīng)用時的注意事項。
提問學(xué)生:“在生活中還有哪些地方會用到圓柱體積的.知識呢?”鼓勵學(xué)生積極思考,拓展思維,如計算圓柱形柱子的體積、圓柱形糧囤的容積等。
布置課后作業(yè):讓學(xué)生完成教材上相關(guān)的課后練習(xí)題,并要求學(xué)生自己動手制作一個圓柱模型,測量出相關(guān)數(shù)據(jù)并計算其體積。
五、教學(xué)反思
通過創(chuàng)設(shè)情境引入新課,激發(fā)了學(xué)生的學(xué)習(xí)興趣和探究欲望。在教學(xué)過程中,注重讓學(xué)生經(jīng)歷圓柱體積公式的推導(dǎo)過程,通過動手操作和小組合作探究,使學(xué)生較好地理解了轉(zhuǎn)化思想在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用,掌握了圓柱體積的計算公式。但在教學(xué)中發(fā)現(xiàn),部分學(xué)生在理解長方體與圓柱各部分之間的對應(yīng)關(guān)系時存在困難,在今后的教學(xué)中應(yīng)加強這方面的引導(dǎo)和練習(xí)。同時,在練習(xí)題的設(shè)計上可以更加多樣化,增加一些綜合性較強的題目,以提高學(xué)生靈活運用知識解決問題的能力。
【《圓柱的體積》數(shù)學(xué)教案】相關(guān)文章:
數(shù)學(xué)教案圓柱的體積05-20
圓柱的體積教學(xué)設(shè)計09-26
《圓柱的體積》教案(精選9篇)05-29
圓柱體體積的教學(xué)設(shè)計09-04
小學(xué)六年級數(shù)學(xué)教案《圓柱的體積》09-14
圓柱體積教學(xué)設(shè)計范文07-31
《圓柱的體積》教案范文(通用13篇)07-26