- 相關(guān)推薦
蘇教版九年級上冊數(shù)學(xué)教案
作為一名教學(xué)工作者,常常要根據(jù)教學(xué)需要編寫教案,教案是教學(xué)活動的依據(jù),有著重要的地位。怎樣寫教案才更能起到其作用呢?以下是小編為大家收集的蘇教版九年級上冊數(shù)學(xué)教案,歡迎大家分享。
教學(xué)內(nèi)容
1. (a≥0)是一個非負(fù)數(shù);
2.( )2=a(a≥0).
教學(xué)目標(biāo)
理解 (a≥0)是一個非負(fù)數(shù)和( )2=a(a≥0),并利用它們進(jìn)行計算和化簡.
通過復(fù)習(xí)二次根式的概念,用邏輯推理的方法推出 (a≥0)是一個非負(fù)數(shù),用具體數(shù)據(jù)結(jié)合算術(shù)平方根的意義導(dǎo)出( )2=a(a≥0);最后運用結(jié)論嚴(yán)謹(jǐn)解題.
教學(xué)重難點關(guān)鍵
1.重點: (a≥0)是一個非負(fù)數(shù);( )2=a(a≥0)及其運用.
2.難點、關(guān)鍵:用分類思想的方法導(dǎo)出 (a≥0)是一個非負(fù)數(shù);用探究的方法導(dǎo)出( )2=a(a≥0).
教學(xué)過程
一、復(fù)習(xí)引入
(學(xué)生活動)口答
1.什么叫二次根式?
2.當(dāng)a≥0時, 叫什么?當(dāng)a<0時, 有意義嗎?
老師點評(略).
二、探究新知
議一議:(學(xué)生分組討論,提問解答)
(a≥0)是一個什么數(shù)呢?
老師點評:根據(jù)學(xué)生討論和上面的練習(xí),我們可以得出
(a≥0)是一個非負(fù)數(shù).
做一做:根據(jù)算術(shù)平方根的意義填空:
( )2=_______;( )2=_______;( )2=______;( )2=_______;
( )2=______;( )2=_______;( )2=_______.
老師點評: 是4的算術(shù)平方根,根據(jù)算術(shù)平方根的意義, 是一個平方等于4的非負(fù)數(shù),因此有( )2=4.
同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以
( )2=a(a≥0)
例1 計算
1.( )2 2.(3 )2 3.( )2 4.( )2
分析:我們可以直接利用( )2=a(a≥0)的結(jié)論解題.
解:( )2 = ,(3 )2 =32?( )2=32?5=45,
( )2= ,( )2= .
三、鞏固練習(xí)
計算下列各式的值:
( )2 ( )2 ( )2 ( )2 (4 )2
四、應(yīng)用拓展
例2 計算
1.( )2(x≥0) 2.( )2 3.( )2
4.( )2
分析:(1)因為x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;
(4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0.
所以上面的4題都可以運用( )2=a(a≥0)的重要結(jié)論解題.
解:(1)因為x≥0,所以x+1>0
( )2=x+1
(2)∵a2≥0,∴( )2=a2
(3)∵a2+2a+1=(a+1)2
又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1
(4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2
又∵(2x-3)2≥0
∴4x2-12x+9≥0,∴( )2=4x2-12x+9
例3在實數(shù)范圍內(nèi)分解下列因式:
(1)x2-3 (2)x4-4 (3) 2x2-3
分析:(略)
五、歸納小結(jié)
本節(jié)課應(yīng)掌握:
1. (a≥0)是一個非負(fù)數(shù);
2.( )2=a(a≥0);反之:a=( )2(a≥0).
六、布置作業(yè)
1.教材P8 復(fù)習(xí)鞏固2.(1)、(2) P9 7.
2.選用課時作業(yè)設(shè)計.
3.課后作業(yè):《同步訓(xùn)練》
【九年級上冊數(shù)學(xué)教案】相關(guān)文章:
初一上冊數(shù)學(xué)教案優(yōu)秀07-22
數(shù)學(xué)教案三年級上冊06-19
五年級上冊數(shù)學(xué)教案05-04
二年級上冊數(shù)學(xué)教案06-11
四年級上冊數(shù)學(xué)教案07-26
小學(xué)三年級上冊的數(shù)學(xué)教案07-29
三年級上冊數(shù)學(xué)教案10-15