教案高中數(shù)學(xué)模板
作為一位無(wú)私奉獻(xiàn)的人民教師,時(shí)常要開(kāi)展教案準(zhǔn)備工作,編寫(xiě)教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。教案要怎么寫(xiě)呢?下面是小編幫大家整理的教案高中數(shù)學(xué)模板,希望對(duì)大家有所幫助。
教案高中數(shù)學(xué)模板1
一、說(shuō)教材
1.從在教材中的地位與作用來(lái)看
《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要資料,它不僅僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,并且公式推導(dǎo)過(guò)程中所滲透的類(lèi)比、化歸、分類(lèi)討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng).
2.從學(xué)生認(rèn)知角度看
從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)資料與等差數(shù)列前n項(xiàng)和從公式的構(gòu)成、特點(diǎn)等方面進(jìn)行類(lèi)比,這是進(jìn)取因素,應(yīng)因勢(shì)利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不一樣,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q=1這一特殊情景,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯(cuò).
3.學(xué)情分析
教學(xué)對(duì)象是剛進(jìn)入高中的學(xué)生,雖然具有必須的分析問(wèn)題和解決問(wèn)題的本事,邏輯思維本事也初步構(gòu)成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,所以片面、不嚴(yán)謹(jǐn).
4.重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用.
教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用.
公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn).
二、說(shuō)目標(biāo)
知識(shí)與技能目標(biāo):
理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問(wèn)題.
過(guò)程與方法目標(biāo):
經(jīng)過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類(lèi)比與轉(zhuǎn)化、分類(lèi)討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀(guān)察、比較、抽象、概括等邏輯思維本事和逆向思維的本事.
情感與態(tài)度價(jià)值觀(guān):
經(jīng)過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀(guān)點(diǎn).
三、說(shuō)過(guò)程
學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過(guò)程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識(shí)的構(gòu)成與發(fā)展過(guò)程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過(guò)程:
1.創(chuàng)設(shè)情境,提出問(wèn)題
在古印度,有個(gè)名叫西薩的人,發(fā)明了國(guó)際象棋,當(dāng)時(shí)的印度國(guó)王大為贊賞,對(duì)他說(shuō):我能夠滿(mǎn)足你的任何要求.西薩說(shuō):請(qǐng)給我棋盤(pán)的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國(guó)王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來(lái)后,國(guó)王大吃一驚.為什么呢
設(shè)計(jì)意圖:設(shè)計(jì)這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性.故事資料緊扣本節(jié)課的主題與重點(diǎn).
此時(shí)我問(wèn):同學(xué)們,你們明白西薩要的是多少粒小麥嗎引導(dǎo)學(xué)生寫(xiě)出麥?倲(shù).帶著這樣的問(wèn)題,學(xué)生會(huì)動(dòng)手算了起來(lái),他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和.這時(shí)我對(duì)他們的這種思路給予肯定.
設(shè)計(jì)意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無(wú)用功”,急急忙忙地拋出“錯(cuò)位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而立刻相減呢在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過(guò)彎來(lái),因而在教學(xué)中應(yīng)舍得花時(shí)間營(yíng)造知識(shí)構(gòu)成過(guò)程的氛圍,突破學(xué)生學(xué)習(xí)的障礙.同時(shí),構(gòu)成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的`新方法,為后面的教學(xué)埋下伏筆.
2.師生互動(dòng),探究問(wèn)題
在肯定他們的思路后,我之后問(wèn):1,2,22,…,263是什么數(shù)列有何特征應(yīng)歸結(jié)為什么數(shù)學(xué)問(wèn)題呢
探討1:,記為(1)式,注意觀(guān)察每一項(xiàng)的特征,有何聯(lián)系(學(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)
探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)
設(shè)計(jì)意圖:留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來(lái)這是“天經(jīng)地義”的,但在學(xué)生看來(lái)卻是“不可思議”的,所以教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維本事的良好契機(jī).
經(jīng)過(guò)比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到:.教師指出:這就是錯(cuò)位相減法,并要求學(xué)生縱觀(guān)全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢
設(shè)計(jì)意圖:經(jīng)過(guò)繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心.
3.類(lèi)比聯(lián)想,解決問(wèn)題
這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,
那里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo).
設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自我探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感.
對(duì)不對(duì)那里的q能不能等于1等比數(shù)列中的公比能不能為1q=1時(shí)是什么數(shù)列此時(shí)sn=(那里引導(dǎo)學(xué)生對(duì)q進(jìn)行分類(lèi)討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ).)
再次追問(wèn):結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn-1,如何把sn用a1、an、q表示出來(lái)(引導(dǎo)學(xué)生得出公式的另一形式)
設(shè)計(jì)意圖:經(jīng)過(guò)反問(wèn)精講,一方面使學(xué)生加深對(duì)知識(shí)的認(rèn)識(shí),完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡(jiǎn)單地模仿和理解,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類(lèi)比和綜合的本事.這一環(huán)節(jié)十分重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話(huà),然而卻有畫(huà)龍點(diǎn)睛之妙用.
4.討論交流,延伸拓展
(略)
教案高中數(shù)學(xué)模板2
一、教學(xué)內(nèi)容分析
向量作為工具在數(shù)學(xué)、物理以及實(shí)際生活中都有著廣泛的應(yīng)用。
本小節(jié)的重點(diǎn)是結(jié)合向量知識(shí)證明數(shù)學(xué)中直線(xiàn)的平行、垂直問(wèn)題,以及不等式、三角公式的證明、物理學(xué)中的應(yīng)用。
二、教學(xué)目標(biāo)設(shè)計(jì)
1、通過(guò)利用向量知識(shí)解決不等式、三角及物理問(wèn)題,感悟向量作為一種工具有著廣泛的應(yīng)用,體會(huì)從不同角度去看待一些數(shù)學(xué)問(wèn)題,使一些數(shù)學(xué)知識(shí)有機(jī)聯(lián)系,拓寬解決問(wèn)題的.思路。
2、了解構(gòu)造法在解題中的運(yùn)用。
三、教學(xué)重點(diǎn)及難點(diǎn)
重點(diǎn):平面向量知識(shí)在各個(gè)領(lǐng)域中應(yīng)用。
難點(diǎn):向量的構(gòu)造。
四、教學(xué)流程設(shè)計(jì)
一、復(fù)習(xí)與回顧
1、提問(wèn):下列哪些量是向量?
。1)力(2)功(3)位移(4)力矩
2、上述四個(gè)量中,(1)(3)(4)是向量,而(2)不是,那它是什么?
[說(shuō)明]復(fù)習(xí)數(shù)量積的有關(guān)知識(shí)。
二、學(xué)習(xí)新課
例1(書(shū)中例5)
向量作為一種工具,不僅在物理學(xué)科中有廣泛的應(yīng)用,同時(shí)它在數(shù)學(xué)學(xué)科中也有許多妙用!請(qǐng)看
例2(書(shū)中例3)
證法(一)原不等式等價(jià)于,由基本不等式知(1)式成立,故原不等式成立。
證法(二)向量法
[說(shuō)明]本例關(guān)鍵引導(dǎo)學(xué)生觀(guān)察不等式結(jié)構(gòu)特點(diǎn),構(gòu)造向量,并發(fā)現(xiàn)(等號(hào)成立的充要條件是)
例3(書(shū)中例4)
[說(shuō)明]本例的關(guān)鍵在于構(gòu)造單位圓,利用向量數(shù)量積的兩個(gè)公式得到證明。
二、鞏固練習(xí)
1、如圖,某人在靜水中游泳,速度為km/h.
。1)如果他徑直游向河對(duì)岸,水的流速為4 km/h,他實(shí)際沿什么方向前進(jìn)?速度大小為多少?
答案:沿北偏東方向前進(jìn),實(shí)際速度大小是8 km/h.
。2)他必須朝哪個(gè)方向游才能沿與水流垂直的方向前進(jìn)?實(shí)際前進(jìn)的速度大小為多少?
答案:朝北偏西方向前進(jìn),實(shí)際速度大小為km/h.
三、課堂小結(jié)
1、向量在物理、數(shù)學(xué)中有著廣泛的應(yīng)用。
2、要學(xué)會(huì)從不同的角度去看一個(gè)數(shù)學(xué)問(wèn)題,是數(shù)學(xué)知識(shí)有機(jī)聯(lián)系。
四、作業(yè)布置
1、書(shū)面作業(yè):課本p73,練習(xí)8.4 4
教案高中數(shù)學(xué)模板3
一、單元教學(xué)內(nèi)容
(1)算法的基本概念
(2)算法的基本結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)
(3)算法的基本語(yǔ)句:輸入、輸出、賦值、條件、循環(huán)語(yǔ)句
二、單元教學(xué)內(nèi)容分析
算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計(jì)算科學(xué)的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì)發(fā)展中發(fā)揮著越來(lái)越大的作用,并日益融入社會(huì)生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學(xué)素養(yǎng)。需要特別指出的是,中國(guó)古代數(shù)學(xué)中蘊(yùn)涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對(duì)具體數(shù)學(xué)實(shí)例的分析,體驗(yàn)程序框圖在解決問(wèn)題中的作用;通過(guò)模仿、操作、探索,學(xué)習(xí)設(shè)計(jì)程序框圖表達(dá)解決問(wèn)題的過(guò)程;體會(huì)算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力
三、單元教學(xué)課時(shí)安排:
1、算法的基本概念3課時(shí)
2、程序框圖與算法的基本結(jié)構(gòu)5課時(shí)
3、算法的基本語(yǔ)句2課時(shí)
四、單元教學(xué)目標(biāo)分析
1、通過(guò)對(duì)解決具體問(wèn)題過(guò)程與步驟的分析體會(huì)算法的思想,了解算法的含義
2、通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設(shè)計(jì)程序框圖表達(dá)解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)。
3、經(jīng)歷將具體問(wèn)題的程序框圖轉(zhuǎn)化為程序語(yǔ)句的過(guò)程,理解幾種基本算法語(yǔ)句:輸入、輸出、斌值、條件、循環(huán)語(yǔ)句,進(jìn)一步體會(huì)算法的基本思想。
4、通過(guò)閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。
五、單元教學(xué)重點(diǎn)與難點(diǎn)分析
1、重點(diǎn)
(1)理解算法的含義
(2)掌握算法的基本結(jié)構(gòu)
(3)會(huì)用算法語(yǔ)句解決簡(jiǎn)單的實(shí)際問(wèn)題
2、難點(diǎn)
(1)程序框圖
(2)變量與賦值
(3)循環(huán)結(jié)構(gòu)
(4)算法設(shè)計(jì)
六、單元總體教學(xué)方法
本章教學(xué)采用啟發(fā)式教學(xué),輔以觀(guān)察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強(qiáng),只能通過(guò)對(duì)實(shí)例的認(rèn)真領(lǐng)會(huì)及一定的練習(xí)才能掌握本節(jié)知識(shí)。
七、單元展開(kāi)方式與特點(diǎn)
1、展開(kāi)方式
自然語(yǔ)言→程序框圖→算法語(yǔ)句
2、特點(diǎn)
(1)螺旋上升分層遞進(jìn)
(2)整合滲透前呼后應(yīng)
(3)三線(xiàn)合一橫向貫通
(4)彈性處理多樣選擇
八、單元教學(xué)過(guò)程分析
1.、算法基本概念教學(xué)過(guò)程分析
對(duì)生活中的實(shí)際問(wèn)題通過(guò)對(duì)解決具體問(wèn)題過(guò)程與步驟的分析(喝茶,如二元一次方程組求解問(wèn)題),體會(huì)算法的思想,了解算法的含義,能用自然語(yǔ)言描述算法。
2、算法的流程圖教學(xué)過(guò)程分析
對(duì)生活中的'實(shí)際問(wèn)題通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設(shè)計(jì)流程圖表達(dá)解決問(wèn)題的過(guò)程,了解算法和程序語(yǔ)言的區(qū)別;在具體問(wèn)題的解決過(guò)程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),會(huì)用流程圖表示算法。
3.、基本算法語(yǔ)句教學(xué)過(guò)程分析
經(jīng)歷將具體生活中問(wèn)題的流程圖轉(zhuǎn)化為程序語(yǔ)言的過(guò)程,理解表示的幾種基本算法語(yǔ)句:賦值語(yǔ)句、輸入語(yǔ)句、輸出語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì)算法的基本思想。能用自然語(yǔ)言、流程圖和基本算法語(yǔ)句表達(dá)算法,
4.、通過(guò)閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。
九、單元評(píng)價(jià)設(shè)想
1、重視對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)過(guò)程的評(píng)價(jià)
關(guān)注學(xué)生在數(shù)學(xué)語(yǔ)言的學(xué)習(xí)過(guò)程中,是否對(duì)用集合語(yǔ)言描述數(shù)學(xué)和現(xiàn)實(shí)生活中的問(wèn)題充滿(mǎn)興趣;在學(xué)習(xí)過(guò)程中,能否體會(huì)集合語(yǔ)言準(zhǔn)確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行交流的能力。
2、正確評(píng)價(jià)學(xué)生的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能
關(guān)注學(xué)生在本章(節(jié))及今后學(xué)習(xí)中,讓學(xué)生集中學(xué)習(xí)算法的初步知識(shí),主要包括算法的基本結(jié)構(gòu)、基本語(yǔ)句、基本思想等。算法思想將貫穿高中數(shù)學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習(xí)算法
教案高中數(shù)學(xué)模板4
一、教學(xué)目標(biāo)
1.知識(shí)與技能
(1)掌握畫(huà)三視圖的基本技能
(2)豐富學(xué)生的空間想象力
2.過(guò)程與方法
主要通過(guò)學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。
3.情感態(tài)度與價(jià)值觀(guān)
(1)提高學(xué)生空間想象力
(2)體會(huì)三視圖的作用
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):畫(huà)出簡(jiǎn)單組合體的三視圖
難點(diǎn):識(shí)別三視圖所表示的空間幾何體
三、學(xué)法與教學(xué)用具
1.學(xué)法:觀(guān)察、動(dòng)手實(shí)踐、討論、類(lèi)比
2.教學(xué)用具:實(shí)物模型、三角板
四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭開(kāi)課題
“橫看成嶺側(cè)看成峰”,這說(shuō)明從不同的角度看同一物體視覺(jué)的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀(guān)看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。
在初中,我們已經(jīng)學(xué)習(xí)了正方體、長(zhǎng)方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫(huà)出空間幾何體的三視圖嗎?
(二)實(shí)踐動(dòng)手作圖
1.講臺(tái)上放球、長(zhǎng)方體實(shí)物,要求學(xué)生畫(huà)出它們的三視圖,教師巡視,學(xué)生畫(huà)完后可交流結(jié)果并討論;
2.教師引導(dǎo)學(xué)生用類(lèi)比方法畫(huà)出簡(jiǎn)單組合體的三視圖
(1)畫(huà)出球放在長(zhǎng)方體上的三視圖
(2)畫(huà)出礦泉水瓶(實(shí)物放在桌面上)的三視圖
學(xué)生畫(huà)完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。
作三視圖之前應(yīng)當(dāng)細(xì)心觀(guān)察,認(rèn)識(shí)了它的.基本結(jié)構(gòu)特征后,再動(dòng)手作圖。
3.三視圖與幾何體之間的相互轉(zhuǎn)化。
(1)投影出示圖片(課本p10,圖1.2-3)
請(qǐng)同學(xué)們思考圖中的三視圖表示的幾何體是什么?
(2)你能畫(huà)出圓臺(tái)的三視圖嗎?
(3)三視圖對(duì)于認(rèn)識(shí)空間幾何體有何作用?你有何體會(huì)?
教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對(duì)上述問(wèn)題的看法。
4.請(qǐng)同學(xué)們畫(huà)出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。
(三)鞏固練習(xí)
課本p12練習(xí)1、2p18習(xí)題1.2a組1
(四)歸納整理
請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
(五)課外練習(xí)
1.自己動(dòng)手制作一個(gè)底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫(huà)出它的三視圖。
2.自己制作一個(gè)上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺(tái)模型,并畫(huà)出它的三視圖。
教案高中數(shù)學(xué)模板5
教學(xué)目標(biāo):
。1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問(wèn)題。
。2)進(jìn)一步理解曲線(xiàn)的方程和方程的曲線(xiàn)。
。3)初步掌握求曲線(xiàn)方程的方法。
。4)通過(guò)本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題和轉(zhuǎn)化的能力。
教學(xué)重點(diǎn)、難點(diǎn):求曲線(xiàn)的方程。
教學(xué)用具:計(jì)算機(jī)。
教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法。
教學(xué)過(guò)程:
一、引入
1、提問(wèn):什么是曲線(xiàn)的方程和方程的曲線(xiàn)。
學(xué)生思考并回答。教師強(qiáng)調(diào)。
2、坐標(biāo)法和解析幾何的意義、基本問(wèn)題。
對(duì)于一個(gè)幾何問(wèn)題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線(xiàn),通過(guò)研究方程的性質(zhì)間接地來(lái)研究曲線(xiàn)的性質(zhì),這一研究幾何問(wèn)題的方法稱(chēng)為坐標(biāo)法,這門(mén)科學(xué)稱(chēng)為解析幾何。解析幾何的兩大基本問(wèn)題就是:
。1)根據(jù)已知條件,求出表示平面曲線(xiàn)的方程。
。2)通過(guò)方程,研究平面曲線(xiàn)的性質(zhì)。
事實(shí)上,在前邊所學(xué)的直線(xiàn)方程的理論中也有這樣兩個(gè)基本問(wèn)題。而且要先研究如何求出曲線(xiàn)方程,再研究如何用方程研究曲線(xiàn)。本節(jié)課就初步研究曲線(xiàn)方程的求法。
二、問(wèn)題
如何根據(jù)已知條件,求出曲線(xiàn)的方程。
三、實(shí)例分析
例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線(xiàn)段的垂直平分線(xiàn)的方程。
首先由學(xué)生分析:根據(jù)直線(xiàn)方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決。
解法一:易求線(xiàn)段的中點(diǎn)坐標(biāo)為(1,3),
由斜率關(guān)系可求得l的斜率為
于是有
即l的方程為
①
分析、引導(dǎo):上述問(wèn)題是我們?cè)缇蛯W(xué)過(guò)的,用點(diǎn)斜式就可解決?墒牵銈兪欠裣脒^(guò)①恰好就是所求的嗎?或者說(shuō)①就是直線(xiàn)的方程?根據(jù)是什么,有證明嗎?
。ㄍㄟ^(guò)教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒(méi)有解決的問(wèn)題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條)。
證明:(1)曲線(xiàn)上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解。
設(shè)是線(xiàn)段的垂直平分線(xiàn)上任意一點(diǎn),則
即
將上式兩邊平方,整理得
這說(shuō)明點(diǎn)的坐標(biāo)是方程的`解。
。2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線(xiàn)上的點(diǎn)。
設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則
到、的距離分別為
所以,即點(diǎn)在直線(xiàn)上。
綜合(1)、(2),①是所求直線(xiàn)的方程。
至此,證明完畢;仡櫳鲜鰞(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線(xiàn)上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線(xiàn)段的垂直平分線(xiàn)上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見(jiàn),這個(gè)證明過(guò)程就表明一種求解過(guò)程,下面試試看:
解法二:設(shè)是線(xiàn)段的垂直平分線(xiàn)上任意一點(diǎn),也就是點(diǎn)屬于集合
由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為
將上式兩邊平方,整理得
果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿(mǎn)足。顯然,求解過(guò)程就說(shuō)明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證。
這樣我們就有兩種求解方程的方法,而且解法二不借助直線(xiàn)方程的理論,又非常自然,還體現(xiàn)了曲線(xiàn)方程定義中點(diǎn)集與對(duì)應(yīng)的思想。因此是個(gè)好方法。
讓我們用這個(gè)方法試解如下問(wèn)題:
例2:點(diǎn)與兩條互相垂直的直線(xiàn)的距離的積是常數(shù)求點(diǎn)的軌跡方程。
分析:這是一個(gè)純粹的幾何問(wèn)題,連坐標(biāo)系都沒(méi)有。所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線(xiàn)作坐標(biāo)軸,建立直角坐標(biāo)系。然后仿照例1中的解法進(jìn)行求解。
求解過(guò)程略。
四、概括總結(jié)
通過(guò)學(xué)生討論,師生共同總結(jié):
分析上面兩個(gè)例題的求解過(guò)程,我們總結(jié)一下求解曲線(xiàn)方程的大體步驟:
首先應(yīng)有坐標(biāo)系;其次設(shè)曲線(xiàn)上任意一點(diǎn);然后寫(xiě)出表示曲線(xiàn)的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正。說(shuō)得更準(zhǔn)確一點(diǎn)就是:
。1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線(xiàn)上任意一點(diǎn)的坐標(biāo);
。2)寫(xiě)出適合條件的點(diǎn)的集合
;
。3)用坐標(biāo)表示條件,列出方程;
。4)化方程為最簡(jiǎn)形式;
(5)證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線(xiàn)上的點(diǎn)。
一般情況下,求解過(guò)程已表明曲線(xiàn)上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過(guò)程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說(shuō)明以方程的解為坐標(biāo)的點(diǎn)都是曲線(xiàn)上的點(diǎn)。所以,通常情況下證明可省略,不過(guò)特殊情況要說(shuō)明。
上述五個(gè)步驟可簡(jiǎn)記為:建系設(shè)點(diǎn);寫(xiě)出集合;列方程;化簡(jiǎn);修正。
下面再看一個(gè)問(wèn)題:
例3:已知一條曲線(xiàn)在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線(xiàn)的方程。
五、動(dòng)畫(huà)演示
用幾何畫(huà)板演示曲線(xiàn)生成的過(guò)程和形狀,在運(yùn)動(dòng)變化的過(guò)程中尋找關(guān)系。
解:設(shè)點(diǎn)是曲線(xiàn)上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合
由距離公式,點(diǎn)適合的條件可表示為
①
將①式移項(xiàng)后再兩邊平方,得
化簡(jiǎn)得
由題意,曲線(xiàn)在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線(xiàn),所以曲線(xiàn)的方程應(yīng)為,它是關(guān)于軸對(duì)稱(chēng)的拋物線(xiàn),但不包括拋物線(xiàn)的頂點(diǎn),如圖2中所示。
六、練習(xí)鞏固
題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、 、,且有,求點(diǎn)軌跡方程。
分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線(xiàn)為一個(gè)坐標(biāo)軸,這條邊的垂直平分線(xiàn)為另一個(gè)軸,建立直角坐標(biāo)系比較簡(jiǎn)單,如圖3所示。設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為。
根據(jù)條件,代入坐標(biāo)可得
化簡(jiǎn)得
①
由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線(xiàn)方程可表示為
七、小結(jié)
師生共同總結(jié):
。1)解析幾何研究研究問(wèn)題的方法是什么?
(2)如何求曲線(xiàn)的方程?
。3)請(qǐng)對(duì)求解曲線(xiàn)方程的五個(gè)步驟進(jìn)行評(píng)價(jià)。各步驟的作用,哪步重要,哪步應(yīng)注意什么?
八、作業(yè)
課本第72頁(yè)練習(xí)1,2,3;
教案高中數(shù)學(xué)模板6
教學(xué)目標(biāo):
1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).
2.能識(shí)別和理解簡(jiǎn)單的框圖的功能.
3.能運(yùn)用三種基本邏輯結(jié)構(gòu)設(shè)計(jì)流程圖以解決簡(jiǎn)單的問(wèn)題.
教學(xué)方法:
1.通過(guò)模仿、操作、探索,經(jīng)歷設(shè)計(jì)流程圖表達(dá)求解問(wèn)題的過(guò)程,加深對(duì)流程圖的感知.
2.在具體問(wèn)題的解決過(guò)程中,掌握基本的流程圖的畫(huà)法和流程圖的三種基本邏輯結(jié)構(gòu).
教學(xué)過(guò)程:
一、問(wèn)題情境
1.情境:
某鐵路客運(yùn)部門(mén)規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為
其中(單位:)為行李的.重量.
試給出計(jì)算費(fèi)用(單位:元)的一個(gè)算法,并畫(huà)出流程圖.
二、學(xué)生活動(dòng)
學(xué)生討論,教師引導(dǎo)學(xué)生進(jìn)行表達(dá).
解算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運(yùn)費(fèi).
上述算法可以用流程圖表示為:
教師邊講解邊畫(huà)出第10頁(yè)圖1-2-6.
在上述計(jì)費(fèi)過(guò)程中,第二步進(jìn)行了判斷.
三、建構(gòu)數(shù)學(xué)
1.選擇結(jié)構(gòu)的概念:
(1)先根據(jù)條件作出判斷,再?zèng)Q定執(zhí)行哪一種
(2)操作的結(jié)構(gòu)稱(chēng)為選擇結(jié)構(gòu).
如圖:虛線(xiàn)框內(nèi)是一個(gè)選擇結(jié)構(gòu),它包含一個(gè)判斷框,當(dāng)條件成立(或稱(chēng)條件為“真”)時(shí)執(zhí)行,否則執(zhí)行.
2.說(shuō)明:
(1)有些問(wèn)題需要按給定的條件進(jìn)行分析、比較和判斷,并按判斷的不同情況進(jìn)行不同的操作,這類(lèi)問(wèn)題的實(shí)現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計(jì);
(2)選擇結(jié)構(gòu)也稱(chēng)為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進(jìn)行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;
(3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)行,但或兩個(gè)框中可以有一個(gè)是空的,即不執(zhí)行任何操作;
(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫(huà)成菱形,它有一個(gè)進(jìn)入點(diǎn)和兩個(gè)退出點(diǎn).
3.思考:教材第7頁(yè)圖所示的算法中,哪一步進(jìn)行了判斷?
教案高中數(shù)學(xué)模板7
一、考綱要求
了解雙曲線(xiàn)的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡(jiǎn)單性質(zhì)。
二、自學(xué)質(zhì)疑
1、雙曲線(xiàn)的軸在軸上,軸在軸上,實(shí)軸長(zhǎng)等于,虛軸長(zhǎng)等于,焦距等于,頂點(diǎn)坐標(biāo)是,焦點(diǎn)坐標(biāo)是,
漸近線(xiàn)方程是,離心率,若點(diǎn)是雙曲線(xiàn)上的點(diǎn),則,。
2、又曲線(xiàn)的左支上一點(diǎn)到左焦點(diǎn)的距離是7,則這點(diǎn)到雙曲線(xiàn)的右焦點(diǎn)的距離是
3、經(jīng)過(guò)兩點(diǎn)的雙曲線(xiàn)的標(biāo)準(zhǔn)方程是。
4、雙曲線(xiàn)的漸近線(xiàn)方程是,則該雙曲線(xiàn)的離心率等于。
5、與雙曲線(xiàn)有公共的漸近線(xiàn),且經(jīng)過(guò)點(diǎn)的雙曲線(xiàn)的方程為
三、例題精講
1、雙曲線(xiàn)的離心率等于,且與橢圓有公共焦點(diǎn),求該雙曲線(xiàn)的方程。
2、已知橢圓具有性質(zhì):若是橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),當(dāng)直線(xiàn)的斜率都存在,并記為時(shí),那么之積是與點(diǎn)位置無(wú)關(guān)的定值,試對(duì)雙曲線(xiàn)寫(xiě)出具有類(lèi)似特性的性質(zhì),并加以證明。
3、設(shè)雙曲線(xiàn)的半焦距為,直線(xiàn)過(guò)兩點(diǎn),已知原點(diǎn)到直線(xiàn)的距離為,求雙曲線(xiàn)的離心率。
四、矯正鞏固
1、雙曲線(xiàn)上一點(diǎn)到一個(gè)焦點(diǎn)的距離為,則它到另一個(gè)焦點(diǎn)的距離為。
2、與雙曲線(xiàn)有共同的漸近線(xiàn),且經(jīng)過(guò)點(diǎn)的雙曲線(xiàn)的一個(gè)焦點(diǎn)到一條漸近線(xiàn)的距離是。
3、若雙曲線(xiàn)上一點(diǎn)到它的右焦點(diǎn)的距離是,則點(diǎn)到軸的距離是
4、過(guò)雙曲線(xiàn)的左焦點(diǎn)的直線(xiàn)交雙曲線(xiàn)于兩點(diǎn),若。則這樣的直線(xiàn)一共有條。
五、遷移應(yīng)用
1、已知雙曲線(xiàn)的焦點(diǎn)到漸近線(xiàn)的距離是其頂點(diǎn)到漸近線(xiàn)距離的2倍,則該雙曲線(xiàn)的離心率
2、已知雙曲線(xiàn)的焦點(diǎn)為,點(diǎn)在雙曲線(xiàn)上,且,則點(diǎn)到軸的`距離為。
3、雙曲線(xiàn)的焦距為
4、已知雙曲線(xiàn)的一個(gè)頂點(diǎn)到它的一條漸近線(xiàn)的距離為,則
5、設(shè)是等腰三角形,,則以為焦點(diǎn)且過(guò)點(diǎn)的雙曲線(xiàn)的離心率為。
6、已知圓。以圓與坐標(biāo)軸的交點(diǎn)分別作為雙曲線(xiàn)的一個(gè)焦點(diǎn)和頂點(diǎn),則適合上述條件的雙曲線(xiàn)的標(biāo)準(zhǔn)方程為
教案高中數(shù)學(xué)模板8
教學(xué)目標(biāo):
1.結(jié)合實(shí)際問(wèn)題情景,理解分層抽樣的必要性和重要性;
2.學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;
3.并對(duì)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系.
教學(xué)重點(diǎn):
通過(guò)實(shí)例理解分層抽樣的方法.
教學(xué)難點(diǎn):
分層抽樣的步驟.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.復(fù)習(xí)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.
2.實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?
二、學(xué)生活動(dòng)
能否用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?
指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀(guān)實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性.
由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,
所以在各年級(jí)抽取的個(gè)體數(shù)依次是,,,即40,32,28.
三、建構(gòu)數(shù)學(xué)
1.分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀(guān)地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.
說(shuō)明:①分層抽樣時(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;
、谟捎诜謱映闃映浞掷昧宋覀兯莆盏男畔,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用.
2.三種抽樣方法對(duì)照表:
類(lèi)別
共同點(diǎn)
各自特點(diǎn)
相互聯(lián)系
適用范圍
簡(jiǎn)單隨機(jī)抽樣
抽樣過(guò)程中每個(gè)個(gè)體被抽取的概率是相同的
從總體中逐個(gè)抽取
總體中的.個(gè)體數(shù)較少
系統(tǒng)抽樣
將總體均分成幾個(gè)部分,按事先確定的規(guī)則在各部分抽取
在第一部分抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣
總體中的個(gè)體數(shù)較多
分層抽樣
將總體分成幾層,分層進(jìn)行抽取
各層抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)
總體由差異明顯的幾部分組成
3.分層抽樣的步驟:
(1)分層:將總體按某種特征分成若干部分.
(2)確定比例:計(jì)算各層的個(gè)體數(shù)與總體的個(gè)體數(shù)的比.
(3)確定各層應(yīng)抽取的樣本容量.
(4)在每一層進(jìn)行抽樣(各層分別按簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣的方法抽取),綜合每層抽樣,組成樣本.
四、數(shù)學(xué)運(yùn)用
1.例題.
例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________.
(2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調(diào)2人參加座談;
、谀嘲嗥谥锌荚囉15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);
、勰嘲嘣┚蹠(huì),要產(chǎn)生兩名“幸運(yùn)者”.
對(duì)這三件事,合適的抽樣方法為()
a.分層抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣
b.系統(tǒng)抽樣,系統(tǒng)抽樣,簡(jiǎn)單隨機(jī)抽樣
c.分層抽樣,簡(jiǎn)單隨機(jī)抽樣,簡(jiǎn)單隨機(jī)抽樣
d.系統(tǒng)抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣
例2某電視臺(tái)在因特網(wǎng)上就觀(guān)眾對(duì)某一節(jié)目的喜愛(ài)程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:
很喜愛(ài)
喜愛(ài)
一般
不喜愛(ài)
2435
4567
3926
1072
電視臺(tái)為進(jìn)一步了解觀(guān)眾的具體想法和意見(jiàn),打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)怎樣進(jìn)行抽樣?
解:抽取人數(shù)與總的比是60∶12000=1∶200,
則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,
取近似值得各層人數(shù)分別是12,23,20,5.
然后在各層用簡(jiǎn)單隨機(jī)抽樣方法抽取.
答用分層抽樣的方法抽取,抽取“很喜愛(ài)”、“喜愛(ài)”、“一般”、“不喜愛(ài)”的人
數(shù)分別為12,23,20,5.
說(shuō)明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對(duì)于不能取整數(shù)的情況,取其近似值.
(3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對(duì)學(xué)校在校務(wù)公開(kāi)方面的某意見(jiàn),擬抽取一個(gè)容量為20的樣本.
分析:(1)總體容量較小,用抽簽法或隨機(jī)數(shù)表法都很方便.
(2)總體容量較大,用抽簽法或隨機(jī)數(shù)表法都比較麻煩,由于人員沒(méi)有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.
(3)由于學(xué)校各類(lèi)人員對(duì)這一問(wèn)題的看法可能差異較大,所以應(yīng)采用分層抽樣方法.
五、要點(diǎn)歸納與方法小結(jié)
本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.分層抽樣的概念與特征;
2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.
【教案高中數(shù)學(xué)】相關(guān)文章:
高中數(shù)學(xué)教案07-27
高中數(shù)學(xué)教案01-27
高中數(shù)學(xué)教案模板11-15
高中數(shù)學(xué)必修四教案04-23
高中數(shù)學(xué)優(yōu)秀教案模板(精選16篇)06-17
[集合]高中數(shù)學(xué)教案模板15篇07-31