- 相關推薦
《三角形內(nèi)角和定理》的教學設計
三角形內(nèi)角和定理:三角形的內(nèi)角和等于180°,或者,用數(shù)學符號表示為:在△ABC中,∠1+∠2+∠3=180° 以下是小編收集整理了《三角形內(nèi)角和定理》的教學設計,供大家參考借鑒,希望可以幫助到有需要的朋友。
【教材內(nèi)容】
北京市義務教育課程改革實驗教材(北京版)第九冊數(shù)學
【教材分析】
《三角形內(nèi)角和》是北京市義務教育課程改革實驗教材(北京版)第九冊第三單元的內(nèi)容,屬于空間與圖形的范疇,是在學生已經(jīng)掌握了三角形的穩(wěn)定性和三角形的三邊關系相關知識后對三角形的進一步研究,探索三角形的內(nèi)角和等于180°。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°。讓學生在自主探索中發(fā)現(xiàn)三角形的又一特性,更加深入的培養(yǎng)了學生的空間觀念。
【學生分析】
在四年級學生已經(jīng)掌握了角的概念、角的分類和角的度量等知識。在本課之前,學生又掌握了三角形的穩(wěn)定性研究了三角形的分類。這些都為進一步研究三角形內(nèi)角和作了知識儲備和心理準備,為本課內(nèi)容的教學作了鋪墊。三角形的內(nèi)角和是三角形的一個重要性質(zhì)。它有助于理解三角形的三個內(nèi)角之間的關系,是進一步學習、研究幾何問題的基礎。
【教學目標】
1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°掌握并會應用這一規(guī)律解決實際的問題。
2、通過討論、爭辯、操作、推理發(fā)展學生動手操作、觀察比較和抽象概括的能力。
3、使學生掌握由特殊到一般的邏輯思辨方法和先猜想后研究問題的方法。
【教學重點】讓學生經(jīng)歷“三角形內(nèi)角和是180度”這一知識的形成發(fā)展和應用的全過程。
【教學難點】能利用學到的知識進行合情的推理。
【教具學具準備】課件、各種各樣的直角三角形、長方形、剪刀、量角器、數(shù)學紙
【教學過程】
一、學具三角板,引入新課
1、(出示兩個直角三角板),問:這是咱們同學非常熟悉的一種學習工具,是什么呀?(三角板)它們的外形是什么形狀的?(三角形)(課件:抽象出三角形)
2、顧名思義一個三角形都有幾個角呀?(三個)
3、認識內(nèi)角
。1)在三角形的內(nèi)部相臨兩條邊之間所夾的角叫做三角形的內(nèi)角。(課件閃爍∠1)(板書:三角形內(nèi)角)∠1就叫做三角形的什么?這兩條邊夾的角∠2呢?∠3呢?
(2)這個三角形內(nèi)有幾個內(nèi)角?(三個)這個呢?(三個)
。ㄔO計意圖:由學生最熟悉的三角板引入新課,激發(fā)學生興趣的同時為后面的學習做準備)
二、動手操作,探索新知
。ㄒ唬┲苯侨切蝺(nèi)角和
、、特殊直角三角形內(nèi)角和
1、根據(jù)我們以往對三角板的了解,你還記得每個三角形上每個內(nèi)角各是多少度嗎?(生說度數(shù),師課件上在相應角出示度數(shù):①90°、60°、30°,②90°、45°、45°)。
2、觀察這兩個三角形的度數(shù),你有什么發(fā)現(xiàn)?
生1:都有一個直角,師:那我們就可以說他們是什么三角形?(板書:直角三角形)
生2:我還發(fā)現(xiàn)他們內(nèi)角加起來是180度。師:他真會觀察,你發(fā)現(xiàn)了嗎?快算一算是不是他說的那樣?
(課件):(1)90°+60°+30°=180°)
那么另一個三角板的三個內(nèi)角的總度數(shù)是多少?
(生回答,師課件:(2)90°+45°+45°=180)
3、你指的哪是180度?(生:這三個內(nèi)角合起來是180度)
4、在三角形內(nèi)三個內(nèi)角的總度數(shù)又簡稱為三角形的內(nèi)角和。(板書:和)
5、這個直角三角形的內(nèi)角和是多少度?另一個呢?
6、你還記得180度是我們學過的是什么角嗎?(平角)趕快在你的數(shù)學紙上畫一個平角。
(師出示一個平角)問:平角是什么樣的?
7、師述:角的兩邊形成一條直線就是平角。也就是180度,哦,這兩個直角三角形的內(nèi)角和就組成這樣的一個角呀。
、、一般直角三角形內(nèi)角和
1、老師還為你們準備了各種各樣的直角三角形,快拿出來看看。
2、剛才的那兩個直角三角形的內(nèi)角和是180度,你們手中的直角三角形的內(nèi)角和是多少度呢?老師還為你們準備了一些學具,你能充分地利用這些學具,想辦法來研究直角三角形的內(nèi)角和是多少度嗎?下面我們以小組為單位來研究,注意小組同學要明確分工可以一個人填表,另外的人一起動手實驗看一看哪一組想出研究方法最多。
。1)小組活動(2)匯報
哪個組愿意把你們的研究成果向大家展示? 每個小組派代表發(fā)言。(在實物展臺上演示)
三角形的種類
驗證方法
驗證結(jié)果
“量一量”的方法:
板書:有一點誤差的度數(shù)
*“剪一剪”的方法:
我們在剪的時候要注意什么?剪完之后怎樣拼?拼成的是什么?你怎么知道是平角?(提示:可以在我們畫的平角上拼)(課件展示)
現(xiàn)在我們也用這種方法試一試,看能不能拼成平角?(小組實驗)
你們的直角三角形的內(nèi)角和拼成的是平角嗎?也就是內(nèi)角和是多少度?
還有其他方法嗎?
*“折一折”的方法:
預設:①生:我是折的。師:怎樣折的?你能給大家演示嗎?
學生演示(課件:折的過程)
、趯W生沒有說出來,師:你們看老師還有一種方法請看:(課件:折的過程)其實折的方法和剪、撕的道理是一樣的,最后都是把三個內(nèi)角拼成平角。(板書:折)
*推理:
你們有用長方形來研究直角三角形內(nèi)角和度數(shù)的嗎?(課件:長方形)快想一想用長方形怎樣去研究?(課件:長方形驗證的過程)
這種方法就叫做推理,一般到中學以后我們經(jīng)常會用到。(板書:推理)
3、小結(jié)
。1)通過我們剛才的研究,我們發(fā)現(xiàn)直角三角形的內(nèi)角和都是多少度呀?(板書:內(nèi)角和是180°)剛才我們在測量的時候為什么會出現(xiàn)179度183度呢?看來只要是測量不可避免的會產(chǎn)生誤差。
(2)在我們?nèi)切蔚氖澜缰,是只有直角三角形嗎?還有什么?(板書:銳角三角形、鈍角三角形)
。ㄔO計意圖:引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內(nèi)角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結(jié)論的統(tǒng)一,從而使學生明白獲得探究問題的方法比獲得結(jié)論更為重要。)
。ǘ、銳角三角形、鈍角三角形的內(nèi)角和
1、請你們?nèi)我猱嬕粋鈍角三角形,一個銳角三角形
2、直角三角形的內(nèi)角和是180度,銳角三角形、鈍角三角形的內(nèi)角和又是多少度呢?你能利用我們剛才學到的知識來研究你所畫的三角形的內(nèi)角和是多少度嗎?快試試,可以同桌討論。(學生操作,匯報,課件演示)我們是用什么方法來研究的?
3、學生模仿老師操作說理
4、由此我們得到了銳角三角形的內(nèi)角和是多少度?鈍角三角形的內(nèi)角和呢?我們就可以說所有三角形的內(nèi)角和都是180度。
師:這也是三角形的一個特性,現(xiàn)在你對三角形的這一特性有疑問嗎?如果沒有的話請你用自信、肯定的語氣讀一讀(板書:三角形的內(nèi)角和是180°)。
(設計意圖:引導學生通過直角三角形的內(nèi)角和是180度來推導出銳角和鈍角三角形的內(nèi)角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。)
三、鞏固新知,拓展應用
我們就用三角形的這一特性來解決一些問題
1、兩個三角形拼成大三角形
。1)每個三角形的內(nèi)角和都是少度?
(2)(課件把兩個三角形拼在一起)它的內(nèi)角和是多少度?(這時學生答案又出現(xiàn)了180°和360°兩種。)師:究竟誰對呢?
2、一個三角形去掉一部分
(1)這是一個三角形,他的內(nèi)角和是多少度?我從中剪去一個三角形他的內(nèi)角和是多少度?
再剪去一個三角形呢?(課件演示)
你們看這兩個三角形他們的大小、形狀都怎么樣?但內(nèi)角和都是180度,看來三角形的內(nèi)角和的度數(shù)和他的大小形狀都無關。
(2)我再把這個三角形剪去一部分,它的內(nèi)角和是多少度?(課件:剪成四邊形)
你能利用我們?nèi)切蔚膬?nèi)角和是180度來研究這個四邊形的內(nèi)角和是多少度嗎?
。3)如果五邊形,你還能求出他的度數(shù)嗎?
(設計意圖:充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內(nèi)角和等于180度。在此基礎上滲透數(shù)學的“轉(zhuǎn)化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。)
四、總結(jié)評價、延伸知識
通過這節(jié)課的學習研究你掌握了哪些知識?我們是怎樣研究的呢?
師:先研究的是特殊直角三角形的內(nèi)角和是180度,接著通過量、拼等方法得到了直角三角形的內(nèi)角和是180度,再利用直角三角形通過推理研究出銳角三角形和鈍角三角形的內(nèi)角和是180度。
《三角形內(nèi)角和定理》的教學設計 篇1
一、說教材
北師版八年級下冊第六章《證明一》,是在前面對幾何結(jié)論已經(jīng)有了一定的直觀認識的基礎上編排的,而前幾冊對有關幾何結(jié)論都曾進行過簡單的說理,本章內(nèi)容則嚴格給出這些結(jié)論的證明,并要求學生掌握證明的一般步驟及書寫表達格式!度切蝺(nèi)角和定理的證明》則是對前幾節(jié)證明的自然延續(xù)。此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎。
二、說目標
1、知識目標:掌握“三角形內(nèi)角和定理的證明”及其簡單的應用。
2、能力目標培養(yǎng)學生的數(shù)學語言表達、邏輯推理、問題思考、組內(nèi)及組間交流、動手實踐等能力。
3、情感、態(tài)度、價值觀:在良好的師生關系下,建立輕松的學習氛圍,使學生體會獲得知識的成就感及與他人合作的`樂趣,以增強其數(shù)學學習的自信心。
4、教學重點、難點
重點:三角形的內(nèi)角和定理的證明及其簡單應用。
難點:三角形的內(nèi)角和定理的證明方法的討論。
三、說學校及學生現(xiàn)實情況
我校是藍田縣一所普通初中,四面非山即嶺,距藍田縣城四十里之遙。但由于國家對西部教育的大力支持,學校有遠程多媒體網(wǎng)絡教室,為師生提供了良好的學習硬件環(huán)境。我校學生幾乎全部來自本鎮(zhèn)農(nóng)村,而我所教授的八年級四班學生,大多家庭貧苦,所以學習認真踏實,有強烈的求知欲;此外,善于鉆研是他們的特點,并且,有較強的合作交流意識。
四、說教法
根據(jù)本節(jié)課教學內(nèi)容特點,我采用啟發(fā)、引導、探索相結(jié)合的教學方法,使學生充分發(fā)揮學習主動性、創(chuàng)造性。
五、說教學設計
〈一〉、創(chuàng)設情景,直入主題
一堂新課的引入是教師與學生活動的開始,而一個成功的引入,可使學生破除畏難心理,對知識在短時間內(nèi)產(chǎn)生濃厚的興趣,接下來的教學活動就變得順理成章。我的具體做法是:簡單回憶舊知識,“證明的一般步驟是什么?”學生輕松做答,我肯定之后緊接著說:“本節(jié)課就是用證明的方法學習一個熟悉的結(jié)論!是什么呢?請看大屏幕!”。盡量使問題簡單化,這樣更利于學生投入新課。
〈二〉、交流對話,引導探索
1、巧妙提問,合理引導
證明思想的引入時,問:同學們,七年級時如何得到此結(jié)論?(留一定時間讓他們討論、交流、達成共識)學生回答后,我及時肯定并鼓勵后拋出問題:他們的共同之處是什么?學生容易回答:湊成一平角。我說:很好!那你們用這樣的思想能證明這個命題是個真命題嗎?趕快試試吧!這樣,既引導了證明的方向,又激發(fā)了學生的學習興趣。接下來學生做題,我巡視。同時讓一學生板演。
2、恰當示范,培養(yǎng)學生正確的書寫能力
在學生做完之后,我與他們一道分析板演同學證明是否合理,并利用多媒體給出正確書寫方法。
3、一題多解,放手讓學生走進自主學習空間
正因為學生的預習,所以他們證明的方法有所局限,這時,我拋出問題:再想想,還有其他方法嗎?將課堂時間又交還他們,將其思維推向高潮。學生思考,繼而熱烈討論,此時,我又走到學生中去,對有困難的學生多加關注和指導,不放棄任何一個,同時,借此機會增進教師與學困生之間的情誼,為繼續(xù)學習奠定基礎。最后,請有新方法的同學敘述其思想方法,我用大屏幕展示不同做法的合情推理過程。
4、展示歸納,合理演繹
利用多媒體展示三角形內(nèi)角和定理的幾種表達形式,以促其學以致用。
5、反饋練習
用隨堂練習來鞏固學生所學新知,另一方面進一步提高學生的書寫能力。同時,在他們作完之后,多媒體展示正確寫法,加強教學效果。
〈三〉、課堂小結(jié)
1 采用讓學生感性的談認識,談收獲。設計問題:
2(1)、本節(jié)課我們學了什么知識?
。2)、你有什么收獲?
目的是發(fā)揮學生主體意識,培養(yǎng)其語言概括能力。
六、說教學反思
本節(jié)課主要是以嚴謹?shù)倪壿嬜C明方法,驗證三角形內(nèi)角和等于180度。讓學生充分體會有理有據(jù)的推理才是可靠的。而證明思想、書寫的培養(yǎng),是本節(jié)課的重點。自主學習、合作交流是新課程理念,也是我本節(jié)課的設計意圖。從學生課堂表現(xiàn)可以看出,教學效果良好。而學生的一些出乎意料的做法讓我倍感驚喜!把學生還給課堂,把課堂還給學生,也是我一貫的做法。
《三角形內(nèi)角和定理》的教學設計 篇2
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔谩度切蔚膬(nèi)角》內(nèi)容選自人教實驗版九年義務教育七年級下冊第七章第二節(jié)第一課時。 “三角形的內(nèi)角和等于180°”是三角形的一個重要性質(zhì),它揭示了組成三角形的三個角的數(shù)量關系,學好它有助于學生理解三角形內(nèi)角之間的關系,也是進一步學習《多邊形內(nèi)角和》及其它幾何知識的基礎。此外,“三角形的內(nèi)角和等于180°”在前兩個學段已經(jīng)知道了,但這個結(jié)論在當時是通過實驗得出的,本節(jié)要用平行線的性質(zhì)來說明它,說理中引入了輔助線,這些都為后繼學習奠定了基礎,三角形的內(nèi)角和定理也是幾何問題代數(shù)化的體現(xiàn)。
(二)教學目標
基于對教材以上的認識及課程標準的要求,我擬定本節(jié)課的教學目標為:
1、知識技能:發(fā)現(xiàn)“三角形內(nèi)角和等于180°”,并能進行簡單應用;體會方程的思想;尋求解決問題的方法,獲得解決問題的經(jīng)驗。
2、數(shù)學思考:通過拼圖實踐、合作探索、交流,培養(yǎng)學生的邏輯推理、大膽猜想、動手實踐等能力。
3、解決問題:會用三角形內(nèi)角和解決一些實際問題。
4、情感、態(tài)度、價值觀:在良好的師生關系下,建立輕松的學習氛圍,使學生樂于學數(shù)學,在數(shù)學活動中獲得成功的體驗,增強自信心,在合作學習中增強集體責任感。通過添置輔助線教學,滲透美的思想和方法教育。
。ㄈ┲仉y點的確立:
1、重點:“三角形的內(nèi)角和等于180°”結(jié)論的探究與應用。
2、難點:三角形的內(nèi)角和定理的證明方法(添加輔助線)的討論。
二、學情分析
處于這個年齡階段的學生有能力自己動手,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結(jié)的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學生充分的自由和空間,同時注意問題的開放性與可擴展性。
基于以上的情況,我確立了本節(jié)課的教法和學法:
三、教法、學法
。ㄒ唬┙谭
基于本節(jié)課內(nèi)容的特點和七年級學生的心理特征,我采用了“問題情境—建立模型—解釋、應用與拓展”的模式展開教學。本節(jié)課采用多媒體輔助教學,旨在呈現(xiàn)更直觀的形象,提高學生的積極性和主動性,并提高課堂效率。
。ǘ⿲W法
通過學生分組拼圖得出結(jié)論,小組分析尋求說理思路,從不同角度去分析、解決新問題,通過基礎練習、提高練習和拓展練習發(fā)掘不同層次學生的不同能力,從而達到發(fā)展學生思維能力和自學能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
四、教學過程
我是以6個活動的形式展開教學的,活動1是為了創(chuàng)設情境引入課題,激發(fā)學生的學習興趣,活動2是探討三角形內(nèi)角和定理的證明,證明的`思路與方法是本節(jié)的難點,活動3到5是新知識的應用,活動6是整節(jié)課的小結(jié)提高。
具體過程如下:活動1:首先用多媒體展示情境提出問題1,設計意圖是:創(chuàng)設情境,引起學生注意,調(diào)動學生學習的積極性,激發(fā)學生的學習興趣,導入新課。在此基礎上由學生分組,用事先準備好的三角形拼圖發(fā)現(xiàn)三角形的內(nèi)角和等于180°。設計意圖是:從豐富的拼圖活動中發(fā)展學生思維的靈活性,創(chuàng)造性,從活動中獲得成功的體驗,增強自信心,通過小組合作培養(yǎng)學生合作、交流能力。在合作學習中增強集體責任感。再用多媒體演示兩個動畫拼圖的過程。設計意圖:讓學生更加形象直觀的理解拼圖實際上只有兩種,一種是折疊,一種是角的拼合,這為下一環(huán)節(jié)說理中添加輔助線打好基礎,從而達到突破難點的目的。
前面通過動手大家都知道了三角形的內(nèi)角和等于180°這個結(jié)論,那么你們是否能利用我們前面所學的有關知識來說明一下道理呢?請看問題2,請各小組互相討論一下,討論完后請派一個代表上來說明你們小組的思路[學生的說理方法可能有四種(板書添輔助線的四種可能并用多媒體演示證明方法)]設計的目的:通過添置輔助線教學,滲透美的思想和方法教育,突破本節(jié)的難點,了解輔助線也為后繼學習打下基礎。在說理過程中,更加深刻地理解多種拼圖方法。同時讓學生上板分析說理過程是為了培養(yǎng)學生的語言表達能力,邏輯思維能力,多種思路的分析是為了培養(yǎng)學生的發(fā)散性思維。
通過活動3中問題的解決加深學生對三角形內(nèi)角和的理解,初步應用新知識,解決一些簡單的問題,培養(yǎng)學生運用方程思想解幾何問題的能力。
活動4向?qū)W生展示分析問題的基本方法,培養(yǎng)學生思維的廣闊性、數(shù)學語言的表達能力。把問題中的條件進一步簡化為學生用輔助線解決問題作好鋪墊。同時培養(yǎng)學生建模能力。
活動5通過兩上實際問題的解決加深學生對所學知識的理解、應用。培養(yǎng)學生建模的思想及能力。
活動6的設計目的發(fā)揮學生主體意識,培養(yǎng)學生語言概括能力。
【教學設計說明】
1、《數(shù)學課程標準》指出:“本學段(7~9年級)的數(shù)學應結(jié)合具體的數(shù)學內(nèi)容,采用?問題情境——建立模型——解釋、應用與拓展?的模式展開,讓學生經(jīng)歷知識的形成與應用的過程…… ”因此,在本節(jié)課的教學中,我不斷的創(chuàng)造自主探究與合作交流的學習環(huán)境,讓學生有充分的時間和空間去動手操作,去觀察分析,去得出結(jié)論,并體驗成功,共享成功、
2、體現(xiàn)自主學習、合作交流的新課程理念、無論是例題還是習題的教學均采用“嘗試—交流—討論”的方式,充分發(fā)揮學生的主體性,教師起引導、點撥的作用、
3、結(jié)合評價表,對學生的課堂表現(xiàn)進行激勵性的評價,一方面有利于調(diào)動學生的積極性,另一方面有利于學生進行自我反思。
【《三角形內(nèi)角和定理》的教學設計】相關文章:
三角形內(nèi)角和教學設計10-24
《三角形的內(nèi)角和〉教學設計05-31
《三角形內(nèi)角和》教學設計08-03
《三角形內(nèi)角和》教學設計10-02
三角形內(nèi)角和教學設計08-15
小學數(shù)學教學設計:三角形的內(nèi)角和06-07
三角形的內(nèi)角和教案設計08-05