亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

教學設(shè)計

演繹推理教學設(shè)計

時間:2024-10-04 03:20:38 教學設(shè)計 我要投稿
  • 相關(guān)推薦

演繹推理教學設(shè)計

  教學設(shè)計是根據(jù)課程標準的要求和教學對象的特點,將教學諸要素有序安排,確定合適的教學方案的設(shè)想和計劃。一般包括教學目標、教學重難點、教學方法、教學步驟與時間分配等環(huán)節(jié)。下面是演繹推理教學設(shè)計,請參考!

演繹推理教學設(shè)計

  演繹推理教學設(shè)計

  學習目標

  1.結(jié)合已學過的數(shù)學實例和生活中的實例,體會演繹推理的重要性;

  2.掌握演繹推理的基本方法,并能運用它們進行一些簡單的推理.

  學習過程

  一、前準備

  復(fù)習1:歸納推理是由 到 的推理.

  類比推理是由 到 的推理.

  復(fù)習2:合情推理的結(jié)論 .

  二、新導(dǎo)學

  ※ 學習探究

  探究任務(wù)一:演繹推理的概念

  問題:觀察下列例子有什么特點?

 。1)所有的金屬都能夠?qū)щ,銅是金屬,所以 ;

 。2)一切奇數(shù)都不能被2整除,2007是奇數(shù),所以 ;

 。3)三角函數(shù)都是周期函數(shù), 是三角函數(shù),所以 ;

 。4)兩條直線平行,同旁內(nèi)角互補.如果A與B是兩條平行直線的同旁內(nèi)角,那么 .

  新知:演繹推理是

  的推理.簡言之,演繹推理是由 到 的推理.

  探究任務(wù)二:觀察上述例子,它們都由幾部分組成,各部分有什么特點?

  所有的金屬都導(dǎo)電 銅是金屬 銅能導(dǎo)電

  已知的一般原理 特殊情況 根據(jù)原理,對特殊情況做出的判斷

  大前提 小前提 結(jié)論

  新知:“三段論”是演繹推理的一般模式:

  大前提—— ;

  小前提—— ;

  結(jié)論—— .

  新知:用集合知識說明“三段論”:

  大前提:

  小前提:

  結(jié) 論:

  試試:請把探究任務(wù)一中的演繹推理(2)至(4)寫成“三段論”的形式.

  ※ 典型例題

  例1 命題:等腰三角形的'兩底角相等

  已知:

  求證:

  證明:

  把上面推理寫成三段論形式:

  變式:已知空間四邊形ABCD中,點E,F分別是AB,AD的中點, 求證:EF 平面BCD

  例2求證:當a>1時,有

  動手試試:1證明函數(shù) 的值恒為正數(shù)。

  2 下面的推理形式正確嗎?推理的結(jié)論正確嗎?為什么?

  所有邊長相等的凸多邊形是正多邊形,(大前提)

  菱形是所有邊長都相等的凸多邊形, (小前提)

  菱形是正多邊形. (結(jié) 論)

  小結(jié):在演繹推理中,只要前提和推理形式是正確的,結(jié)論必定正確.

  三、總結(jié)提升

  ※ 學習小結(jié)

  1. 合情推理 ;結(jié)論不一定正確.

  2. 演繹推理:由一般到特殊.前提和推理形式正確結(jié)論一定正確.

  3應(yīng)用“三段論”解決問題時,首先應(yīng)該明確什么是大前提和小前提,但為了敘述簡潔,如果大前提是顯然的,則可以省略.

  ※ 當堂檢測(時量:5分鐘 滿分:10分)計分:

  1. 因為指數(shù)函數(shù) 是增函數(shù), 是指數(shù)函數(shù),則 是增函數(shù).這個結(jié)論是錯誤的,這是因為

  A.大前提錯誤 B.小前提錯誤 C.推理形式錯誤 D.非以上錯誤

  2. 有這樣一段演繹推理是這樣的“有些有理數(shù)是真分數(shù),整數(shù)是有理數(shù),則整數(shù)是真分數(shù)”

  結(jié)論顯然是錯誤的,是因為

  A.大前提錯誤 B.小前提錯誤 C.推理形式錯誤 D.非以上錯誤

  3. 有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線 平面 ,直線 平面 ,直線 ∥平面 ,則直線 ∥直線 ”的結(jié)論顯然是錯誤的,這是因為

  A.大前提錯誤 B.小前提錯誤 C.推理形式錯誤 D.非以上錯誤

  4.歸納推理是由 到 的推理;

  類比推理是由 到 的推理;

  演繹推理是由 到 的推理。

【演繹推理教學設(shè)計】相關(guān)文章:

演繹推理和歸納推理的知識點總結(jié)06-26

《數(shù)學廣角推理》教學設(shè)計與反思素材08-05

二年級簡單推理教學設(shè)計07-09

二年級《猜一猜-推理》教學設(shè)計08-04

《有趣的推理》課堂教學總結(jié)04-24

GMAT綜合推理備考建議09-01

GMAT綜合推理復(fù)習建議06-16

GMAT邏輯推理考試技巧10-28

GMAT邏輯推理策略分析11-01

GMAT邏輯推理錯誤解析06-25