- 相關(guān)推薦
單項式的乘法教學設(shè)計范文
第5.2節(jié) 單項式的乘法
【教學目標】
1、了解單項式與單項式相乘,單項式與多項式相乘的法則,并理解其中的算理,進而會進行單項式與單項式相乘,單項式與多項式相乘的運算。
2、體會乘法交換律、結(jié)合律和分配律的作用和轉(zhuǎn)化的思想。
3、在探索過程中,利用運算律將問題轉(zhuǎn)化,使學生獲得成就感,培養(yǎng)學習數(shù)學的興趣。
【教學重點、難點】
重點是單項式與單項式和單項式與多項式相乘的運算法則及其應(yīng)用。
難點是如何靈活進行單項式的乘法運算。
【教學過程】
一、創(chuàng)設(shè)情景,引出課題。
展示:一位旅行者用步長測量天安門廣場的面積:他從南到北,記下所走的步數(shù)為1100步;再從東走到西,記下所走的步數(shù)為625步,然后根據(jù)自己的步長來估算廣場的面積。
。1)如果用字母a表示該旅行者的步長,你能用含a的代數(shù)式表示廣場的面積嗎?
。1100a)×(625a)
(2)假設(shè)這位旅行者的步長為0.8m,那么廣場的面積大約是多少m2?
。1100×0.8)×(625×0.8)=440000m2
。3)通過解決上述問題,你認為兩個單項式相乘應(yīng)怎樣運算?運算依據(jù)是什么?
教師引導(dǎo),學生參與,從具體實行(1100×0.8)×(625×0.8)=1100×625×0.82開始運用乘法交換律、乘法結(jié)合律、同底數(shù)冪的運算性質(zhì)能得出:
(1100a)×(625a)=(1100×625)×(a×a)=(1100×625)a2
二、誘向深入,構(gòu)建模型
類似的3x2y·2x3y2,(abc)·(a2c)怎么辦呢?
學生小組交流,合作學習,老師進行引導(dǎo)總結(jié):
。1)系數(shù)與系數(shù)相乘; (2)同底數(shù)冪與同底數(shù)冪相乘;
。3)其余字母及其指數(shù)不變作為積的因式
師:以上各題正是單項式與單項式相乘,總結(jié)得到的三點正是單項式與單項式相乘法則。
三、展示應(yīng)用,評價自我。
1、做一做。(學生到黑板前演示,之后師生共同評定)
。1)3b3·5/6b2 (2)(-6ay3)(-a2)
。3)(-3x)3(5x2y) (4)(2×104)(6×103)·107
注意點:(1)任何一個因式都不可丟掉
。2)結(jié)果仍是單項式 (3)要注意運算順序
2、練一練
課本P112 1、2
四、合作學習,再覓新知
一幅電腦畫的尺寸如圖5-3(詳見課本P111)
(1)請用兩種不同的方法表示畫面的面積;
方法一:a(a-2m)
方法二:ab-am-am=ab-2am
。2)這兩種不同方法表示的面積應(yīng)當相等,你所用運算律解釋它們相等嗎?
(體會分配律及其轉(zhuǎn)化)
。3)通過上面討論,你能總結(jié)出單項式與多項式相乘的運算規(guī)律嗎?
學生小組討論,合作學習,逐步從a(b-2m)=ab-2am中提煉出單項式與多項式相乘的法則:單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。(注意:項是包括符號的)
五、應(yīng)用新知,體驗成功。
1、試一試(教師與學生共同完成)
(1)2a2b(1/2ab-3ab2)
。2)(1/3x-3/4xy)(-12y)
2、練一練
課本P112課內(nèi)練習3。
六、歸納小結(jié),充實結(jié)構(gòu)。
1、單項式與單項式相乘法則
2、單項式與多項式相乘法則
3、法則是由哪些運算律轉(zhuǎn)化而來的?
七、知識留戀,課后韻味。
布置作業(yè):作業(yè)本,一課一練。
【單項式的乘法教學設(shè)計】相關(guān)文章:
單項式的除法教學設(shè)計08-08
認識乘法教學設(shè)計10-20
小數(shù)乘法教學設(shè)計06-15
乘法的估算教學設(shè)計07-18
“乘法估算”教學設(shè)計08-27
《乘法估算》教學設(shè)計與教學反思07-30
6乘法口訣教學設(shè)計06-01
乘法的初步認識教學設(shè)計10-11
《5的乘法口訣》教學設(shè)計09-11