- 相關(guān)推薦
初中數(shù)學(xué)微課教學(xué)設(shè)計(jì)(精選7篇)
教學(xué)設(shè)計(jì)是根據(jù)課程標(biāo)準(zhǔn)的要求和教學(xué)對(duì)象的特點(diǎn),將教學(xué)諸要素有序安排,確定合適的教學(xué)方案的設(shè)想和計(jì)劃。一般包括教學(xué)目標(biāo)、教學(xué)重難點(diǎn)、教學(xué)方法、教學(xué)步驟與時(shí)間分配等環(huán)節(jié)。下面是小編整理的初中數(shù)學(xué)微課教學(xué)設(shè)計(jì),歡迎大家分享。
初中數(shù)學(xué)微課教學(xué)設(shè)計(jì) 篇1
一、內(nèi)容簡介
本節(jié)課的主題:通過一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式。
關(guān)鍵信息:
1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。通過學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問題,對(duì)可能的答案做出假設(shè)與猜想,并通過多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。
2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。
二、學(xué)習(xí)者分析:
1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:
①同類項(xiàng)的定義。
、诤喜⑼愴(xiàng)法則
、鄱囗(xiàng)式乘以多項(xiàng)式法則。
2、學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號(hào)的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。
三、教學(xué)/學(xué)習(xí)目標(biāo)及其對(duì)應(yīng)的課程標(biāo)準(zhǔn):
(一)教學(xué)目標(biāo):
1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號(hào)感和推力能力。
2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計(jì)算。
。ǘ┲R(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過程,認(rèn)識(shí)有理數(shù)、實(shí)數(shù)、代數(shù)式、方程、不等式、函數(shù);掌握必要的運(yùn)算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、方程、不等式、函數(shù)等進(jìn)行描述。
。ㄈ┙鉀Q問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評(píng)價(jià)不同方法之間的差異;通過對(duì)解決問題過程的反思,獲得解決問題的經(jīng)驗(yàn)。
(四)情感與態(tài)度:敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解,能從交流中獲益。
四、教育理念和教學(xué)方式:
1.教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者,學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動(dòng)的、富有個(gè)性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。教學(xué)是師生交往、積極互動(dòng)、共同發(fā)展的過程。當(dāng)學(xué)生迷路的時(shí)候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時(shí)候,教師不是拖著他走,而是喚起他內(nèi)在的精神動(dòng)力,鼓勵(lì)他不斷向上攀登。
2.采用“問題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式展開教學(xué)。
3.教學(xué)評(píng)價(jià)方式:
。1)通過課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動(dòng)中的主動(dòng)參與程度與合作交流意識(shí),及時(shí)給與鼓勵(lì)、強(qiáng)化、指導(dǎo)和矯正。
。2)通過判斷和舉例,給學(xué)生更多機(jī)會(huì),在自然放松的狀態(tài)下,揭示思維過程和反饋知識(shí)與技能的掌握情況,使老師可以及時(shí)診斷學(xué)情,調(diào)查教學(xué)。
(3)通過課后訪談和作業(yè)分析,及時(shí)查漏補(bǔ)缺,確保達(dá)到預(yù)期的教學(xué)效果。
五、教學(xué)媒體:
多媒體
六、教學(xué)和活動(dòng)過程:
〈一〉、提出問題
[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?(2m+3n)2=_______________,(-2m-3n)2=______________,(2m-3n)2=_______________,(-2m+3n)2=_______________。〈二〉、分析問題
1.[學(xué)生回答]分組交流、討論
(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。(1)原式的特點(diǎn)。(2)結(jié)果的`項(xiàng)數(shù)特點(diǎn)。
。3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。2.[學(xué)生回答]總結(jié)完全平方公式的語言描述:
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。3.[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:
(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.
〈三〉、運(yùn)用公式,解決問題1.口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)
(m+n)2=____________,(m-n)2=_______________,
(-m+n)2=____________,(-m-n)2=______________,
(a+3)2=______________,(-c+5)2=______________,
(-7-a)2=______________,(0.5-a)2=______________.
2.判斷:
()①(a-2b)2=a2-2ab+b2()
、(2m+n)2=2m2+4mn+n2()
、(-n-3m)2=n2-6mn+9m2()
、(5a+0.2b)2=25a2+5ab+0.4b2()
、(5a-0.2b)2=5a2-5ab+0.04b2()
⑥(-a-2b)2=(a+2b)2()
、(2a-4b)2=(4a-2b)2()
、(-5m+n)2=(-n+5m)2
3.小試牛刀
①(x+y)2=______________;
、(-y-x)2=_______________;
、(2x+3)2=_____________;
④(3a-2)2=_______________;
、(2x+3y)2=____________;
、(4x-5y)2=______________;
、(0.5m+n)2=___________;
、(a-0.6b)2=_____________.
〈四〉、學(xué)生小結(jié)
你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?
(1)公式右邊共有3項(xiàng)。
(2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。
(3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。
(4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。
〈五〉、冒險(xiǎn)島:
。1)(-3a+2b)2=________________________________
(2)(-7-2m)2=__________________________________
。3)(-0.5m+2n)2=_______________________________
。4)(3/5a-1/2b)2=________________________________
。5)(mn+3)2=__________________________________
。6)(a2b-0.2)2=_________________________________
。7)(2xy2-3x2y)2=_______________________________
。8)(2n3-3m3)2=________________________________
〈六〉、學(xué)生自我評(píng)價(jià)
[小結(jié)]通過本節(jié)課的學(xué)習(xí),你有什么收獲和感悟?
本節(jié)課,我們自己通過計(jì)算、分析結(jié)果,總結(jié)出了完全平方公式。在知識(shí)探索的過程中,同學(xué)們積極思考,大膽探索,團(tuán)結(jié)協(xié)作共同取得了進(jìn)步。
〈七〉[作業(yè)]
p34隨堂練習(xí)
p36習(xí)題
七、課后反思
本節(jié)課雖然算不上課本中的難點(diǎn),但在整式一章中是個(gè)重點(diǎn)。它是多項(xiàng)式乘法特殊形式下的一種簡便運(yùn)算。學(xué)生需要熟練掌握公式兩種形式的使用方法,以提高運(yùn)算速度。授課過程中,應(yīng)注重讓學(xué)生總結(jié)公式等號(hào)兩邊的特點(diǎn),讓學(xué)生用語言表達(dá)公式的內(nèi)容,由于語言缺陷的原因,這一點(diǎn)對(duì)聾生來說比較困難,讓學(xué)生說明運(yùn)用公式過程中容易出現(xiàn)的問題和特別注意的細(xì)節(jié)。然后再通過逐層深入的練習(xí),鞏固完全平方公式兩種形式的應(yīng)用,為完全平方公式第二節(jié)課的實(shí)際應(yīng)用和提高應(yīng)用做好充分的準(zhǔn)備。
1.教學(xué)內(nèi)容精心組織,容量恰當(dāng),重點(diǎn)突出,體現(xiàn)內(nèi)容的有效性、系統(tǒng)性和有序性;
2.重視啟發(fā),活躍思維,方式、方法多樣,選擇適當(dāng);教學(xué)環(huán)節(jié)緊湊、合理;
3.教學(xué)媒體使用適時(shí)、適量、適度、有效。
4.教學(xué)結(jié)構(gòu)組合優(yōu)化,優(yōu)質(zhì)高效。
初中數(shù)學(xué)微課教學(xué)設(shè)計(jì) 篇2
一、案例實(shí)施背景
教材為人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書七年級(jí)數(shù)學(xué)(下冊(cè))。
二、案例主題分析與設(shè)計(jì)
本節(jié)課是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書七年級(jí)數(shù)學(xué)(下冊(cè))第五章第3節(jié)內(nèi)容——5.3.1平行線的性質(zhì),它是直線平行的繼續(xù),是后面研究平移等內(nèi)容的基礎(chǔ),是“空間與圖形”的重要組成部分。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》強(qiáng)調(diào):數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、生生之間交往互動(dòng)與共同發(fā)展的過程;動(dòng)手實(shí)踐,自主探索,合作交流是孩子學(xué)習(xí)數(shù)學(xué)的重要方式;合作交流的學(xué)習(xí)形式是培養(yǎng)孩子積極參與、自主學(xué)習(xí)的有效途徑。本節(jié)課將以“生活?數(shù)學(xué)”“活動(dòng)?思考”“表達(dá)?應(yīng)用”為主線開展課堂教學(xué),以學(xué)生看得到、感受得到的基本素材創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生活動(dòng),并在活動(dòng)中激發(fā)學(xué)生認(rèn)真思考、積極探索,主動(dòng)獲取數(shù)學(xué)知識(shí),從而促進(jìn)學(xué)生研究性學(xué)習(xí)方式的形成,同時(shí)通過小組內(nèi)學(xué)生相互協(xié)作研究,培養(yǎng)學(xué)生合作性學(xué)習(xí)精神。
三、案例教學(xué)目標(biāo)
1.知識(shí)與技能:掌握平行線的性質(zhì),能應(yīng)用性質(zhì)解決相關(guān)問題。
2.數(shù)學(xué)思考:在平行線的性質(zhì)的探究過程中,讓學(xué)生經(jīng)歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過程。
3.解決問題:通過探究平行線的性質(zhì),使學(xué)生形成數(shù)形結(jié)合的數(shù)學(xué)思想方法,以及建模能力、創(chuàng)新意識(shí)和創(chuàng)新精神。
4.情感態(tài)度與價(jià)值觀:在探究活動(dòng)中,讓學(xué)生獲得親自參與研究的'情感體驗(yàn),從而增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和團(tuán)結(jié)合作、勇于探索、鍥而不舍的精神。
四、案例教學(xué)重、難點(diǎn)
1.重點(diǎn):對(duì)平行線性質(zhì)的掌握與應(yīng)用。
2.難點(diǎn):對(duì)平行線性質(zhì)1的探究。
五、案例教學(xué)用具
1.教具:多媒體平臺(tái)及多媒體課件.
2.學(xué)具:三角尺、量角器、剪刀。
六、案例教學(xué)過程
1.創(chuàng)設(shè)情境,設(shè)疑激思
⑴播放一組幻燈片。
內(nèi)容:①供火車行駛的鐵軌上;②游泳池中的泳道隔欄;③橫格紙中的線。
、铺釂枩毓剩喝粘I钪形覀兘(jīng)常會(huì)遇到平行線,你能說出直線平行的條件嗎?
⑶學(xué)生活動(dòng):針對(duì)問題,學(xué)生思考后回答——①同位角相等兩直線平行;②內(nèi)錯(cuò)角相等兩直線平行;③同旁內(nèi)角互補(bǔ)兩直線平行。
⑷教師肯定學(xué)生的回答并提出新問題:若兩直線平行,那么同位角、內(nèi)錯(cuò)角、同旁內(nèi)角各有什么關(guān)系呢?從而引出課題:7.2探索平行線的性質(zhì)(板書)。
2.數(shù)形結(jié)合,探究性質(zhì)
、女媹D探究,歸納猜想。
教師提要求,學(xué)生實(shí)踐操作:任意畫出兩條平行線(a∥b),畫一條截線c與這兩條平行線相交,標(biāo)出8個(gè)角。(統(tǒng)一采用阿拉伯?dāng)?shù)字標(biāo)角)
教師提出研究性問題一:
指出圖中的同位角,并度量這些角,填寫結(jié)果:
第一組:同位角()()角的度數(shù)()()數(shù)量關(guān)系()
第二組:同位角()()角的度數(shù)()()數(shù)量關(guān)系()
第三組:同位角()()角的度數(shù)()()數(shù)量關(guān)系()
第四組:同位角()()角的度數(shù)()()數(shù)量關(guān)系()
教師提出研究性問題二:
將圖中的同位角任先一組剪下后疊合。學(xué)生活動(dòng)一:畫圖—剪圖—疊合—猜想學(xué)生活動(dòng)二:畫圖—剪圖—疊合—猜想讓學(xué)生根據(jù)活動(dòng)得出的數(shù)據(jù)與操作得出的結(jié)果歸納猜想:兩直線平行,同位角相等。
教師提出研究性問題三:
再畫出一條截線d,看你的猜想結(jié)論是否仍然成立?
學(xué)生活動(dòng):探究、按小組討論,最后得出結(jié)論:仍然成立。
、平處熡谩稁缀萎嫲濉氛n件驗(yàn)證猜想,讓學(xué)生直觀感受猜想
、墙處熣故酒叫芯性質(zhì)1:兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)
3.引申思考,培養(yǎng)創(chuàng)新
教師提出研究性問題四:
請(qǐng)判斷兩條平行線被第三條直線所截,內(nèi)錯(cuò)角、同旁內(nèi)角各有什么關(guān)系?學(xué)生活動(dòng):獨(dú)立探究——小組討論——成果展示。
教師活動(dòng):評(píng)價(jià)學(xué)生的研究成果,并引導(dǎo)學(xué)生說理
因?yàn)閍∥b(已知)所以∠1=∠2(兩直線平行,同位角相等)
又∠1=∠3(對(duì)頂角相等)∠1+∠4=180°(鄰補(bǔ)角的定義)
所以∠2=∠3(等量代換)∠2+∠4=180°(等量代換)
教師展示:平行線性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等。(兩直線平行,內(nèi)錯(cuò)角相等)
平行線性質(zhì)3:兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。(兩直線平行,同旁內(nèi)角互補(bǔ))
4.實(shí)際應(yīng)用,優(yōu)勢(shì)互補(bǔ)
、牛〒尨穑┱n本P21練一練
1、2及習(xí)題5.3
1、3.
⑵(討論解答)課本P22習(xí)題5.
32、
4、5.
5.課堂總結(jié):
這節(jié)課你有哪些收獲?
、艑W(xué)生總結(jié):平行線的性質(zhì)
1、
2、3.⑵教師補(bǔ)充總結(jié):
①用“運(yùn)動(dòng)”的觀點(diǎn)觀察數(shù)學(xué)問題;(如前面將同位角剪下疊合后分析問題)。
、谟脭(shù)形結(jié)合的方法來解決問題;(如我們前面將同位角測(cè)量后分析問題)。
、塾脺(zhǔn)確的語言來表達(dá)問題(如平行線的性質(zhì)
1、
2、3的表述)。
、苡眠壿嬐评淼男问絹碚撟C問題。(如我們前面對(duì)性質(zhì)2和3的說理過程)
6.作業(yè)。學(xué)習(xí)與評(píng)價(jià):P236(選擇);P24
7、12(拓展與延伸)。
七、教學(xué)反思
數(shù)學(xué)課要注重引導(dǎo)學(xué)生探索與獲取知識(shí)的過程而不單注重學(xué)生對(duì)知識(shí)內(nèi)容的認(rèn)識(shí),因?yàn)椤斑^程”不僅能引導(dǎo)學(xué)生更好地理解知識(shí),還能夠引導(dǎo)學(xué)生在活動(dòng)中思考,更好地感受知識(shí)的價(jià)值,增強(qiáng)應(yīng)用數(shù)學(xué)知識(shí)解決問題的意識(shí);感受生活與數(shù)學(xué)的聯(lián)系,獲得“情感、態(tài)度、價(jià)值觀”方面的體驗(yàn)。這節(jié)課的教學(xué)實(shí)現(xiàn)了三個(gè)方面的轉(zhuǎn)變:
1.教的轉(zhuǎn)變
本節(jié)課教師的角色從知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者。教師成為了學(xué)生的導(dǎo)師、伙伴、甚至成為了學(xué)生的學(xué)生,在課堂上除了導(dǎo)引學(xué)生活動(dòng)外,還要認(rèn)真聆聽學(xué)生“教”你他們活動(dòng)的過程和通過活動(dòng)所得的知識(shí)或方法。
2.學(xué)的轉(zhuǎn)變
學(xué)生的角色從學(xué)會(huì)轉(zhuǎn)變?yōu)闀?huì)學(xué),跟老師學(xué)轉(zhuǎn)變?yōu)樽灾魅W(xué)。本節(jié)課學(xué)生不是停留在學(xué)會(huì)課本知識(shí)的層面上,而是站在研究者的角度深入其境,不是簡單地“學(xué)”數(shù)學(xué),而是深入地“做”數(shù)學(xué)。
3.課堂氛圍的轉(zhuǎn)變
整節(jié)課以“流暢、開放、合作、隱導(dǎo)”為基本特征,教師對(duì)學(xué)生的思維活動(dòng)減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學(xué)生與學(xué)生、學(xué)生與教師之間以“對(duì)話”“討論”為出發(fā)點(diǎn),以互助、合作為手段,以解決問題為目的,讓學(xué)生在一個(gè)較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價(jià)值。
總之,在數(shù)學(xué)教學(xué)的花園里,教師只要為學(xué)生布置好和諧的場(chǎng)景和明晰的路標(biāo),然后就讓他們自由地快活地去跳舞吧!
初中數(shù)學(xué)微課教學(xué)設(shè)計(jì) 篇3
一、背景
新課標(biāo)要求,應(yīng)讓學(xué)生在實(shí)際背景中理解基本的數(shù)量關(guān)系和變化規(guī)律,注重使學(xué)生經(jīng)歷從實(shí)際問題中建立數(shù)學(xué)模型、估計(jì)、求解、驗(yàn)證解的正確性與合理性的過程。在實(shí)際工作中讓學(xué)生學(xué)會(huì)從具體問題情景中抽象出數(shù)學(xué)問題,使用各種數(shù)學(xué)語言表達(dá)問題、建立數(shù)學(xué)關(guān)系式、獲得合理的解答、理解并掌握相應(yīng)的數(shù)學(xué)知識(shí)與技能,這些多數(shù)教師都注意到了,但要做好,還有一定難度。
二、教學(xué)片段
在剛過去的這個(gè)學(xué)期,我上了一節(jié)“一元一次不等式組的應(yīng)用”。
出示例題:小寶和爸爸、媽媽三人在操場(chǎng)上玩蹺蹺板,爸爸體重為72千克,坐在蹺蹺板的一端,體重只有媽媽一半的小寶和媽媽一同坐在另一端。這時(shí),爸爸的一端仍然著地,后來小寶借來一副質(zhì)量為6千克的啞鈴,加在他和媽媽坐的一端,結(jié)果,爸爸被高高地蹺起。猜猜看,小寶的體重約多少千克?
我問學(xué)生:“你們玩過蹺蹺板嗎?先看看題,一會(huì)請(qǐng)同學(xué)復(fù)述一下!睂W(xué)生復(fù)述后,基本已經(jīng)熟悉了題目。我接著讓學(xué)生思考:他們?nèi)俗藥状诬E蹺板?第一次坐時(shí)情況怎樣?第二次呢?學(xué)生議論了一會(huì)兒,自主發(fā)言,很快發(fā)現(xiàn)本題中存在的兩種文字形式的不等關(guān)系:
爸爸體重>小寶體重+媽媽體重
爸爸體重<小寶體重+媽媽體重+一副啞鈴重量
我引導(dǎo):你還能怎么判斷小寶體重?學(xué)生安靜了幾分鐘后,開始議論。一學(xué)生舉手了:“可以列不等式組。”我給出提示:“小寶的體重應(yīng)該同時(shí)滿足上述的兩個(gè)條件。怎么把這個(gè)意思表達(dá)成數(shù)學(xué)式子呢?”這時(shí)學(xué)生們七嘴八舌地討論起來,都搶著回答,
我注意到一位平時(shí)不愛說話的學(xué)生緊鎖眉頭,便讓他發(fā)言:“可以設(shè)小寶的體重為x千克,能列出兩個(gè)不等式?墒墙酉聛砦揖筒恢懒!蔽衣犃诵闹幸粍(dòng),意識(shí)到這應(yīng)是思想滲透的好機(jī)會(huì),便解釋說:“我們?cè)诔踔袝?huì)遇到許多問題都可以用類似的方法來研究解決,比方說前面列方程組”不等我說完,學(xué)生都齊聲答:“列不等式組。”全班12小組積極投入到解題活動(dòng)中了。5分鐘后,我請(qǐng)學(xué)生板演,自己下去巡查、指導(dǎo),發(fā)現(xiàn)學(xué)生的解題思路都很清楚,只是部分學(xué)生對(duì)答案的表達(dá)不夠準(zhǔn)確。于是提議學(xué)生說說列不等式組解應(yīng)用題分幾步,應(yīng)注意什么。此時(shí)學(xué)生也基本上形成了對(duì)不等式方法的'完整認(rèn)識(shí)。我便出示拓展應(yīng)用課件:
一次考試共25道選擇題,做對(duì)一道得4分,做錯(cuò)一道減2分,不做得0分。若小明想確?荚嚦煽?cè)?0分以上,那么他至少要做對(duì)多少題?
設(shè)置這道題,既有調(diào)查本節(jié)課效果的意圖,也想鞏固拓展一下學(xué)生的思維。沒料到相當(dāng)多學(xué)生對(duì)“至少”一詞理解不準(zhǔn)確,導(dǎo)致失誤。這正好讓我們的“本課小結(jié)”填補(bǔ)了一個(gè)空白——弄清題目中描述數(shù)量關(guān)系的關(guān)鍵詞才是解題的關(guān)鍵。
三、反思
本節(jié)課講完后,我感到一絲欣慰,看到孩子們躍躍欲試的學(xué)習(xí)勁頭,突然領(lǐng)悟到:教師的教學(xué)行為至關(guān)重要,成功的教學(xué),能開啟學(xué)生心靈的窗戶,能幫學(xué)生樹立學(xué)習(xí)的自信心。
本節(jié)課我有幾個(gè)深刻的感受:
1、在課前準(zhǔn)備的時(shí)候,我就覺得不等式組的應(yīng)用是個(gè)難點(diǎn)。所以在課堂教學(xué)中設(shè)置了幾個(gè)臺(tái)階,這也正好符合了循序漸進(jìn)的教學(xué)原則。
2、例題貼近學(xué)生實(shí)際,我在教學(xué)中有采用了更親近的教學(xué)語言,有利于激發(fā)學(xué)生的探究欲望。
3、關(guān)注學(xué)生的學(xué)習(xí)狀態(tài),隨時(shí)采取靈活適宜的教學(xué)方法,師生互動(dòng),生生互動(dòng),課堂教學(xué)才更加有效。
4、學(xué)生在學(xué)習(xí)后,確實(shí)感受到“不等式的方法”就像方程的方法一樣是從字母表示數(shù)開始研究解決的。這種方法可以幫助我們用數(shù)學(xué)的方式解決實(shí)際問題。
初中數(shù)學(xué)微課教學(xué)設(shè)計(jì) 篇4
教材分析
1.這節(jié)的重點(diǎn)為:去括號(hào)。因此,本節(jié)所學(xué)的知識(shí)實(shí)際上就是對(duì)前面所學(xué)知識(shí)的一個(gè)鞏固和深化,要突破這個(gè)重點(diǎn),只有在掌握方法的前提下,通過一定的練習(xí)來掌握。
2.去括號(hào)是整式加減的一個(gè)重要內(nèi)容,也是下一章一元一次方程的直接基礎(chǔ),也是今后繼續(xù)學(xué)習(xí)整式的乘除、因式分解、方程,以及分式、函數(shù)等的重要基礎(chǔ)。
學(xué)情分析
去括號(hào)法則是教材上的教學(xué)內(nèi)容,學(xué)生學(xué)習(xí)時(shí)會(huì)經(jīng)常出現(xiàn)錯(cuò)用法則的現(xiàn)象。實(shí)驗(yàn)表明:完全可以用乘法分配律取代去括號(hào)法則.這是由于:
。1)“去括號(hào)法則”,增加了記憶負(fù)擔(dān)和出錯(cuò)的機(jī)會(huì),容易出錯(cuò);
(2)去括號(hào)的法則增加了解題長度,降低了學(xué)習(xí)效率;
。3)用乘法分配律去括號(hào)的學(xué)習(xí)是同化而非順應(yīng),易于理解與掌握;
(4)用乘法分配律去括號(hào)是回歸本質(zhì),返璞歸真,且既可減少學(xué)習(xí)時(shí)間,又能提高運(yùn)算的正確率。
教學(xué)目標(biāo)
1.熟練掌握去括號(hào)時(shí)符號(hào)的變化規(guī)律;
2.能正確運(yùn)用去括號(hào)進(jìn)行合并同類項(xiàng);
3.理解去括號(hào)的依據(jù)是乘法分配律。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn)
去括號(hào)時(shí)符號(hào)的變化規(guī)律。
難點(diǎn)
括號(hào)外的因數(shù)是負(fù)數(shù)時(shí)符號(hào)的變化規(guī)律。
教學(xué)過程
一、創(chuàng)設(shè)情景問題
青藏鐵路線上,列車在凍土地段的行駛速度是100千米/時(shí),在非凍土地段的形式速度可以達(dá)到120千米/時(shí)。
請(qǐng)問:(3)在格爾木到拉薩路段,列車通過凍土地段比通過非凍土地段多用0.5小時(shí),如果通過凍土地段需要t小時(shí),則這段鐵路的全長可以怎么樣表示?凍土地段與非凍土地段相差多少千米?
解:這段鐵路的全長為100t+120(t-0.5)(千米)
凍土地段與非凍土地段相差100t-120(t-0.5)(千米)。
提出問題,如何化簡上面的兩個(gè)式子?引出本節(jié)課的學(xué)習(xí)內(nèi)容。
二、探索新知
1.回顧:
1你記得乘法分配率嗎?怎么用字母來表示呢?
a(b+c)=ab+ac
2-(-2)=(-1)*(-2)=2+(-3)=(+1)*(-3)=-3
2.探究
計(jì)算(試著把括號(hào)去掉)
(1)13+(7-5)(2)13-(7-5)
類比數(shù)的運(yùn)算,去掉下面式子的括號(hào)
(3)a+(b-c)(4)a-(b-c)
3.解決問題
100t+120(t-0.5)=100t-120(t-0.5)=
思考:
去掉括號(hào)前,括號(hào)內(nèi)有幾項(xiàng)、是什么符號(hào)?去括號(hào)后呢?
去括號(hào)的`依據(jù)是什么?
三、知識(shí)點(diǎn)歸納
去括號(hào)法則:
如果括號(hào)外的因數(shù)是正數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來的符號(hào)相同;
如果括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來的符號(hào)相反.
注意事項(xiàng)
。1)去括號(hào)規(guī)律要準(zhǔn)確理解,去括號(hào)應(yīng)對(duì)括號(hào)的每一項(xiàng)的符號(hào)都予考慮,做到要變都變;要不變,則誰也不變;
(2)括號(hào)內(nèi)原有幾項(xiàng)去掉括號(hào)后仍有幾項(xiàng).
四、例題精講
例4化簡下列各式:
。1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
五、鞏固練習(xí)
課本P68練習(xí)第一題.
六、課堂小結(jié)
1.今天你收獲了什么?
2.你覺得去括號(hào)時(shí),應(yīng)特別注意什么?
七、布置作業(yè)
課本P71習(xí)題2.2第2題
初中數(shù)學(xué)微課教學(xué)設(shè)計(jì) 篇5
學(xué)習(xí)目標(biāo):
1.能根據(jù)具體問題中的數(shù)量關(guān)系列出一元二次方程并利用它解決具體問題.
2.學(xué)會(huì)運(yùn)用數(shù)學(xué)知識(shí)分析解決實(shí)際問題,體會(huì)數(shù)學(xué)的價(jià)值。
重點(diǎn):
列一元二次方程解應(yīng)用題
難點(diǎn):
學(xué)會(huì)分析問題中的等量關(guān)系
一、知識(shí)回顧
列方程解應(yīng)用題的一般步驟是①②③④⑤⑥
二、自學(xué)教材、合作探究
1、自學(xué)教材45頁,學(xué)習(xí)分析“探究一”中的數(shù)量關(guān)系
設(shè)每輪傳染中平均一個(gè)人傳染了x個(gè)人。開始有一人患了流感,第一輪的'傳染源就是這個(gè)人,他傳染了x個(gè)人,那么,用代數(shù)式表示,第一輪后共有()人患了流感;第二輪傳染中,這些人中的每個(gè)人又傳染了x個(gè)人,用代數(shù)式表示,第二輪后共有()人患了流感。則可列方程為:
2、解這個(gè)方程,得
3、想一想:三輪傳染后有多少人患流感?四輪呢?
三、檢查自學(xué)效果
1.(xxxx年畢節(jié)地區(qū))有一人患了流感,經(jīng)過兩輪傳染后共有100人患了流感,那么每輪傳染中,平均一個(gè)人傳染的人數(shù)為()
A.8人B.9人C.10人D.11人
2.生物興趣小組的學(xué)生,將自己收集的標(biāo)本向本組其他成員各贈(zèng)送一件;全組共互贈(zèng)了182件.如果全組有x名學(xué)生,則根據(jù)題意列出的方程是()
A.B.C.D.
四、指導(dǎo)學(xué)生應(yīng)用
某種電腦病毒傳播非?欤绻慌_(tái)電腦被感染,經(jīng)過兩輪感染后就會(huì)有81臺(tái)電腦被感染.請(qǐng)你用學(xué)過的知識(shí)分析,每輪感染中平均一臺(tái)電腦會(huì)感染幾臺(tái)電腦?若病毒得不到有效控制,3輪感染后,被感染的電腦會(huì)不會(huì)超過700臺(tái)?(xxxx廣東中考9分)
解:設(shè)每輪感染中平均每一臺(tái)電腦會(huì)感染臺(tái)電腦,1分
4分
解之得6分
8分
答:每輪平均每一臺(tái)電腦會(huì)感染臺(tái)電腦,3輪感染后,被感染的電腦超過700臺(tái)。
五、鞏固訓(xùn)練:
1.一個(gè)多邊形的對(duì)角線有9條,則這個(gè)多邊形的邊數(shù)是().
A.6B.7C.8D.9
2.元旦期間,一個(gè)小組有若干人,新年互送賀卡一張,已知全組共送賀卡132張,則這個(gè)小組共有()人
A.11B.12C.13D.14
3.九年級(jí)(3)班文學(xué)小組在舉行的圖書共享儀式上互贈(zèng)圖書,每個(gè)同學(xué)都把自己的圖書向本組其他成員贈(zèng)送一本,全組共互贈(zèng)了240本圖書,如果設(shè)全組共有x名同學(xué),依題意,可列出的方程是()
A.x(x+1)=240B.x(x-1)=240
C.2x(x+1)=240D.x(x+1)=240
4.參加中秋晚會(huì)的每兩個(gè)人都握了一次手,所有人共握手10次,則有()人參加聚會(huì)。
5.學(xué)校組織了一次籃球單循環(huán)比賽,共進(jìn)行了15場(chǎng)比賽,那么有個(gè)球隊(duì)參加了這次比賽。
6.甲型H1N1流感病毒的傳染性極強(qiáng),某地因1人患了甲型H1N1流感沒有及時(shí)隔離治療,經(jīng)過兩天傳染后共有9人患了甲型H1N1流感,每天傳染中平均一個(gè)人傳染了幾個(gè)人?如果按照這個(gè)傳染速度,再經(jīng)過5天的傳染后,這個(gè)地區(qū)一共將會(huì)有多少人患甲型H1N1流感?
反思:2題和4題列方程時(shí)為何不一樣呢?
六、歸納小結(jié):
1.本節(jié)課我們學(xué)習(xí)了列一元一次方程解應(yīng)用題,要注意解題步驟,特別地,要檢驗(yàn)解的結(jié)果是否正確與符合題意,并注意題型的積累。
2.(方法歸納)解應(yīng)用題地步驟是:審、設(shè)、列、解、檢、答,關(guān)鍵是尋找等量關(guān)系,可以采用列式法,線段圖示法,列表法等來幫助尋找,并注重檢驗(yàn)。
七、效果測(cè)評(píng):
1.解下列方程。(1)+10x+21=0(2)-x=1
2.兩個(gè)相鄰的偶數(shù)的積是240,求這兩個(gè)偶數(shù)。
3.參加一次足球聯(lián)賽的每兩個(gè)隊(duì)之間都進(jìn)行兩場(chǎng)比賽,共要比賽90場(chǎng),共有多少個(gè)隊(duì)參加比賽?
初中數(shù)學(xué)微課教學(xué)設(shè)計(jì) 篇6
科目:數(shù)學(xué)
年級(jí):七年級(jí)
課題:一元一次方程的應(yīng)用借助“線段圖”分析行程問題中的數(shù)量關(guān)系,繼續(xù)利用路程時(shí)間速度三個(gè)量之間的關(guān)系,列方程解應(yīng)用題。
教學(xué)目標(biāo):通過觀察、類比進(jìn)一步培養(yǎng)學(xué)生的數(shù)學(xué)創(chuàng)新能力,培養(yǎng)學(xué)生與人合作的能力,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。通過新課的.學(xué)習(xí),學(xué)生已經(jīng)掌握一元一次方程應(yīng)用基本的解題思路、方法,會(huì)分析解決簡單的實(shí)際問學(xué)情簡析題,但整個(gè)知識(shí)掌握不系統(tǒng)、不全面,解題正確率不高。教法發(fā)現(xiàn)法、練習(xí)法、討論法。
教學(xué)內(nèi)容:趣味數(shù)學(xué):
教具:多媒體課件、彩色粉筆、小黑板等
教師活動(dòng):引導(dǎo)觀察
學(xué)生活動(dòng):思考回答思考回答計(jì)算計(jì)算
教學(xué)過程:教學(xué)環(huán)節(jié)創(chuàng)設(shè)問題情境回顧舊知例題賞析鞏固練習(xí)
解:設(shè)快車每小時(shí)行x千米,由題意得1.5x=48×3/4+48×1.5解得:x=72
答:快車每小時(shí)需行72千米
小明和小剛從相距6千米的兩地同時(shí)出發(fā)同向而行,小明提問每小時(shí)走7千米,小剛每小時(shí)走5千米,小明帶了一只小狗,小狗每小時(shí)跑10千米,小狗隨小明同時(shí)出發(fā),向小剛跑去,碰到小剛后就立即回頭向小明跑去,碰到小明后再回頭跑向小剛……,直到小明追上小剛時(shí)才停住,求這條小狗一共跑了多少路?
1.路程問題中路程速度時(shí)間三者的關(guān)系:
2.列方程解應(yīng)用題的一般步驟:
3.路程問題中的兩種基本題型:
提出問題
例1:一列慢車從某站開出,每小時(shí)行駛48千米,45分鐘后,一列快車也從該站出發(fā),與慢車同向而行,如要1.5小時(shí)追上慢車,快車每小時(shí)需行多少千米?過程展示:
相等關(guān)系:快車路程=慢講解分析車先行路程+慢車后行路程
個(gè)別指導(dǎo)
練習(xí)1:小紅和小明家距離300米,兩人沿同一條路線出發(fā)去某地,小明每秒跑4米,小紅騎自行車每秒行10米,若小明在小紅的前面,則小紅多長時(shí)間可追上小明?
反饋糾正
走進(jìn)生活鞏固練習(xí)
導(dǎo)入題目求解開拓發(fā)展小結(jié)
觀察思考計(jì)算合作交流
思考討論解答思考解答思考總結(jié)
初中數(shù)學(xué)微課教學(xué)設(shè)計(jì) 篇7
教學(xué)背景:
配方法是初中數(shù)學(xué)一種很重要的思想方法,具有舉足輕重的作用和地位,在中考中頻頻出現(xiàn),是初中生必備的一種數(shù)學(xué)能力。在解一元二次方程,二次函數(shù),因式分解,解特殊方程,有關(guān)最大或最小值題目,代數(shù)式求值中有廣泛應(yīng)用。
教學(xué)目標(biāo):
1、了解配方法的定義;
2、理解并掌握配方法的應(yīng)用;
教學(xué)方法:
視頻教學(xué)、例題講解
教學(xué)過程:
一、溫故知新
什么是配方法?
配方法是指通過配、湊等手段得到完全平方形式,再利用完全平方項(xiàng)是非負(fù)數(shù)等性質(zhì),達(dá)到增加題目的條件等目的。
二、學(xué)習(xí)新知
展示配方法的四個(gè)方面應(yīng)用:
(一)、配方法解一元二次方程
例1:用配方法解方程3x2+8x-3=0.
步驟:
1.化1:把二次項(xiàng)系數(shù)化為1;
2.移項(xiàng):把常數(shù)項(xiàng)移到方程的右邊;
3.配方:方程兩邊都加上一次項(xiàng)系數(shù)絕對(duì)值一半的平方;
4.變形:方程左邊分解因式,右邊合并同類;
5.開方:根據(jù)平方根意義,方程兩邊開平方;
6.求解:解一元一次方程;
7.定解:寫出原方程的解.
重點(diǎn)講解第一和第三步驟
(二)、配方法求二次函數(shù)的.最值
例2:已知x是實(shí)數(shù),求y=x2-6x+10的最值.
分析:配方成頂點(diǎn)式即可求出函數(shù)最值.
(三)、配方法求代數(shù)式的最值
例3:證明無論x為何實(shí)數(shù),代數(shù)式2x2-3x+10的值恒大于零.
分析:將這個(gè)二次三項(xiàng)式配方,就可判斷其最值是什么.
接著提問:你能求出此代數(shù)式的最值嗎?
(四)、配方法解特殊方程
例4:已知方程x2-10x+y2-8y+41=0.求x+y值.
分析:先解方程求出x和y值,將41拆成25+16,等式左邊配方湊成兩完全平方式,于是可化為兩數(shù)平方和為0的式子,從而分別求出x、y的值.
三、回味無窮
1、配方法的應(yīng)用
一、配方法解一元二次方程
二、配方法求二次函數(shù)的最值
三、配方法求代數(shù)式的最值
四、配方法解特殊方程
2、思考:上面配方法的四個(gè)應(yīng)用中,哪些是“配”,哪些是“湊”呢?
第一、二、三方面關(guān)鍵在“配”,第四方面關(guān)鍵在“湊”.
四、作業(yè)設(shè)計(jì):見進(jìn)階練習(xí)
五、教學(xué)總結(jié):
配方法在初中數(shù)學(xué)中占有非常重要的地位,是恒等變形的重要手段,是研究相等關(guān)系,討論不等關(guān)系的常用技巧,是挖掘題目當(dāng)中隱含條件的有力工具,同學(xué)們一定要把它學(xué)好。
【初中數(shù)學(xué)微課教學(xué)設(shè)計(jì)】相關(guān)文章:
微課教學(xué)設(shè)計(jì)04-18
數(shù)學(xué)課教學(xué)設(shè)計(jì)03-31
初中數(shù)學(xué)教學(xué)設(shè)計(jì)12-16
小學(xué)微課教學(xué)設(shè)計(jì)模板11-25
微課教學(xué)設(shè)計(jì)(精選20篇)07-20