初三上冊數(shù)學(xué)期末考試卷答案
在學(xué)習(xí)、工作生活中,我們總免不了要接觸或使用試卷,在各領(lǐng)域中,只要有考核要求,就會有試卷,試卷是命題者按照一定的考核目的編寫出來的。你知道什么樣的試卷才是規(guī)范的嗎?以下是小編收集整理的初三上冊數(shù)學(xué)期末考試卷答案,希望對大家有所幫助。
初三上冊數(shù)學(xué)期末考試卷答案 1
一、選擇題(本題共8小題,每小題3分,共24分)
1.如圖,△ABC中,D,E兩點(diǎn)分別在AB,AC邊上,且DE∥BC,如果 ,AC=6,那么AE的長為( )
A.3 B.4 C.9 D.12
2.下列說法正確的是( )
A.一個游戲中獎的概率是 ,則做100次這樣的游戲一定會中獎
B.為了了解全國中學(xué)生的心理健康狀況,應(yīng)采用普查的方式
C.一組數(shù)據(jù)0,1,2,1,1的眾數(shù)和中位數(shù)都是1
D.若甲組數(shù)據(jù)的方差S甲2=0.2,乙組數(shù)據(jù)的方差S乙2=0.5,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
3.某種藥品原價為36元/盒,經(jīng)過連續(xù)兩次降價后售價為25元/盒.設(shè)平均每次降價的百分率為x,根據(jù)題意所列方程正確的是( )
A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25 C.36(1﹣x)2=25 D.36(1﹣x2)=25
4.如圖,在Rt△ABC中,∠C=90°,AB=6,cosB= ,則BC的長為( )
A.4 B.2 C. D.
5.兩個相似三角形的面積比為1:4,那么它們的周長比為( )
A.1: B.2:1 C.1:4 D.1:2
6.已知二次函數(shù)y=﹣(x+h)2,當(dāng)x<﹣3時,y隨x的增大而增大,當(dāng)x>﹣3時,y隨x的增大而減小,當(dāng)x=0時,y的值為( )
A.﹣1 B.﹣9 C.1 D.9
7.如圖,線段AB是圓O的直徑,弦CD⊥AB,如果∠BOC=70°,那么∠BAD等于( )
A.20° B.30° C.35° D.70°
8.小明為了研究關(guān)于x的方程x2﹣|x|﹣k=0的根的個數(shù)問題,先將該等式轉(zhuǎn)化為x2=|x|+k,再分別畫出函數(shù)y=x2的圖象與函數(shù)y=|x|+k的圖象(如圖),當(dāng)方程有且只有四個根時,k的取值范圍是( )
A.k>0 B.﹣
二、填空題(本題共有10小題,每小題3分,共30分)
9.已知 = ,則 = .
10.已知圓錐的底面半徑為3,側(cè)面積為15π,則這個圓錐的高為 .
11.已知關(guān)于x的一元二次方程 有兩個不相等的根,則k的值為 .
12.小明把如圖所示的平行四邊形紙板掛在墻上,完飛鏢游戲(每次飛鏢均落在紙板上,且落在紙板的任何一個點(diǎn)的機(jī)會都相等),則飛鏢落在陰影區(qū)域的概率是 .
13.過圓O內(nèi)一點(diǎn)P的最長的弦,最短弦的長度分別是8cm,6cm,則OP= .
14.在Rt△ABC中,∠C=90°,中線AD,CE相交于G,且CG=3,則AB= .
15.若函數(shù)y=mx2﹣6x+2的圖象與x軸只有一個公共點(diǎn),則m= .
16.已知(﹣3,m)、(1,m)是拋物線y=2x2+bx+3的兩點(diǎn),則b= .
17.如圖,菱形OCBA的頂點(diǎn)B,C在以點(diǎn)O為圓心的弧 上,若∠FOC=∠AOE,OA=1,則扇形OEF的面積為 .
18.已知一次函數(shù)y=kx+b的圖象過點(diǎn)(1,﹣1)且不經(jīng)過第一象限,設(shè)m=k2﹣ b,則m的取值范圍是 .
三、解答題(本題共10小題,共96分,請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟)
19.(1)計算:﹣ +20160+|﹣3|+4cos30°
(2)解方程:x2+2x﹣8=0.
20.某校為了更好的開展“學(xué)校特色體育教育”,從全校2015~2016學(xué)年度八年級各組隨機(jī)抽取了60名學(xué)生,進(jìn)行各項體育項目的測試,了解他們的身體素質(zhì)情況.下表是整理樣本數(shù)據(jù),得到的關(guān)于每個個體的測試成績的部分統(tǒng)計表、圖:某校60名學(xué)生體育測試成績頻數(shù)分布表
成績 劃記 頻數(shù) 百分比
優(yōu)秀 正正正
a 0.3
良好 正正正正正正 30 b
合格 正
9 0.15
不合格 c d
合計
(說明:40﹣﹣﹣55分為不合格,55﹣﹣﹣70分為合格,70﹣﹣﹣85分為良好,85﹣﹣﹣100分為優(yōu)秀)請根據(jù)以上信息,解答下列問題:
(1)表中的a= ,b= ;c= ;d=
(2)請根據(jù)頻數(shù)分布表,畫出相應(yīng)的頻數(shù)分布直方圖.
21.如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點(diǎn)P,連接EF、EO,若DE=2 ,∠DPA=45°.
(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.
22.在一個黑色的布口袋里裝著白、紅、黑三種顏色的小球,它們除了顏色之外沒有其它區(qū)別,其中白球2只、紅球1只、黑球1只.袋中的球已經(jīng)攪勻.
(1)隨機(jī)地從袋中摸出1只球,則摸出白球的概率是多少?
(2)隨機(jī)地從袋中摸出1只球,放回攪勻再摸出第二個球.請你用畫樹狀圖或列表的方法表示所有等可能的結(jié)果,并求兩次都摸出白球的概率.
23.如圖,已知二次函數(shù)y=﹣ +bx+c的圖象經(jīng)過A(2,0)、B(0,﹣6)兩點(diǎn).
(1)求這個二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積.
24.如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,交⊙O的切線BE于點(diǎn)E,過點(diǎn)D作DF⊥AC,交AC的延長線于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2.
、偾 值;
②求∠FAB的度數(shù).
25.如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長為4 米.
(1)求新傳送帶AC的長度.
(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)5米的貨物MNQP是否需要挪走,并說明理由.
參考數(shù)據(jù): .
26.科幻小說《實驗室的故事》中,有這樣一個情節(jié):科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一天后,測試出這種植物高度的增長情況(如下表):
溫度x/℃ … ﹣4 ﹣2 0 2 4 4.5 …
植物每天高度增長量y/mm … 41 49 49 41 25 19.75 …
由這些數(shù)據(jù),科學(xué)家推測出植物每天高度增長量y是溫度x的函數(shù),且這種函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.
(1)請你選擇一種適當(dāng)?shù)暮瘮?shù),求出它的函數(shù)關(guān)系式,并簡要說明不選擇另外兩種函數(shù)的理由;
(2)溫度為多少時,這種植物每天高度增長量最大?
(3)如果實驗室溫度保持不變,在10天內(nèi)要使該植物高度增長量的總和超過250mm,那么實驗室的溫度x應(yīng)該在哪個范圍內(nèi)選擇?請直接寫出結(jié)果.
27.△ABC中,AB=AC,取BC邊的中點(diǎn)D,作DE⊥AC于點(diǎn)E,取DE的中點(diǎn)F,連接BE,AF交于點(diǎn)H.
(1)如圖1,如果∠BAC=90°,求證:AF⊥BE并求 的值;
(2)如圖2,如果∠BAC=a,求證:AF⊥BE并用含a的式子表示 .
28.如圖,二次函數(shù)y=ax2+bx﹣2的圖象交x軸于A(1,0)、B(﹣2,0),交y軸于點(diǎn)C,連接直線AC.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P在二次函數(shù)的圖象上,圓P與直線AC相切,切點(diǎn)為H.
、偃鬚在y軸的左側(cè),且△CHP∽△AOC,求點(diǎn)P的坐標(biāo);
、谌魣AP的`半徑為4,求點(diǎn)P的坐標(biāo).
參考答案與試題解析
一、選擇題(本題共8小題,每小題3分,共24分)
1.如圖,△ABC中,D,E兩點(diǎn)分別在AB,AC邊上,且DE∥BC,如果 ,AC=6,那么AE的長為( )
A.3 B.4 C.9 D.12
【考點(diǎn)】平行線分線段成比例.
【分析】根據(jù)平行線分線段成比例定理,得到比例式,把已知數(shù)據(jù)代入計算即可.
【解答】解:∵DE∥BC,
∴ = ,又AC=6,
∴AE=4,
故選:B.
【點(diǎn)評】本題考查平行線分線段成比例定理,正確運(yùn)用定理、找準(zhǔn)對應(yīng)關(guān)系是解題的關(guān)鍵.
2.下列說法正確的是( )
A.一個游戲中獎的概率是 ,則做100次這樣的游戲一定會中獎
B.為了了解全國中學(xué)生的心理健康狀況,應(yīng)采用普查的方式
C.一組數(shù)據(jù)0,1,2,1,1的眾數(shù)和中位數(shù)都是1
D.若甲組數(shù)據(jù)的方差S甲2=0.2,乙組數(shù)據(jù)的方差S乙2=0.5,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
【考點(diǎn)】概率的意義;全面調(diào)查與抽樣調(diào)查;中位數(shù);眾數(shù);方差.
【分析】根據(jù)概率、方差、眾數(shù)、中位數(shù)的定義對各選項進(jìn)行判斷即可.
【解答】A、一個游戲中獎的概率是 ,則做100次這樣的游戲有可能中獎一次,該說法錯誤,故本選項錯誤;
B、為了了解全國中學(xué)生的心理健康狀況,應(yīng)采用抽樣調(diào)查的方式,該說法錯誤,故本選項錯誤;
C、這組數(shù)據(jù)的眾數(shù)是1,中位數(shù)是1,故本選項正確;
D、方差越大,則平均值的離散程度越大,穩(wěn)定性也越小,則甲組數(shù)據(jù)比乙組穩(wěn)定,故本選項錯誤;
故選C.
【點(diǎn)評】本題考查了概率、方差、眾數(shù)、中位數(shù)等知識,屬于基礎(chǔ)題,掌握各知識點(diǎn)是解題的關(guān)鍵.
3.某種藥品原價為36元/盒,經(jīng)過連續(xù)兩次降價后售價為25元/盒.設(shè)平均每次降價的百分率為x,根據(jù)題意所列方程正確的是( )
A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25 C.36(1﹣x)2=25 D.36(1﹣x2)=25
【考點(diǎn)】由實際問題抽象出一元二次方程.
【專題】增長率問題.
【分析】可先表示出第一次降價后的價格,那么第一次降價后的價格×(1﹣降低的百分率)=25,把相應(yīng)數(shù)值代入即可求解.
【解答】解:第一次降價后的價格為36×(1﹣x),兩次連續(xù)降價后售價在第一次降價后的價格的基礎(chǔ)上降低x,
為36×(1﹣x)×(1﹣x),
則列出的方程是36×(1﹣x)2=25.
故選:C.
【點(diǎn)評】考查由實際問題抽象出一元二次方程中求平均變化率的方法.若設(shè)變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過兩次變化后的數(shù)量關(guān)系為a(1±x)2=b.
4.如圖,在Rt△ABC中,∠C=90°,AB=6,cosB= ,則BC的長為( )
A.4 B.2 C. D.
【考點(diǎn)】銳角三角函數(shù)的定義.
【分析】根據(jù)cosB= ,可得 = ,再把AB的長代入可以計算出CB的長.
【解答】解:∵cosB= ,
∴ = ,
∵AB=6,
∴CB= ×6=4,
故選:A.
【點(diǎn)評】此題主要考查了銳角三角函數(shù)的定義,關(guān)鍵是掌握余弦:銳角A的鄰邊b與斜邊c的比叫做∠A的余弦.
5.兩個相似三角形的面積比為1:4,那么它們的周長比為( )
A.1: B.2:1 C.1:4 D.1:2
【考點(diǎn)】相似三角形的性質(zhì).
【分析】根據(jù)相似三角形面積的比等于相似比的平方、相似三角形周長的比等于相似比解答即可.
【解答】解:∵兩個相似三角形的面積比為1:4,
∴它們的相似比為1:2,
∴它們的周長比為1:2.
故選:D.
【點(diǎn)評】本題考查的是相似三角形的性質(zhì),掌握相似三角形面積的比等于相似比的平方、相似三角形周長的比等于相似比是解題的關(guān)鍵.
6.已知二次函數(shù)y=﹣(x+h)2,當(dāng)x<﹣3時,y隨x的增大而增大,當(dāng)x>﹣3時,y隨x的增大而減小,當(dāng)x=0時,y的值為( )
A.﹣1 B.﹣9 C.1 D.9
【考點(diǎn)】二次函數(shù)的性質(zhì).
【分析】根據(jù)題意可得二次函數(shù)的對稱軸x=﹣3,進(jìn)而可得h的值,從而可得函數(shù)解析式y(tǒng)=﹣(x﹣3)2,再把x=0代入函數(shù)解析式可得y的值.
【解答】解:由題意得:二次函數(shù)y=﹣(x+h)2的對稱軸為x=﹣3,
故h=﹣3,
把h=﹣3代入二次函數(shù)y=﹣(x+h)2可得y=﹣(x﹣3)2,
當(dāng)x=0時,y=﹣9,
故選:B.
【點(diǎn)評】此題主要考查了二次函數(shù)的性質(zhì),關(guān)鍵是掌握二次函數(shù)定點(diǎn)式y(tǒng)=a(x﹣h)2+k,對稱軸為x=h.
7.如圖,線段AB是圓O的直徑,弦CD⊥AB,如果∠BOC=70°,那么∠BAD等于( )
A.20° B.30° C.35° D.70°
【考點(diǎn)】圓周角定理;垂徑定理.
【專題】計算題.
【分析】先根據(jù)垂徑定理得到 = ,然后根據(jù)圓周角定理得∠BAD= ∠BOC=35°.
【解答】解:∵弦CD⊥直徑AB,
∴ = ,
∴∠BAD= ∠BOC= ×70°=35°.
故選C.
【點(diǎn)評】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了垂徑定理.
8.小明為了研究關(guān)于x的方程x2﹣|x|﹣k=0的根的個數(shù)問題,先將該等式轉(zhuǎn)化為x2=|x|+k,再分別畫出函數(shù)y=x2的圖象與函數(shù)y=|x|+k的圖象(如圖),當(dāng)方程有且只有四個根時,k的取值范圍是( )
A.k>0 B.﹣
【考點(diǎn)】二次函數(shù)的圖象;一次函數(shù)的圖象.
【分析】直接利用根的判別式,進(jìn)而結(jié)合函數(shù)圖象得出k的取值范圍.
【解答】解:當(dāng)x>0時,y=x+k,y=x2,
則x2﹣x﹣k=0,
b2﹣4ac=1+4k>0,
解得:k>﹣ ,
當(dāng)x<0時,y=﹣x+k,y=x2,
則x2+x﹣k=0,
b2﹣4ac=1+4k>0,
解得:k>﹣ ,
如圖所示一次函數(shù)一部分要與二次函數(shù)有兩個交點(diǎn),則k<0,
故k的取值范圍是:﹣
故選:B.
【點(diǎn)評】此題主要考查了二次函數(shù)圖象與一次函數(shù)圖象綜合應(yīng)用,正確利用數(shù)形結(jié)合得出是解題關(guān)鍵.
二、填空題(本題共有10小題,每小題3分,共30分)
9.已知 = ,則 = ﹣ .
【考點(diǎn)】比例的性質(zhì).
【專題】計算題.
【分析】直接利用分比性質(zhì)計算即可.
【解答】解:∵ = ,
∴ = =﹣ .
故答案為﹣ .
【點(diǎn)評】本題考查了比例的性質(zhì):內(nèi)項之積等于外項之積;合比性質(zhì);分比性質(zhì);合分比性質(zhì);等比性質(zhì).
10.已知圓錐的底面半徑為3,側(cè)面積為15π,則這個圓錐的高為 4 .
【考點(diǎn)】圓錐的計算;勾股定理.
【分析】圓錐的側(cè)面積=底面周長×母線長÷2,把相應(yīng)數(shù)值代入即可求得母線長,利用勾股定理即可求得圓錐的高.
【解答】解:設(shè)圓錐的母線長為R,則15π=2π×3×R÷2,解得R=5,
∴圓錐的高= =4.
【點(diǎn)評】用到的知識點(diǎn)為:圓錐側(cè)面積的求法;圓錐的高,母線長,底面半徑組成直角三角形.
11.已知關(guān)于x的一元二次方程 有兩個不相等的根,則k的值為 k>﹣3 .
【考點(diǎn)】根的判別式.
【分析】方程有兩個不相等的實數(shù)根,則△>0,建立關(guān)于k的不等式,求出k的取值范圍.
【解答】解:由題意知,△=12+4k>0,
解得:k>﹣3.
故答案為:k>﹣3.
【點(diǎn)評】本題考查了根的判別式的知識,總結(jié):一元二次方程根的情況與判別式△的關(guān)系:
(1)△>0方程有兩個不相等的實數(shù)根;
(2)△=0方程有兩個相等的實數(shù)根;
(3)△<0方程沒有實數(shù)根.
12.小明把如圖所示的平行四邊形紙板掛在墻上,完飛鏢游戲(每次飛鏢均落在紙板上,且落在紙板的任何一個點(diǎn)的機(jī)會都相等),則飛鏢落在陰影區(qū)域的概率是 .
【考點(diǎn)】中心對稱圖形;平行四邊形的性質(zhì).
【分析】先根據(jù)平行四邊形的性質(zhì)求出平行四邊形對角線所分的四個三角形面積相等,再求出S1=S2即可.
【解答】解:根據(jù)平行四邊形的性質(zhì)可得:平行四邊形的對角線把平行四邊形分成的四個面積相等的三角形,
根據(jù)平行線的性質(zhì)可得S1=S2,
則陰影部分的面積占 ,
則飛鏢落在陰影區(qū)域的概率是 .
故答案為: .
【點(diǎn)評】此題主要考查了幾何概率,以及中心對稱圖形,用到的知識點(diǎn)為:概率=相應(yīng)的面積與總面積之比,關(guān)鍵是根據(jù)平行線的性質(zhì)求出陰影部分的面積與總面積的比.
13.過圓O內(nèi)一點(diǎn)P的最長的弦,最短弦的長度分別是8cm,6cm,則OP= cm .
【考點(diǎn)】垂徑定理;勾股定理.
【分析】根據(jù)直徑是圓中最長的弦,知該圓的直徑是8cm;最短弦即是過點(diǎn)P且垂直于過點(diǎn)P的直徑的弦;根據(jù)垂徑定理即可求得CP的長,再進(jìn)一步根據(jù)勾股定理,可以求得OP的長.
【解答】解:如圖所示,直徑AB⊥弦CD于點(diǎn)P,
根據(jù)題意,得AB=8cm,CD=6cm,OC= AB=4cm,
∵CD⊥AB,
∴CP= CD=3cm.
根據(jù)勾股定理,得OP= = = (cm),
故答案為: cm.
【點(diǎn)評】本題考查了垂徑定理和勾股定理的應(yīng)用,能根據(jù)垂徑定理得出CP= CD是解此題的關(guān)鍵.
14.在Rt△ABC中,∠C=90°,中線AD,CE相交于G,且CG=3,則AB= 9 .
【考點(diǎn)】三角形的重心;直角三角形斜邊上的中線.
【分析】根據(jù)重心的概念得到點(diǎn)G是△ABC的重心,根據(jù)重心的性質(zhì)求出GE,得到CE,根據(jù)在直角三角形中,斜邊上的中線等于斜邊的一半解答即可.
【解答】解:∵中線AD,CE相交于G,
∴點(diǎn)G是△ABC的重心,
∴GE= CG=1.5,
∴CE=CG+GE=4.5,
∵∠C=90°,CE是中線,
∴AB=2CE=9.
故答案為:9.
【點(diǎn)評】本題考查的是三角形的重心的概念和性質(zhì)、直角三角形的性質(zhì),三角形的重心是三角形三條中線的交點(diǎn),且重心到頂點(diǎn)的距離是它到對邊中點(diǎn)的距離的2倍,在直角三角形中,斜邊上的中線等于斜邊的一半.
15.若函數(shù)y=mx2﹣6x+2的圖象與x軸只有一個公共點(diǎn),則m= 0或 .
【考點(diǎn)】拋物線與x軸的交點(diǎn).
【專題】計算題;分類討論.
【分析】根據(jù)函數(shù)y=mx2﹣6x+2的圖象與x軸只有一個公共點(diǎn),函數(shù)y=mx2﹣6x+2為一次函數(shù)或二次函數(shù),若為一次函數(shù)則m=0,若為二次函數(shù)則(﹣6)2﹣4×2m=0,從而求得m的值.
【解答】解:分兩種情況:
①若y=mx2﹣6x+2為一次函數(shù),則m=0;
、谌魕=mx2﹣6x+2為二次函數(shù),則(﹣6)2﹣4×2m=0,
∴36﹣8m=0,解得m= ,
故答案為0或 .
【點(diǎn)評】本題考查了拋物線與x軸的交點(diǎn)問題,當(dāng)不確定是什么函數(shù)時,要分類討論.
16.已知(﹣3,m)、(1,m)是拋物線y=2x2+bx+3的兩點(diǎn),則b= 4 .
【考點(diǎn)】二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.
【專題】計算題.
【分析】由于兩點(diǎn)(﹣3,m)、(1,m)的縱坐標(biāo)相等,可得到它們是拋物線上的對稱點(diǎn),于是得到拋物線的對稱軸為直線x=﹣1,再根據(jù)二次函數(shù)的性質(zhì)得到﹣ =﹣1,然后解方程即可.
【解答】解:∵(﹣3,m)、(1,m)是拋物線y=2x2+bx+3的兩點(diǎn),
∴拋物線的對稱軸為直線x=﹣1,
而拋物線的對稱軸為直線=﹣ ,
∴﹣ =﹣1,
∴b=4.
故答案為4.
【點(diǎn)評】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征:二次函數(shù)圖象上點(diǎn)的坐標(biāo)滿足其解析式也考查了二次函數(shù)的性質(zhì).
17.如圖,菱形OCBA的頂點(diǎn)B,C在以點(diǎn)O為圓心的弧 上,若∠FOC=∠AOE,OA=1,則扇形OEF的面積為 .
【考點(diǎn)】扇形面積的計算;菱形的性質(zhì).
【分析】首先算出扇形OEF的圓心角,然后根據(jù)扇形面積公式S= 進(jìn)行計算.
【解答】解:連接OB,
∵四邊形OABC為菱形,點(diǎn)B、C在以點(diǎn)O為圓心的 上,若OA=1,∠FOC=∠AOE,
∵OA=OB=AB,
∴三角形ABO為正三角形,
∴∠AOB=60°,
∴∠EOF=120°,
∴S扇形= = .
故答案為: .
【點(diǎn)評】本題主要考查扇形面積的計算和菱形的性質(zhì),關(guān)鍵是掌握菱形四邊相等和扇形面積計算公式.
18.已知一次函數(shù)y=kx+b的圖象過點(diǎn)(1,﹣1)且不經(jīng)過第一象限,設(shè)m=k2﹣ b,則m的取值范圍是 ≤m< .
【考點(diǎn)】一次函數(shù)的性質(zhì).
【分析】根據(jù)題意得出﹣1=k+b,k<0,b<0,進(jìn)而得出m=k2+ k+ =(k+ )2+ ,根據(jù)k的取值,即可求得m的取值范圍.
【解答】解:∵一次函數(shù)y=kx+b的圖象過點(diǎn)(1,﹣1)且不經(jīng)過第一象限,
∴﹣1=k+b,k<0,b<0,
∴b=﹣1﹣k,
∵m=k2﹣ b,
∴m=k2+ k+ =(k+ )2+ ,
∴k=﹣ 時,m有最小值為 ,
∵k=0時,m= ,
∴ ≤m< .
【點(diǎn)評】本題考查了一次函數(shù)的性質(zhì),根據(jù)性質(zhì)得出k的取值是解題的關(guān)鍵.
三、解答題(本題共10小題,共96分,請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟)
19.(1)計算:﹣ +20160+|﹣3|+4cos30°
(2)解方程:x2+2x﹣8=0.
【考點(diǎn)】實數(shù)的運(yùn)算;零指數(shù)冪;解一元二次方程-因式分解法;特殊角的三角函數(shù)值.
【分析】(1)直接利用二次根式的性質(zhì)以及零指數(shù)冪的性質(zhì)和絕對值的性質(zhì)以及特殊角的三角函數(shù)值化簡各數(shù)進(jìn)而得出答案;
(2)直接利用因式分解法解方程得出答案.
【解答】解:(1)﹣ +20160+|﹣3|+4cos30°
=﹣2 +1+3+4×
=4;
(2)x2+2x﹣8=0
(x﹣4)(x+2)=0,
解得:x1=﹣2,x2=4.
【點(diǎn)評】此題主要考查了因式分解法解方程以及實數(shù)運(yùn)算,正確化簡各數(shù)是解題關(guān)鍵.
20.某校為了更好的開展“學(xué)校特色體育教育”,從全校2015~2016學(xué)年度八年級各組隨機(jī)抽取了60名學(xué)生,進(jìn)行各項體育項目的測試,了解他們的身體素質(zhì)情況.下表是整理樣本數(shù)據(jù),得到的關(guān)于每個個體的測試成績的部分統(tǒng)計表、圖:某校60名學(xué)生體育測試成績頻數(shù)分布表
成績 劃記 頻數(shù) 百分比
優(yōu)秀 正正正
a 0.3
良好 正正正正正正 30 b
合格 正
9 0.15
不合格 c d
合計
(說明:40﹣﹣﹣55分為不合格,55﹣﹣﹣70分為合格,70﹣﹣﹣85分為良好,85﹣﹣﹣100分為優(yōu)秀)請根據(jù)以上信息,解答下列問題:
(1)表中的a= 18 ,b= 0.5 ;c= 3 ;d= 0.05
(2)請根據(jù)頻數(shù)分布表,畫出相應(yīng)的頻數(shù)分布直方圖.
【考點(diǎn)】頻數(shù)(率)分布直方圖;頻數(shù)(率)分布表.
【分析】(1)根據(jù)圖中的劃記即可確定a的值,然后根據(jù)頻率的計算公式求解;
(2)根據(jù)(1)的結(jié)果即可作出.
【解答】解:(1)a=18,
b= =0.5,
c=60﹣18﹣30﹣9=3,
d= =0.05.
故答案是:18,0.5,3,0.05;
(2)畫出的直方圖如圖所示
【點(diǎn)評】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認(rèn)真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.
21.如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點(diǎn)P,連接EF、EO,若DE=2 ,∠DPA=45°.
(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.
【考點(diǎn)】扇形面積的計算;線段垂直平分線的性質(zhì);解直角三角形.
【分析】(1)根據(jù)垂徑定理得CE的長,再根據(jù)已知DE平分AO得CO= AO= OE,解直角三角形求解.
(2)先求出扇形的圓心角,再根據(jù)扇形面積和三角形的面積公式計算即可.
【解答】解:(1)∵直徑AB⊥DE,
∴CE= DE= .
∵DE平分AO,
∴CO= AO= OE.
又∵∠OCE=90°,
∴sin∠CEO= = ,
∴∠CEO=30°.
在Rt△COE中,
OE= = =2.
∴⊙O的半徑為2.
(2)連接OF.
在Rt△DCP中,
∵∠DPC=45°,
∴∠D=90°﹣45°=45°.
∴∠EOF=2∠D=90°.
∴S扇形OEF= ×π×22=π.
∵∠EOF=2∠D=90°,OE=OF=2,
∴SRt△OEF= ×OE×OF=2.
∴S陰影=S扇形OEF﹣SRt△OEF=π﹣2.
【點(diǎn)評】此題綜合考查了垂徑定理和解直角三角形及扇形的面積公式.
22.在一個黑色的布口袋里裝著白、紅、黑三種顏色的小球,它們除了顏色之外沒有其它區(qū)別,其中白球2只、紅球1只、黑球1只.袋中的球已經(jīng)攪勻.
(1)隨機(jī)地從袋中摸出1只球,則摸出白球的概率是多少?
(2)隨機(jī)地從袋中摸出1只球,放回攪勻再摸出第二個球.請你用畫樹狀圖或列表的方法表示所有等可能的結(jié)果,并求兩次都摸出白球的概率.
【考點(diǎn)】列表法與樹狀圖法.
【分析】(1)讓白球的個數(shù)除以球的總數(shù)即可;
(2)2次實驗,每次都是4種結(jié)果,列舉出所有情況即可.
【解答】解:(1)摸出白球的概率是 ;
(2)列舉所有等可能的結(jié)果,畫樹狀圖:
∴兩次都摸出白球的概率為P(兩白)= = .
【點(diǎn)評】如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)= .注意本題是放回實驗.
23.如圖,已知二次函數(shù)y=﹣ +bx+c的圖象經(jīng)過A(2,0)、B(0,﹣6)兩點(diǎn).
(1)求這個二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積.
【考點(diǎn)】二次函數(shù)綜合題.
【專題】綜合題.
【分析】(1)二次函數(shù)圖象經(jīng)過A(2,0)、B(0,﹣6)兩點(diǎn),兩點(diǎn)代入y=﹣ +bx+c,算出b和c,即可得解析式.(2)先求出對稱軸方程,寫出C點(diǎn)的坐標(biāo),計算出AC,然后由面積公式計算值.
【解答】解:(1)把A(2,0)、B(0,﹣6)代入y=﹣ +bx+c,
得:
解得 ,
∴這個二次函數(shù)的解析式為y=﹣ +4x﹣6.
(2)∵該拋物線對稱軸為直線x=﹣ =4,
∴點(diǎn)C的坐標(biāo)為(4,0),
∴AC=OC﹣OA=4﹣2=2,
∴S△ABC= ×AC×OB= ×2×6=6.
【點(diǎn)評】本題是二次函數(shù)的綜合題,要會求二次函數(shù)的對稱軸,會運(yùn)用面積公式.
24.如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,交⊙O的切線BE于點(diǎn)E,過點(diǎn)D作DF⊥AC,交AC的延長線于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2.
、偾 值;
、谇蟆螰AB的度數(shù).
【考點(diǎn)】切線的判定;相似三角形的判定與性質(zhì).
【分析】(1)作輔助線,連接OD.根據(jù)切線的判定定理,只需證DF⊥OD即可;
(2)①連接BD.根據(jù)BE、DF兩切線的性質(zhì)證明△BDE∽△ABE;又由角平分線的性質(zhì)、等腰三角形的兩個底角相等求得△ABE∽△AFD,所以△BDE∽△AFD;最后由相似三角形的對應(yīng)邊成比例求得 = = ;②連接OC,交AD于G,由①,設(shè)BE=2x,則AD=3x,由于△BDE∽△ABE,得到比例式求得AD=3x=6,BE=2x=4,AE=AD+DE=8,根據(jù)特殊角的三角函數(shù)值即可得到結(jié)果.
【解答】(1)證明:如圖,連結(jié)OD,
∵AD平分∠BAC,
∴∠DAF=∠DAO,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠DAF=∠ODA,
∴AF∥OD,
∵DF⊥AC,∴OD⊥DF,
∴DF是⊙O的切線,
(2)解:①連接BD,
∵直徑AB,
∴∠ADB=90°,
∵圓O與BE相切,
∴∠ABE=90°,
∵∠DAB+∠DBA=∠DBA+∠DBE=90°,
∴∠DAB=∠DBE,
∴∠DBE=∠FAD,
∵∠BDE=∠AFD=90°,
∴△BDE∽△AFD,
∴ = = ;
、谶B接OC,交AD于G,
由①,設(shè)BE=2x,則AD=3x,
∵△BDE∽△ABE,∴ ,∴ ,
解得:x1=2,x2=﹣ (不合題意,舍去),
∴AD=3x=6,BE=2x=4,AE=AD+DE=8,
∴sin∠EAB= ,
∴∠EAB=30°,
∴∠FAB=60°.
【點(diǎn)評】本題考查了切線的性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理及扇形面積的計算.比較復(fù)雜,解答此題的關(guān)鍵是作出輔助線,利用數(shù)形結(jié)合解答.
25.如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長為4 米.
(1)求新傳送帶AC的長度.
(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)5米的貨物MNQP是否需要挪走,并說明理由.
參考數(shù)據(jù): .
【考點(diǎn)】解直角三角形的應(yīng)用-坡度坡角問題.
【分析】(1)在構(gòu)建的直角三角形中,首先求出兩個直角三角形的公共直角邊,進(jìn)而在Rt△ACD中,求出AC的長.
(2)通過解直角三角形,可求出BD、CD的長,進(jìn)而可求出BC、PC的長.然后判斷PC的值是否大于2米即可.
【解答】解:(1)如圖,
在Rt△ABD中,AD=ABsin45°=4 × =4.
在Rt△ACD中,
∵∠ACD=30°,
∴AC=2AD=8.
即新傳送帶AC的長度約為8米;
(2)結(jié)論:貨物MNQP不用挪走.
解:在Rt△ABD中,BD=ABcos45°=4 × =4.
在Rt△ACD中,CD=ACcos30°=2 .
∴CB=CD﹣BD=2 ﹣4≈0.9.
∵PC=PB﹣CB≈4﹣0.9=3.1>2,
∴貨物MNQP不應(yīng)挪走.
【點(diǎn)評】考查了坡度坡腳問題,應(yīng)用問題盡管題型千變?nèi)f化,但關(guān)鍵是設(shè)法化歸為解直角三角形問題,必要時應(yīng)添加輔助線,構(gòu)造出直角三角形.在兩個直角三角形有公共直角邊時,先求出公共邊的長是解答此類題的基本思路.
26.科幻小說《實驗室的故事》中,有這樣一個情節(jié):科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一天后,測試出這種植物高度的增長情況(如下表):
溫度x/℃ … ﹣4 ﹣2 0 2 4 4.5 …
植物每天高度增長量y/mm … 41 49 49 41 25 19.75 …
由這些數(shù)據(jù),科學(xué)家推測出植物每天高度增長量y是溫度x的函數(shù),且這種函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.
(1)請你選擇一種適當(dāng)?shù)暮瘮?shù),求出它的函數(shù)關(guān)系式,并簡要說明不選擇另外兩種函數(shù)的理由;
(2)溫度為多少時,這種植物每天高度增長量最大?
(3)如果實驗室溫度保持不變,在10天內(nèi)要使該植物高度增長量的總和超過250mm,那么實驗室的溫度x應(yīng)該在哪個范圍內(nèi)選擇?請直接寫出結(jié)果.
【考點(diǎn)】二次函數(shù)的應(yīng)用.
【分析】(1)選擇二次函數(shù),設(shè)y=ax2+bx+c(a≠0),然后選擇x=﹣2、0、2三組數(shù)據(jù),利用待定系數(shù)法求二次函數(shù)解析式即可,再根據(jù)反比例函數(shù)的自變量x不能為0,一次函數(shù)的特點(diǎn)排除另兩種函數(shù);
(2)把二次函數(shù)解析式整理成頂點(diǎn)式形式,再根據(jù)二次函數(shù)的最值問題解答;
(3)求出平均每天的高度增長量為25mm,然后根據(jù)y=25求出x的值,再根據(jù)二次函數(shù)的性質(zhì)寫出x的取值范圍.
【解答】解:(1)選擇二次函數(shù),設(shè)y=ax2+bx+c(a≠0),
∵x=﹣2時,y=49,
x=0時,y=49,
x=2時,y=41,
∴ ,
解得 ,
所以,y關(guān)于x的函數(shù)關(guān)系式為y=﹣x2﹣2x+49;
不選另外兩個函數(shù)的理由:
∵點(diǎn)(0,49)不可能在反比例函數(shù)圖象上,
∴y不是x的反比例函數(shù);
∵點(diǎn)(﹣4,41),(﹣2,49),(2,41)不在同一直線上,
∴y不是x的一次函數(shù);
(2)由(1)得,y=﹣x2﹣2x+49=﹣(x+1)2+50,
∵a=﹣1<0,
∴當(dāng)x=﹣1時,y有最大值為50,
即當(dāng)溫度為﹣1℃時,這種作物每天高度增長量最大;
(3)∵10天內(nèi)要使該植物高度增長量的總和超過250mm,
∴平均每天該植物高度增長量超過25mm,
當(dāng)y=25時,﹣x2﹣2x+49=25,
整理得,x2+2x﹣24=0,
解得x1=﹣6,x2=4,
∴在10天內(nèi)要使該植物高度增長量的總和超過250mm,實驗室的溫度應(yīng)保持在﹣6℃
【點(diǎn)評】本題考查了二次函數(shù)的應(yīng)用,主要利用了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的最值問題,以及利用二次函數(shù)求不等式,仔細(xì)分析圖表數(shù)據(jù)并熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.
27.△ABC中,AB=AC,取BC邊的中點(diǎn)D,作DE⊥AC于點(diǎn)E,取DE的中點(diǎn)F,連接BE,AF交于點(diǎn)H.
(1)如圖1,如果∠BAC=90°,求證:AF⊥BE并求 的值;
(2)如圖2,如果∠BAC=a,求證:AF⊥BE并用含a的式子表示 .
【考點(diǎn)】相似三角形的判定與性質(zhì).
【分析】連接AD,根據(jù)等腰三角形的性質(zhì)可得∠ABC=∠C,∠BAD= ∠BAC,AD⊥BC,然后根據(jù)同角的余角相等可得∠ADE=∠C.易證△ADB∽△DEC,可得ADCE=BDDE.由此可得ADCE= BC2DF=BCDF,即 ,由此可證到△AFD∽△BEC,則有 ,在Rt△ADB中根據(jù)三角函數(shù)的定義可得tan∠ABD=tan(90°﹣ ∠BAC)= = ,從而可得 = tan(90°﹣ ∠BAC).由△AFD∽△BEC可得∠DAF=∠CBE,即可得到∠DAF+∠AOH=∠CBE+∠BOD=90°,即可得到∠AHB=90°.利用以上結(jié)論即可解決題中的兩個問題.
【解答】解:如圖1,連接AD,
∵AB=AC,點(diǎn)D是BC的中點(diǎn),
∴∠ABC=∠C,∠BAD=∠DAC= ∠BAC,AD⊥BC,
∵AD⊥BC,DE⊥AC,
∴∠ADE+∠CDE=90°,∠C+∠CDE=90°,
∴∠ADE=∠C.
又∵∠ADB=∠DEC=90°,
∴△ADB∽△DEC,
∴ ,
即ADCE=BDDE.
∵點(diǎn)D是BC的中點(diǎn),點(diǎn)F是DE的中點(diǎn),
∴BD= BC,DE=2DF,
∴ADCE═ BC2DF=BCDF,
∴ ,
又∵∠ADE=∠C,
∴△AFD∽△BEC,
∴ ,
在Rt△ADB中,
∵∠ABD=90°﹣∠BAD=90°﹣ ∠BAC,BD= BC,
∴tan∠ABD=tan(90°﹣ ∠BAC)= = ,
∴ = tan(90°﹣ ∠BAC).
∵△AFD∽△BEC,
∴∠DAF=∠CBE.
∵∠CBE+∠BOD=90°,∠AOH=∠BOD,
∴∠DAF+∠AOH=∠CBE+∠BOD=90°,
∴∠AHO=180°﹣90°=90°,即∠AHB=90°,
(1)如圖1,
根據(jù)以上結(jié)論可得:
∠AHB=90°, = tan(90°﹣ ×90°)= ;
∴AF⊥BE, = ;
(2)如圖2,
根據(jù)以上結(jié)論可得:∠AHB=90°, = tan(90°﹣ α);
∴AF⊥BE, = tan(90°﹣ α).
【點(diǎn)評】本題主要考查的是相似三角形的判定與性質(zhì)、三角函數(shù)的定義、等腰三角形的性質(zhì)、同角的余角相等等知識,證到△AFD∽△BEC是解決本題的關(guān)鍵.
28.如圖,二次函數(shù)y=ax2+bx﹣2的圖象交x軸于A(1,0)、B(﹣2,0),交y軸于點(diǎn)C,連接直線AC.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P在二次函數(shù)的圖象上,圓P與直線AC相切,切點(diǎn)為H.
、偃鬚在y軸的左側(cè),且△CHP∽△AOC,求點(diǎn)P的坐標(biāo);
、谌魣AP的半徑為4,求點(diǎn)P的坐標(biāo).
【考點(diǎn)】二次函數(shù)綜合題.
【分析】(1)將A、B兩點(diǎn)的坐標(biāo)代入拋物線的解析式,得到關(guān)于a、b的二元一次方程組,從而可求得a、b的值;
(2)①由切線的性質(zhì)可知PH⊥AC,當(dāng)H在點(diǎn)C下方時,由△CHP∽△AOC可知∠PCH=∠CAO從而可證明CP∥x軸,于是得到y(tǒng)P=﹣2,yP=﹣2代入拋物線的解析式可求得x1=0(舍去),x2=﹣1,從而可求得P(﹣1,﹣2);如圖1,當(dāng)H′在點(diǎn)C上方時,由相似三角形的性質(zhì)可知:∠P′CH′=∠CAO,故此QA=QC,設(shè)OQ=m,則QC=QA=m+1,在Rt△QOC中,由勾股定理可求得m的值,從而得到點(diǎn)Q的坐標(biāo),然后利用待定系數(shù)法求得直線C P′的解析式為y=﹣ x﹣2,然后將CP′與拋物線的解析式聯(lián)立可求得點(diǎn)P′的坐標(biāo)為(﹣ , ).
(3)在x軸上取一點(diǎn)D,如圖(2),過點(diǎn)D作DE⊥AC于點(diǎn)E,使DE=4.在Rt△AOC中,由勾股定理可知AC= ,由題意可知證明△AED∽△AOC,由相似三角形的性質(zhì)可求得AD=2 ,故此可得到點(diǎn)D的坐標(biāo)為D(1﹣2 ,0)或D(1+2 ,0),過點(diǎn)D作DP∥AC,交拋物線于P,利用待定系數(shù)法可求得直線AC的解析式為y=2x﹣2,于是得到直線PD的解析式為y=2x+4 ﹣2或y=2x﹣4 ﹣2,將直線PD的解析式與拋物線的解析式聯(lián)立可求得點(diǎn)P的坐標(biāo).
【解答】解:(1)∵將x=1,y=0,x=﹣2,y=0代入y=ax2+bx﹣2得 ,解得: ,
∴拋物線的解析式為y=x2+x﹣2.
(2)解①∵圓P與直線AC相切,
∴PH⊥AC.
(i)如圖1,當(dāng)H在點(diǎn)C下方時,
①∵△CHP∽△AOC,
∴∠PCH=∠CAO.
∴CP∥x軸.
∴yP=﹣2.
∴x2+x﹣2=﹣2.
解得x1=0(舍去),x2=﹣1,
∴P(﹣1,﹣2).
(ii)如圖1,當(dāng)H′在點(diǎn)C上方時.
∵∠P′CH′=∠CAO,
∴QA=QC,
設(shè)OQ=m,則QC=QA=m+1,
在Rt△QOC中,由勾股定理,得m2+22=(m+1)2,解得,m= ,即OQ= ;
設(shè)直線C P′的解析式為y=kx﹣2,
把Q(﹣ ,0)的坐標(biāo)代入,得 k﹣2=0,解得k=﹣ ,∴y=﹣ x﹣2,
由﹣ x﹣2=x2+x﹣2,解得x1=0(舍去),x2= ,此時y=﹣ ×(﹣ )﹣2= ,
∴P′(﹣ , ).
∴點(diǎn)P的坐標(biāo)為(﹣1,﹣2)或(﹣ , )
、谠趚軸上取一點(diǎn)D,如圖(2),過點(diǎn)D作DE⊥AC于點(diǎn)E,使DE=4.
在Rt△AOC中,AC= = = ,
∵∠COA=∠DEA=90°,∠OAC=∠EAD,
∴△AED∽△AOC.
∴ ,即 = ,解得AD=2 ,
∴D(1﹣2 ,0)或D(1+2 ,0).
過點(diǎn)D作DP∥AC,交拋物線于P,設(shè)直線AC的解析式為y=kx+b.
將點(diǎn)A、C的坐標(biāo)代入拋物線的解析式得到: .
解得: .
∴直線AC的解析式為y=2x﹣2.
∴直線PD的解析式為y=2x+4 ﹣2或y=2x﹣4 ﹣2,
當(dāng)2x+4 ﹣2=x2+x﹣2時,即x2﹣x﹣4 =0,解得x1= ,x2= ;
當(dāng)2x﹣4 ﹣2=x2+x﹣2時,即x2﹣x+4 =0,方程無實數(shù)根.
∴點(diǎn)P的坐標(biāo)為( , ﹣1)或( ,﹣ ).
【點(diǎn)評】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了切線的性質(zhì)、相似三角形的性質(zhì)和判定、待定系數(shù)法求一次函數(shù)和二次函數(shù)的解析式、勾股定理等知識點(diǎn),求得點(diǎn)Q的坐標(biāo)和點(diǎn)D的坐標(biāo)是解題的關(guān)鍵。
初三上冊數(shù)學(xué)期末考試卷答案 2
一、選擇題(本大題滿分20分,共10小題,每小題2分)
1.的相反數(shù)是
A.B.C.D.2
2.2010年10月1日18時59分57秒,嫦娥二號衛(wèi)星飛向月球,月球離地球相距約38.4萬千米,把數(shù)據(jù)38.4萬用科學(xué)計數(shù)法表示為
A.B.C.D.
3.去括號后等于的是
A.B.C.D.
4.下列運(yùn)算正確的是
A.B.C.D.
5.下列各組代數(shù)式中,是同類項的是
A.與B.與C.與D.與
6.若是方程的解,則的值是
A.1B.C.2D.
7.若,則下列結(jié)論一定錯誤的是
A.B.C.D.
8.為了參加市中學(xué)生籃球運(yùn)動會,一支校籃球隊準(zhǔn)備購買10雙運(yùn)動鞋,各種尺碼的統(tǒng)計如下表所示,則這10雙運(yùn)動鞋尺碼的眾數(shù)和中位數(shù)分別為
尺碼/厘米2525.52626.527
購買量/雙24211
A.25.6,26B.26,25.5C.26,26D.25.5,25.5
9.不等式的解集在數(shù)軸上表示出來應(yīng)為
10.觀察后面的一組單項式:,…,根據(jù)你發(fā)現(xiàn)的規(guī)律,則第6個式子是
A.B.C.D.
二、填空題(本題滿分16分,共8小題,每小題2分)
11.零上記作,則零下記作.
12.比較大小:.(填“<”“>”或“=”)
13.單項式的系數(shù)為.
14.已知大桶飲用水的`價格為7元/桶,七年級一班本學(xué)期用了桶水,七年級二班本學(xué)期用了桶水,則本期兩個班共需交水費(fèi)元.
15.計算:.
16.不等式的正整數(shù)解是.
17.一組數(shù)據(jù)3,0,的平均數(shù)是1,則這組數(shù)據(jù)中等于.
18.在數(shù)軸上,點(diǎn)A與表示的點(diǎn)的距離為3,則點(diǎn)A所表示的數(shù)是.
三、解答題(本題滿分30分,共5小題,每小題6分)
19.計算:.
20.解方程:
21.解不等式,并把它的解集在數(shù)軸上表示出來.
22.如圖,是兩根柱子在同一燈光下的影子.
(1)請在圖中畫出光源的位置(用點(diǎn)P表示光源);
(2)在圖中畫出人物DE在此光源下的影子(用線段EF表示).
23.先化簡,再求值.,其中.
四、解答題(本題滿分8分)
24.觀察下列圖形中的棋子:
(1)按照這樣的規(guī)律擺下去,第4個圖形中的棋子個數(shù)是多少?
(2)用含的代數(shù)式表示第個圖形的棋子個數(shù);
(3)求第20個圖形需棋子多少個?
五、應(yīng)用題(本題滿分16分,共2小題,每小題8分)
25.為擴(kuò)大內(nèi)需,某市實施“家電下鄉(xiāng)”政策.第一批列入家電下鄉(xiāng)的產(chǎn)品為彩電、冰箱、洗衣機(jī)和手機(jī)甲種產(chǎn)品.某家電商場2010年一季度對以上四種產(chǎn)品的銷售情況進(jìn)行了統(tǒng)計,繪制了如下的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:
(1)該商場一季度手機(jī)銷售的數(shù)量是部,占四種產(chǎn)品總銷售量的百分?jǐn)?shù)為;
(2)求該商場一季度冰箱銷售的數(shù)量,并補(bǔ)全條形統(tǒng)計圖;
(3)求扇形統(tǒng)計圖中手機(jī)所對應(yīng)的扇形的圓心角的度數(shù).
26.七年級某班為舉行游藝活動采購了一批獎品,下面是該班班長與售貨員的對話:
班長:阿姨,您好!
售貨員:你好,想買點(diǎn)什么?
班長:我這里是100元,請你幫我買10支鋼筆和15本筆記本。
售貨員:好的,每只鋼筆比每本筆記本貴2元,現(xiàn)找你5元,請你收好,再見!
根據(jù)這段對話,你能列出一元一次方程求出筆記本和鋼筆的單價嗎?
五、綜合題(本題滿分10分)
27.某漁場計劃購買甲、乙兩種魚苗共6000尾,甲種魚苗每尾0.5元,乙種魚苗每尾0.8元.
(1)若購買這批魚苗共用了3600元,求甲、乙兩種魚苗各購買了多少尾?
(2)若購買這批魚苗的錢不超過4200元,應(yīng)如何選購甲種魚苗?
答案
一、選擇題
題號12345678910
答案ABBCBADDDC
二、填空題
11..12.>.13..14..15..16.1,2.17.6.18.或2.
三、解答題
19.8.20..
21.解集為,它的解集在數(shù)軸上表示如圖.
22.如圖,點(diǎn)P是影子的光源,EF就是人在光源P下的影子.
23.原式=.
四、解答題
24.(1)第4個圖形中的棋子個數(shù)是13;
(2)第個圖形的棋子個數(shù)是;
(3)第20個圖形需棋子61個.
五、應(yīng)用題
25.(1)200部,40%;
(2)100臺,補(bǔ)全條形統(tǒng)計圖如圖;
(3).
26.筆記本的單價是3元,鋼筆的單價是5元.
五、綜合題
27.(1)甲種魚苗各購買4000尾,乙兩種魚苗購買了2000尾;
(2)選購甲種魚苗要大于或等于2000尾.
-->【初三上冊數(shù)學(xué)期末考試卷答案】相關(guān)文章:
初三語文上冊期末試卷(含答案)10-02
五年級上冊期末考試卷數(shù)學(xué)試卷(有答案)08-18
2016~2017年度初三上冊數(shù)學(xué)期末考試卷答案11-01
五年級上冊數(shù)學(xué)期末考試卷及答案201707-29
五年級上冊數(shù)學(xué)期末考試卷含答案06-07
2017五年級上冊期末考試卷答案10-03