亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

數學 百文網手機站

最新高一數學函數值域解題技巧總結

時間:2021-06-30 15:53:04 數學 我要投稿

最新高一數學函數值域解題技巧總結

  一.觀察法

最新高一數學函數值域解題技巧總結

  通過對函數定義域、性質的觀察,結合函數的解析式,求得函數的值域。

  例1求函數y=3+√(2-3x) 的值域。

  點撥:根據算術平方根的性質,先求出√(2-3x) 的值域。

  解:由算術平方根的性質,知√(2-3x)≥0,

  故3+√(2-3x)≥3。

  ∴函數的知域為 .

  點評:算術平方根具有雙重非負性,即:(1)被開方數的非負性,(2)值的非負性。

  本題通過直接觀察算術平方根的性質而獲解,這種方法對于一類函數的值域的求法,簡捷明了,不失為一種巧法。

  練習:求函數y=[x](0≤x≤5)的值域。(答案:值域為:{0,1,2,3,4,5})

  二.反函數法

  當函數的反函數存在時,則其反函數的定義域就是原函數的值域。

  例2求函數y=(x+1)/(x+2)的值域。

  點撥:先求出原函數的反函數,再求出其定義域。

  解:顯然函數y=(x+1)/(x+2)的反函數為:x=(1-2y)/(y-1),其定義域為y≠1的實數,故函數y的值域為{y?y≠1,y∈R}。

  點評:利用反函數法求原函數的定義域的前提條件是原函數存在反函數。這種方法體現逆向思維的思想,是數學解題的重要方法之一。

  練習:求函數y=(10x+10-x)/(10x-10-x)的值域。(答案:函數的值域為{y?y<-1或y>1})

  三.配方法

  當所給函數是二次函數或可化為二次函數的復合函數時,可以利用配方法求函數值域

  例3:求函數y=√(-x2+x+2)的值域。

  點撥:將被開方數配方成完全平方數,利用二次函數的最值求。

  解:由-x2+x+2≥0,可知函數的定義域為x∈[-1,2]。此時-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]

  ∴0≤√-x2+x+2≤3/2,函數的值域是[0,3/2]

  點評:求函數的值域不但要重視對應關系的應用,而且要特別注意定義域對值域的制約作用。配方法是數學的一種重要的思想方法。

  練習:求函數y=2x-5+√15-4x的值域.(答案:值域為{y?y≤3})

  四.判別式法

  若可化為關于某變量的二次方程的分式函數或無理函數,可用判別式法求函數的值域。

  例4求函數y=(2x2-2x+3)/(x2-x+1)的值域。

  點撥:將原函數轉化為自變量的二次方程,應用二次方程根的判別式,從而確定出原函數的值域。

  解:將上式化為(y-2)x2-(y-2)x+(y-3)=0 (*)

  當y≠2時,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2

  當y=2時,方程(*)無解!嗪瘮档闹涤驗2

  點評:把函數關系化為二次方程F(x,y)=0,由于方程有實數解,故其判別式為非負數,可求得函數的值域。常適應于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函數。

  練習:求函數y=1/(2x2-3x+1)的值域。(答案:值域為y≤-8或y>0)。

  五.最值法

  對于閉區(qū)間[a,b]上的連續(xù)函數y=f(x),可求出y=f(x)在區(qū)間[a,b]內的極值,并與邊界值f(a).f(b)作比較,求出函數的最值,可得到函數y的值域。

  例5已知(2x2-x-3)/(3x2+x+1)≤0,且滿足x+y=1,求函數z=xy+3x的值域。

  點撥:根據已知條件求出自變量x的取值范圍,將目標函數消元、配方,可求出函數的值域。

  解:∵3x2+x+1>0,上述分式不等式與不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,將y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),

  ∴z=-(x-2)2+4且x∈[-1,3/2],函數z在區(qū)間[-1,3/2]上連續(xù),故只需比較邊界的大小。

  當x=-1時,z=-5;當x=3/2時,z=15/4。

  ∴函數z的.值域為{z?-5≤z≤15/4}。

  點評:本題是將函數的值域問題轉化為函數的最值。對開區(qū)間,若存在最值,也可通過求出最值而獲得函數的值域。

  練習:若√x為實數,則函數y=x2+3x-5的值域為 ( )

  A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞)

  (答案:D)。

  六.圖象法

  通過觀察函數的圖象,運用數形結合的方法得到函數的值域。

  例6求函數y=?x+1?+√(x-2)2 的值域。

  點撥:根據絕對值的意義,去掉符號后轉化為分段函數,作出其圖象。

  解:原函數化為 -2x+1 (x≤1)

  y= 3 (-1

  2x-1(x>2)

  它的圖象如圖所示。

  顯然函數值y≥3,所以,函數值域[3,+∞]。

  點評:分段函數應注意函數的端點。利用函數的圖象

  求函數的值域,體現數形結合的思想。是解決問題的重要方法。

  求函數值域的方法較多,還適應通過不等式法、函數的單調性、換元法等方法求函數的值域。

  七.單調法

  利用函數在給定的區(qū)間上的單調遞增或單調遞減求值域。

  例1求函數y=4x-√1-3x(x≤1/3)的值域。

  點撥:由已知的函數是復合函數,即g(x)= -√1-3x,y=f(x)+g(x),其定義域為x≤1/3,在此區(qū)間內分別討論函數的增減性,從而確定函數的值域。

  解:設f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它們在定義域內為增函數,從而y=f(x)+g(x)= 4x-√1-3x

  在定義域為x≤1/3上也為增函數,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函數值域為{yy≤4/3}。

  點評:利用單調性求函數的值域,是在函數給定的區(qū)間上,或求出函數隱含的區(qū)間,結合函數的增減性,求出其函數在區(qū)間端點的函數值,進而可確定函數的值域。

  練習:求函數y=3+√4-x 的值域。(答案:{yy≥3})

【最新高一數學函數值域解題技巧總結】相關文章:

數學函數求值域的好方法05-08

數學函數解題技巧06-04

高一數學集合與函數的解題技巧口訣06-03

高考數學函數解題技巧08-25

高一數學知識點解析之函數的定義域及值域07-23

高三數學下冊《函數值域》知識點講解08-10

2018廣東高考函數值域復習資料08-22

高一數學解題技巧01-19

高考數學三角函數解題技巧08-25