高一數(shù)學(xué)不等式的基本性質(zhì)的知識(shí)點(diǎn)
在我們的學(xué)習(xí)時(shí)代,不管我們學(xué)什么,都需要掌握一些知識(shí)點(diǎn),知識(shí)點(diǎn)在教育實(shí)踐中,是指對(duì)某一個(gè)知識(shí)的泛稱。掌握知識(shí)點(diǎn)有助于大家更好的學(xué)習(xí)。以下是小編為大家收集的高一數(shù)學(xué)不等式的基本性質(zhì)的知識(shí)點(diǎn),供大家參考借鑒,希望可以幫助到有需要的朋友。
高一數(shù)學(xué)不等式的基本性質(zhì)的知識(shí)點(diǎn)1
1.不等式的定義:a-bb,a-b=0a=b,a-b0a
、倨鋵(shí)質(zhì)是運(yùn)用實(shí)數(shù)運(yùn)算來(lái)定義兩個(gè)實(shí)數(shù)的大小關(guān)系。它是本章的基礎(chǔ),也是證明不等式與解不等式的主要依據(jù)。
②可以結(jié)合函數(shù)單調(diào)性的證明這個(gè)熟悉的知識(shí)背景,來(lái)認(rèn)識(shí)作差法比大小的理論基礎(chǔ)是不等式的性質(zhì)。
作差后,為判斷差的符號(hào),需要分解因式,以便使用實(shí)數(shù)運(yùn)算的符號(hào)法則。
2.不等式的性質(zhì):
、俨坏仁降男再|(zhì)可分為不等式基本性質(zhì)和不等式運(yùn)算性質(zhì)兩部分。
不等式基本性質(zhì)有:
(1)abb
(2)acac(傳遞性)
(3)ab+c(cR)
(4)c0時(shí),abc
c0時(shí),abac
運(yùn)算性質(zhì)有:
(1)ada+cb+d。
(2)a0,c0acbd。
(3)a0anbn(nN,n1)。
(4)a0N,n1)。
應(yīng)注意,上述性質(zhì)中,條件與結(jié)論的邏輯關(guān)系有兩種:和即推出關(guān)系和等價(jià)關(guān)系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價(jià)變換。因此,要正確理解和應(yīng)用不等式性質(zhì)。
、陉P(guān)于不等式的性質(zhì)的考察,主要有以下三類問(wèn)題:
(1)根據(jù)給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。
(2)利用不等式的性質(zhì)及實(shí)數(shù)的性質(zhì),函數(shù)性質(zhì),判斷實(shí)數(shù)值的大小。
(3)利用不等式的性質(zhì),判斷不等式變換中條件與結(jié)論間的充分或必要關(guān)系。
高一數(shù)學(xué)不等式的基本性質(zhì)的知識(shí)點(diǎn)2
一、目標(biāo)與要求
1.感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過(guò)解決簡(jiǎn)單的實(shí)際問(wèn)題,使學(xué)生自發(fā)地尋找不等式的解,會(huì)把不等式的解集正確地表示到數(shù)軸上;
2.經(jīng)歷由具體實(shí)例建立不等模型的過(guò)程,經(jīng)歷探究不等式解與解集的不同意義的過(guò)程,滲透數(shù)形結(jié)合思想;
3.通過(guò)對(duì)不等式、不等式解與解集的探究,引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上積極參與對(duì)數(shù)學(xué)問(wèn)題的討論,培養(yǎng)他們的合作交流意識(shí);讓學(xué)生充分體會(huì)到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個(gè)領(lǐng)域。
三、重點(diǎn)
1.理解并掌握不等式的性質(zhì);
2.正確運(yùn)用不等式的性質(zhì);
3.建立方程解決實(shí)際問(wèn)題,會(huì)解ax+b=cx+d類型的一元一次方程;
4.尋找實(shí)際問(wèn)題中的不等關(guān)系,建立數(shù)學(xué)模型;
5.一元一次不等式組的解集和解法。
四、難點(diǎn)
1.一元一次不等式組解集的理解;
2.弄清列不等式解決實(shí)際問(wèn)題的思想方法,用去括號(hào)法解一元一次不等式;
3.正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。
五、知識(shí)點(diǎn)、概念總結(jié)
1.不等式:用符號(hào),,,表示大小關(guān)系的式子叫做不等式。
2.不等式分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。
一般地,用純粹的大于號(hào)、小于號(hào),連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào)),連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4.不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一個(gè)含未知數(shù)的不等式有無(wú)數(shù)個(gè)解,其解集是一個(gè)范圍,這個(gè)范圍可用最簡(jiǎn)單的不等式表達(dá)出來(lái),例如:x-12的解集是x3
(2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來(lái),形象地說(shuō)明不等式有無(wú)限多個(gè)解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)G(x)與不等式G(x)F(x)同解。
(2)如果不等式F(x)G(x)的定義域被解析式H(x)的定義域所包含,那么不等式F(x)G(x)與不等式H(x)+F(x)
(3)如果不等式F(x)G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)0,那么不等式F(x)G(x)與不等式H(x)F(x)0,那么不等式F(x)G(x)與不等式H(x)F(x)H(x)G(x)同解。
7.不等式的性質(zhì):
(1)如果xy,那么yy;(對(duì)稱性)
(2)如果xy,y那么x(傳遞性)
(3)如果xy,而z為任意實(shí)數(shù)或整式,那么x+z(加法則)
(4)如果xy,z0,那么xz如果xy,z0,那么xz
(5)如果xy,z0,那么xzy如果xy,z0,那么xz
(6)如果xy,mn,那么x+my+n(充分不必要條件)
(7)如果x0,m0,那么xmyn
(8)如果x0,那么x的n次冪y的n次冪(n為正數(shù))
8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般順序:
(1)去分母(運(yùn)用不等式性質(zhì)2、3)
(2)去括號(hào)
(3)移項(xiàng)(運(yùn)用不等式性質(zhì)1)
(4)合并同類項(xiàng)
(5)將未知數(shù)的系數(shù)化為1(運(yùn)用不等式性質(zhì)2、3)
(6)有些時(shí)候需要在數(shù)軸上表示不等式的解集
10.一元一次不等式與一次函數(shù)的綜合運(yùn)用:
一般先求出函數(shù)表達(dá)式,再化簡(jiǎn)不等式求解。
11.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一一起,就組成了一個(gè)一元一次不等式組。
12.解一元一次不等式組的步驟:
(1)求出每個(gè)不等式的解集;
(2)求出每個(gè)不等式的解集的公共部分;(一般利用數(shù)軸)
(3)用代數(shù)符號(hào)語(yǔ)言來(lái)表示公共部分。(也可以說(shuō)成是下結(jié)論)
13.解不等式的訣竅
(1)大于大于取大的(大大大);
例如:X-1,X2,不等式組的解集是X2
(2)小于小于取小的(小小小);
例如:X-4,X-6,不等式組的解集是X-6
(3)大于小于交叉取中間;
(4)無(wú)公共部分分開(kāi)無(wú)解了;
14.解不等式組的口訣
(1)同大取大
例如,x2,x3,不等式組的解集是X3
(2)同小取小
例如,x2,x3,不等式組的解集是X2
(3)大小小大中間找
例如,x2,x1,不等式組的解集是1
(4)大大小小不用找
例如,x2,x3,不等式組無(wú)解
15.應(yīng)用不等式組解決實(shí)際問(wèn)題的步驟
(1)審清題意
(2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組
(3)解不等式組
(4)由不等式組的解確立實(shí)際問(wèn)題的解
(5)作答
16.用不等式組解決實(shí)際問(wèn)題:其公共解不一定就為實(shí)際問(wèn)題的解,所以需結(jié)合生活實(shí)際具體分析,最后確定結(jié)果。
高一數(shù)學(xué)不等式的基本性質(zhì)的知識(shí)點(diǎn)3
1.不等式性質(zhì)比較大小方法:
(1)作差比較法
(2)作商比較法
不等式的基本性質(zhì)
、賹(duì)稱性:a>bb>a
、趥鬟f性:a>b,b>ca>c
、劭杉有:a>ba+c>b+c
、芸煞e性:a>b,c>0ac>bc
、菁臃ǚ▌t:a>b,c>da+c>b+d
⑥乘法法則:a>b>0,c>d>0ac>bd
、叱朔椒▌t:a>b>0,an>bn(n∈N)
、嚅_(kāi)方法則:a>b>0
2.算術(shù)平均數(shù)與幾何平均數(shù)定理:
(1)如果a、b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí)等號(hào))
(2)如果a、b∈R+,那么(當(dāng)且僅當(dāng)a=b時(shí)等號(hào))推廣:
如果為實(shí)數(shù),則重要結(jié)論
(1)如果積xy是定值P,那么當(dāng)x=y時(shí),和x+y有最小值2;
(2)如果和x+y是定值S,那么當(dāng)x=y時(shí),和xy有最大值S2/4。
3.證明不等式的常用方法:
比較法:比較法是最基本、最重要的方法。
當(dāng)不等式的兩邊的差能分解因式或能配成平方和的形式,則選擇作差比較法;當(dāng)不等式的兩邊都是正數(shù)且它們的商能與1比較大小,
則選擇作商比較法;碰到絕對(duì)值或根式,我們還可以考慮作平方差。
綜合法:從已知或已證明過(guò)的不等式出發(fā),根據(jù)不等式的性質(zhì)推導(dǎo)出欲證的不等式。綜合法的'放縮經(jīng)常用到均值不等式。
分析法:不等式兩邊的聯(lián)系不夠清楚,通過(guò)尋找不等式成立的充分條件,逐步將欲證的不等式轉(zhuǎn)化,直到尋找到易證或已知成立的結(jié)論。
4.不等式的解法
(1)不等式的有關(guān)概念同解不等式:兩個(gè)不等式如果解集相同,那么這兩個(gè)不等式叫做同解不等式。同解變形:一個(gè)不等式變形為另一個(gè)不等式時(shí),如果這兩個(gè)不等式是同解不等式,那么這種變形叫做同解變形。提問(wèn):請(qǐng)說(shuō)出我們以前解不等式中常用到的同解變形去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)
(2)不等式ax>b的解法①當(dāng)a>0時(shí)不等式的解集是{x|x>b/a};②當(dāng)a<0時(shí)不等式的解集是{x|x
(3)一元二次不等式與一元二次方程、二次函數(shù)之間的關(guān)系
(4)絕對(duì)值不等式|x|0)的解集是{x|-aa(a>0)的解集是{x|x<-a或x>a},幾何表示為:oo-a0a小結(jié):解絕對(duì)值不等式的關(guān)鍵是-去絕對(duì)值符號(hào)(整體思想,分類討論)轉(zhuǎn)化為不含絕對(duì)值的不等式,
通常有下列三種解題思路:
(1)定義法:利用絕對(duì)值的意義,通過(guò)分類討論的方法去掉絕對(duì)值符號(hào);
(2)公式法:|f(x)|>af(x)>a或f(x)<-a;|f(x)|<a-a
(3)平方法:|f(x)|>a(a>0)f2(x)>a2;|f(x)|<a(a>0)f2(x)<a2;
(4)幾何意義
(5)分式不等式的解法
(6)一元高次不等式的解法數(shù)軸標(biāo)根法把不等式化為f(x)>0(或<0)的形式(首項(xiàng)系數(shù)化為正),然后分解因式,再把根按照從小到大的順序在數(shù)軸上標(biāo)出來(lái),從右邊入手畫線,最后根據(jù)曲線寫出不等式的解。
(7)含有絕對(duì)值的不等式定理:|a|-|b|≤|a+b|≤|a|+|b|?|a|-|b|≤|a+b|中當(dāng)b=0或|a|>|b|且ab<0等號(hào)成立?|a+b|≤|a|+|b|中當(dāng)且僅當(dāng)ab≥0等號(hào)成立推論1:|a1+a2+a3|≤|a1|+|a2|+|a3|推廣:|a1+a2+...+an|≤|a1|+|a2|+...+|an|推論2:|a|-|b|≤|a-b|≤|a|+|b|
高一數(shù)學(xué)不等式的基本性質(zhì)的知識(shí)點(diǎn)4
1、不等式及其解集
用“<”或“>”號(hào)表示大小關(guān)系的式子叫做不等式。
使不等式成立的未知數(shù)的值叫做不等式的解。
能使不等式成立的未知數(shù)的取值范圍,叫做不等式解的集合,簡(jiǎn)稱解集。
含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。
2、不等式的性質(zhì)
不等式有以下性質(zhì):
不等式的性質(zhì)1不等式兩邊加(或減)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變。
不等式的性質(zhì)2不等式兩邊乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。
不等式的性質(zhì)3不等式兩邊乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。
3、實(shí)際問(wèn)題與一元一次不等式
解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為xa)的形式。
4、一元一次不等式組
把兩個(gè)不等式合起來(lái),就組成了一個(gè)一元一次不等式組。
幾個(gè)不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。
對(duì)于具有多種不等關(guān)系的問(wèn)題,可通過(guò)不等式組解決。解一元一次不等式組時(shí)。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集。
高一數(shù)學(xué)不等式的基本性質(zhì)的知識(shí)點(diǎn)5
1、不等式的解集
(1)一個(gè)含有未知數(shù)的不等式的所有的解,組成這個(gè)不等式的解的集合,簡(jiǎn)稱這個(gè)不等式的解集。
(2)不等式解集的表示方法:
、儆貌坏仁奖硎
、谟脭(shù)軸表示:大于向右畫,小于向左畫,有等號(hào)的畫實(shí)心圓點(diǎn),無(wú)等號(hào)的畫空心圓圈。
、矍蟛坏仁浇饧倪^(guò)程,就是解不等式。
2、求不等式組的解集的方法
(1)把各個(gè)不等式的解集表示在數(shù)軸上,觀察公共部分。
(2)不等式組的解集不外乎以下4種情況:
若a<b,<p="">
當(dāng)x>b時(shí);(同大取大)
當(dāng)x<a時(shí);(同小取小)<p="">
當(dāng)a<x<b時(shí);(大小小大中間找)<p="">
當(dāng)xb時(shí)無(wú)解,(大大小小無(wú)處找)
3、怎么在數(shù)軸上表示不等式的解集
1、確定不等式解集的起點(diǎn)
在表示解集時(shí),“≥”和“≤”要用實(shí)心圓點(diǎn)表示;“<”和“>”要用空心圓點(diǎn)表示。
2、確定不等式解集的方向
若是“>”和“≥”向右畫,“<”和“≤”向左畫。
3、確定不等式解集的方向
若是“>”和“<”兩條線相向時(shí)應(yīng)該連成閉合范圍,否則是開(kāi)放范圍。
滿足所有不等式的范圍就是在數(shù)軸上表示的不等式解集。
4、舉例說(shuō)明
(1)如不等式的解集為x>3,在數(shù)軸“3”上畫一個(gè)空心圓點(diǎn),從這個(gè)空心圓點(diǎn)開(kāi)始往上畫一段垂直線,并向右邊畫一條與數(shù)軸平行的直線,就表示x>3。
(2)如不等式的解集為x≥3,在數(shù)軸“3”上畫一個(gè)實(shí)心圓點(diǎn),后續(xù)步驟依此類推。
【高一數(shù)學(xué)不等式的基本性質(zhì)的知識(shí)點(diǎn)】相關(guān)文章:
高考數(shù)學(xué)不等式的基本性質(zhì)的知識(shí)點(diǎn)09-21
數(shù)學(xué)高考不等式的基本性質(zhì)知識(shí)點(diǎn)09-20
高考數(shù)學(xué)不等式的基本性質(zhì)知識(shí)點(diǎn)09-05
高考數(shù)學(xué)知識(shí)點(diǎn)不等式的基本性質(zhì)09-20
高考數(shù)學(xué)不等式的基本性質(zhì)的知識(shí)點(diǎn)復(fù)習(xí)09-07
高三數(shù)學(xué)不等式的基本性質(zhì)重要知識(shí)點(diǎn)09-15
高中數(shù)學(xué)不等式的基本性質(zhì)知識(shí)點(diǎn)歸納03-06