高一數(shù)學(xué)集合知識點整理
在日常過程學(xué)習(xí)中,大家都背過不少知識點,肯定對知識點非常熟悉吧!知識點也可以理解為考試時會涉及到的知識,也就是大綱的分支。還在為沒有系統(tǒng)的知識點而發(fā)愁嗎?以下是小編為大家整理的高一數(shù)學(xué)集合知識點整理,僅供參考,大家一起來看看吧。
高一數(shù)學(xué)知識點整理 1
一、知識歸納:
1.集合的有關(guān)概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集)。其中每一個對象叫元素。
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
、诩现械脑鼐哂写_定性(aA,二者必居其一)、互異性(若aA,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
、奂暇哂袃煞矫娴囊饬x,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數(shù)集:N,Z,Q,R,N
2.子集、交集、并集、補集、空集、全集等概念。
1)子集:若對x∈A都有x∈B,則A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)并集:A∪B={x| x∈A或x∈B}
5)補集:CUA={x| x A但x∈U}
注意:①A,若A≠,則A ;
②若 , ,則 ;
、廴 ,且 ,則A=B(等集)
3.弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語和符號,特別要注意以下的符號:(1) 與 、 的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。
4.有關(guān)子集的幾個等價關(guān)系
、貯∩B=A A B;②A∪B=B A B;③A B C uA C uB;
、蹵∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5.交、并集運算的性質(zhì)
、貯∩A=A,A∩ = ,A∩B=B∩A;②A∪A=A,A∪ =A,A∪B=B∪A;
③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
6.有限子集的個數(shù):設(shè)集合A的元素個數(shù)是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
二、例題講解:
【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關(guān)系
A) M=N P B) M N=P C) M N P D) N P M
分析一:從判斷元素的共性與區(qū)別入手。
解答一:對于集合M:{x|x= ,m∈Z};對于集合N:{x|x= ,n∈Z}
對于集合P:{x|x= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以M N=P,故選B。
分析二:簡單列舉集合中的元素。
解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時不要急于判斷三個集合間的關(guān)系,應(yīng)分析各集合中不同的元素。
= ∈N, ∈N,∴M N,又 = M,∴M N,
= P,∴N P 又 ∈N,∴P N,故P=N,所以選B。
點評:由于思路二只是停留在最初的歸納假設(shè),沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設(shè)集合 , ,則( B )
A.M=N B.M N C.N M D.
解:
當(dāng) 時,2k+1是奇數(shù),k+2是整數(shù),選B
【例2】定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個數(shù)為
A)1 B)2 C)3 D)4
分析:確定集合AB子集的個數(shù),首先要確定元素的個數(shù),然后再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。
解答:∵AB={x|x∈A且x B}, ∴AB={1,7},有兩個元素,故AB的子集共有22個。選D。
變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6a∈M,那么集合M的個數(shù)為
A)5個 B)6個 C)7個 D)8個
變式2:已知{a,b} A {a,b,c,d,e},求集合A.
解:由已知,集合中必須含有元素a,b.
集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
評析 本題集合A的個數(shù)實為集合{c,d,e}的真子集的個數(shù),所以共有 個 .
【例3】已知集合A={x|x2+px+q=0},B={x|x24x+rr=0},且A∩B={1},A∪B={2,1,3},求實數(shù)p,q,r的值。
解答:∵A∩B={1} ∴1∈B ∴124×1+r=0,r=3.
∴B={x|x24x+r=0}={1,3}, ∵A∪B={2,1,3},2 B, ∴2∈A
∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的兩根為-2和1,
變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數(shù)b,c,m的值。
解:∵A∩B={2} ∴1∈B ∴22+m2+6=0,m=-5
∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴
又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>-2},且A∩B={x|1
分析:先化簡集合A,然后由A∪B和A∩B分別確定數(shù)軸上哪些元素屬于B,哪些元素不屬于B。
解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。
綜合以上各式有B={x|-1≤x≤5}
變式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=,求a,b。(答案:a=-2,b=0)
點評:在解有關(guān)不等式解集一類集合問題,應(yīng)注意用數(shù)形結(jié)合的方法,作出數(shù)軸來解之。
變式2:設(shè)M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有滿足條件的a的集合。
解答:M={-1,3} , ∵M(jìn)∩N=N, ∴N M
、佼(dāng) 時,ax-1=0無解,∴a=0 ②
綜①②得:所求集合為{-1,0, }
【例5】已知集合 ,函數(shù)y=log2(ax2-2x+2)的定義域為Q,若P∩Q≠,求實數(shù)a的取值范圍。
分析:先將原問題轉(zhuǎn)化為不等式ax2-2x+2>0在 有解,再利用參數(shù)分離求解。
解答:(1)若 , 在 內(nèi)有有解
令 當(dāng) 時,
所以a>-4,所以a的取值范圍是
變式:若關(guān)于x的方程 有實根,求實數(shù)a的取值范圍。
解答:
點評:解決含參數(shù)問題的題目,一般要進(jìn)行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關(guān)鍵。
三、隨堂演練
選擇題
1. 下列八個關(guān)系式①{0}= ② =0 ③ { } ④ { } ⑤{0}
、0 ⑦ {0} ⑧ { }其中正確的個數(shù)
。ˋ)4 (B)5 (C)6 (D)7
2.集合{1,2,3}的真子集共有
。ˋ)5個 (B)6個 (C)7個 (D)8個
3.集合A={x } B={ } C={ }又 則有
。ˋ)(a+b) A (B) (a+b) B (C)(a+b) C (D) (a+b) A、B、C任一個
4.設(shè)A、B是全集U的兩個子集,且A B,則下列式子成立的是
。ˋ)CUA CUB (B)CUA CUB=U
。–)A CUB= (D)CUA B=
5.已知集合A={ }, B={ }則A =
。ˋ)R (B){ }
。–){ } (D){ }
6.下列語句:(1)0與{0}表示同一個集合; (2)由1,2,3組成的集合可表示為
{1,2,3}或{3,2,1}; (3)方程(x-1)2(x-2)2=0的所有解的集合可表示為 {1,1,2}; (4)集合{ }是有限集,正確的是
(A)只有(1)和(4) (B)只有(2)和(3)
(C)只有(2) (D)以上語句都不對
7.設(shè)S、T是兩個非空集合,且S T,T S,令X=S 那么S∪X=
。ˋ)X (B)T (C) (D)S
8設(shè)一元二次方程ax2+bx+c=0(a<0)的根的判別式 ,則不等式ax2+bx+c 0的解集為
。ˋ)R (B) (C){ } (D){ }
填空題
9.在直角坐標(biāo)系中,坐標(biāo)軸上的點的集合可表示為
10.若A={1,4,x},B={1,x2}且A B=B,則x=
11.若A={x } B={x },全集U=R,則A =
12.若方程8x2+(k+1)x+k-7=0有兩個負(fù)根,則k的取值范圍是
13設(shè)集合A={ },B={x },且A B,則實數(shù)k的取值范圍是。
14.設(shè)全集U={x 為小于20的非負(fù)奇數(shù)},若A (CUB)={3,7,15},(CUA) B={13,17,19},又(CUA) (CUB)= ,則A B=
解答題
15(8分)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1}, 若A B={-3},求實數(shù)a。
16(12分)設(shè)A= , B= ,
其中x R,如果A B=B,求實數(shù)a的取值范圍。
四、習(xí)題答案
選擇題
1 2 3 4 5 6 7 8
C C B C B C D D
填空題
9.{(x,y) }
10.0,
11.{x ,或x 3}
12.{ } 13.{ }
14.{1,5,9,11}
解答題
15.a=-1
16.提示:A={0,-4},又A B=B,所以B A
(Ⅰ)B= 時, 4(a+1)2-4(a2-1)<0,得a<-1
(Ⅱ)B={0}或B={-4}時, 0 得a=-1
。á螅〣={0,-4}, 解得a=1
綜上所述實數(shù)a=1 或a -1
高一數(shù)學(xué)知識點整理 2
。1)兩個平面互相平行的定義:空間兩平面沒有公共點
。2)兩個平面的位置關(guān)系:
兩個平面平行——沒有公共點;兩個平面相交——有一條公共直線。
a、平行
兩個平面平行的判定定理:如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,那么這兩個平面平行。
兩個平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。
b、相交
二面角
。1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
。2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
。3)二面角的棱:這一條直線叫做二面角的棱。
。4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
。6)直二面角:平面角是直角的二面角叫做直二面角。
兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥
兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直
兩個平面垂直的性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于交線的直線垂直于另一個平面。
二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關(guān)系)
棱錐
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐。
棱錐的性質(zhì):
。1)側(cè)棱交于一點。側(cè)面都是三角形
。2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
。1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
。3)多個特殊的直角三角形
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
集合
集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學(xué)元素。例如:
1、分散的人或事物聚集到一起;使聚集:緊急~。
2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。
3、口號等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論?低校–antor,G、F、P、,1845年—1918年,德國數(shù)學(xué)家先驅(qū),是集合論的創(chuàng)始者,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。
集合,在數(shù)學(xué)上是一個基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。集合
集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。
集合與集合之間的關(guān)系
某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ?占侨魏渭系淖蛹,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。
高一數(shù)學(xué)知識點整理 3
一、點、線、面概念與符號
平面α、β、γ,直線a、b、c,點A、B、C;
A∈a——點A在直線a上或直線a經(jīng)過點;
aα——直線a在平面α內(nèi);
α∩β= a——平面α、β的交線是a;
α∥β——平面α、β平行;
β⊥γ——平面β與平面γ垂直.
二、點、線、面常用定理
1.異面直線判斷定理
過平面外一點與平面內(nèi)一點的直線,和平面內(nèi)不過該點的直線是異面直線.
2.線與線平行的判定定理
(1)平行于同一直線的兩條直線平行;
(2)垂直于同一平面的兩條直線平行;
(3)如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行;
(4)如果兩個平行平面同時和第三個平面相交,那么它們的交線平行;
(5)如果一條直線平行于兩個相交平面,那么這條直線平行于兩個平面的交線.
3.線與線垂直的判定
若一條直線垂直于一個平面,那么這條直線垂直于平面內(nèi)所有直線.
4.線與面平行的判定
(1)平面外一條直線和平面內(nèi)一條直線平行,則該直線與此平面平行;
(2)若兩個平面平行,則在一個平面內(nèi)的任何一條直線必平行于另一個平面.
高一數(shù)學(xué)知識點整理 4
一、集合有關(guān)概念
1. 集合的含義
2. 集合的中元素的三個特性:
(1) 元素的確定性,
(2) 元素的互異性,
(3) 元素的無序性,
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2) 集合的表示方法:列舉法與描述法。
? 注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集) 記作:N
正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R
1) 列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
3) 語言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1) 有限集 含有有限個元素的集合
(2) 無限集 含有無限個元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A
2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)
實例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”
即:① 任何一個集合是它本身的子集。A?A
②真子集:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)
、廴绻 A?B, B?C ,那么 A?C
、 如果A?B 同時 B?A 那么A=B
3. 不含任何元素的集合叫做空集,記為Φ
規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
?有n個元素的集合,含有2n個子集,2n-1個真子集
三、集合的運算
運算類型 交 集 并 集 補 集
定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).
設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
高一數(shù)學(xué)知識點整理 5
如果直線a與平面α平行,那么直線a與平面α內(nèi)的直線有哪些位置關(guān)系?
平行或異面。
若直線a與平面α平行,那么在平面α內(nèi)與直線a平行的直線有多少條?這些直線的位置關(guān)系如何?
無數(shù)條;平行。
如果直線a與平面α平行,經(jīng)過直線a的平面β與平面α相交于直線b,那么直線a、b的位置關(guān)系如何?為什么?
平行;因為a∥α,所以a與α沒有公共點,則a與b沒有公共點,又a與b在同一平面β內(nèi),所以a與b平行。
綜上分析,在直線a與平面α平行的條件下我們可以得到什么結(jié)論?
如果一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。
【高一數(shù)學(xué)知識點整理】相關(guān)文章:
數(shù)學(xué)高一函數(shù)知識點整理02-22
高一數(shù)學(xué)下冊《向量的加法》知識點歸納整理01-27
高一化學(xué)知識點整理02-18
高一政治重要的知識點整理12-05
高一必備的化學(xué)知識點整理12-01