數(shù)學(xué)八年級上冊知識點(diǎn)15篇
在我們平凡無奇的學(xué)生時(shí)代,大家最熟悉的就是知識點(diǎn)吧?知識點(diǎn)有時(shí)候特指教科書上或考試的知識。哪些才是我們真正需要的知識點(diǎn)呢?以下是小編收集整理的數(shù)學(xué)八年級上冊知識點(diǎn),僅供參考,大家一起來看看吧。
數(shù)學(xué)八年級上冊知識點(diǎn)1
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3、高:從三角形的一個(gè)頂點(diǎn)向它的對邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個(gè)頂點(diǎn)和它對邊中點(diǎn)的線段叫做三角形的中線。
5、角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。
6、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。
7、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對角線。
11、正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
13、公式與性質(zhì):
(1)三角形的內(nèi)角和:三角形的內(nèi)角和為180°
(2)三角形外角的性質(zhì):
性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。
性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。
(3)多邊形內(nèi)角和公式:邊形的內(nèi)角和等于·180°
(4)多邊形的外角和:多邊形的外角和為360°
(5)多邊形對角線的條數(shù):①從邊形的一個(gè)頂點(diǎn)出發(fā)可以引條對角線,把多邊形分成個(gè)三角形。②邊形共有條對角線。
提高數(shù)學(xué)成績的方法
1、要提高初中生對數(shù)學(xué)學(xué)習(xí)的興趣和動力。首先可以從家庭引導(dǎo),家長可以對數(shù)學(xué)產(chǎn)生濃厚的興趣,言傳身教,讓孩子對數(shù)學(xué)有一種神秘的好感。老師也可以和學(xué)生進(jìn)行貼心的交流,打造自己的人格魅力,讓學(xué)生被自己吸引從而更好的對數(shù)學(xué)感興趣。
2、初中生想要提高數(shù)學(xué)成績就一定要重視基礎(chǔ),千里之堤始于磚泥,不重視基礎(chǔ)的下場就是你覺得自己的數(shù)學(xué)學(xué)得很好成績會很好,但是在你成績出來的時(shí)候會低于你的預(yù)期很多。很多初中生經(jīng)常是知道怎么演算就算了,而不去認(rèn)真的做幾遍,好高騖遠(yuǎn),總想去沖擊難題,結(jié)果連考試中最基礎(chǔ)的方程都會錯(cuò)。
3、要抓好幾個(gè)提高數(shù)學(xué)成績的必要條件。數(shù)學(xué)運(yùn)算,數(shù)學(xué)解題(保證數(shù)量和質(zhì)量),準(zhǔn)備錯(cuò)題本,準(zhǔn)備一本參考書,遇到難題盡量靠自己去解決而不是直接看答案,再保持勤奮和多動筆練習(xí)。
初中數(shù)學(xué)整式的知識點(diǎn)
(一)整式
1、整式為單項(xiàng)式和多項(xiàng)式的統(tǒng)稱,是有理式的一部分,在有理式中可以包含加,減,乘,除、乘方五種運(yùn)算,但在整式中除數(shù)不能含有字母。
2、整式的乘法
(1)同底數(shù)冪的乘法
同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。
(2)冪的乘方
冪的乘方,底數(shù)不變,指數(shù)相乘。
(3)積的乘方
積的乘方,先把積中的每一個(gè)因數(shù)分別乘方,再把所得的冪相乘。
3、因式分解
(1)待定系數(shù)法
、俅_定所求問題含待定系數(shù)的一般解析式;
②根據(jù)恒等條件,列出一組含待定系數(shù)的方程;
、劢夥匠袒蛳ゴㄏ禂(shù),從而使問題得到解決。
(2)十字相乘法
①把二次項(xiàng)系數(shù)和常數(shù)項(xiàng)分別分解因數(shù);
、趪L試十字圖,使經(jīng)過十字交叉線相乘后所得的數(shù)的和為一次項(xiàng)系數(shù);
、鄞_定合適的十字圖并寫出因式分解的結(jié)果;
、軝z驗(yàn)。
數(shù)學(xué)八年級上冊知識點(diǎn)2
全等三角形
一.知識框架
二.知識概念
1.全等三角形:兩個(gè)三角形的形狀、大小、都一樣時(shí),其中一個(gè)可以經(jīng)過平移、旋轉(zhuǎn)、對稱等運(yùn)動(或稱變換)使之與另一個(gè)重合,這兩個(gè)三角形稱為全等三角形。
2.全等三角形的性質(zhì):全等三角形的對應(yīng)角相等、對應(yīng)邊相等。
3.三角形全等的判定公理及推論有:
(1)“邊角邊”簡稱“SAS”
(2)“角邊角”簡稱“ASA”
(3)“邊邊邊”簡稱“SSS”
(4)“角角邊”簡稱“AAS”
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。
5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題).
在學(xué)習(xí)三角形的全等時(shí),教師應(yīng)該從實(shí)際生活中的圖形出發(fā),引出全等圖形進(jìn)而引出全等三角形。通過直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。在經(jīng)歷三角形的角平分線、中線等探索中激發(fā)學(xué)生的集合思維,啟發(fā)他們的靈感,使學(xué)生體會到集合的真正魅力。
第十二章軸對稱
一.知識框架
二.知識概念
1.對稱軸:如果一個(gè)圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質(zhì):(1)軸對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。
(2)角平分線上的點(diǎn)到角兩邊距離相等。
(3)線段垂直平分線上的任意一點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。
(4)與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
(5)軸對稱圖形上對應(yīng)線段相等、對應(yīng)角相等。
3.等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點(diǎn):三個(gè)內(nèi)角相等,等于60°,
7.等邊三角形的判定:三個(gè)角都相等的三角形是等腰三角形。
有一個(gè)角是60°的等腰三角形是等邊三角形
有兩個(gè)角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等于斜邊的一半。
9.直角三角形斜邊上的中線等于斜邊的一半。
本章內(nèi)容要求學(xué)生在建立在軸對稱概念的基礎(chǔ)上,能夠?qū)ι钪械膱D形進(jìn)行分析鑒賞,親身經(jīng)歷數(shù)學(xué)美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來解決一些數(shù)學(xué)問題。
第十三章實(shí)數(shù)
一.知識框架
二.知識概念
1.算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時(shí),a才有算術(shù)平方根。
2.平方根:一般地,如果一個(gè)數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。
3.正數(shù)有兩個(gè)平方根(一正一負(fù))它們互為相反數(shù);0只有一個(gè)平方根,就是它本身;負(fù)數(shù)沒有平方根。
4.正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
5.數(shù)a的相反數(shù)是-a,一個(gè)正實(shí)數(shù)的絕對值是它本身,一個(gè)負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0
實(shí)數(shù)部分主要要求學(xué)生了解無理數(shù)和實(shí)數(shù)的概念,知道實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對應(yīng),能估算無理數(shù)的大小;了解實(shí)數(shù)的運(yùn)算法則及運(yùn)算律,會進(jìn)行實(shí)數(shù)的運(yùn)算。重點(diǎn)是實(shí)數(shù)的意義和實(shí)數(shù)的分類;實(shí)數(shù)的運(yùn)算法則及運(yùn)算律。
第十四章一次函數(shù)
一.知識框架
二.知識概念
1.一次函數(shù):若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。
2.正比例函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(diǎn)(0,0)的一條直線。
3.正比例函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點(diǎn)的直線,當(dāng)k>0時(shí),直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時(shí),直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。
4.已知兩點(diǎn)坐標(biāo)求函數(shù)解析式:待定系數(shù)法
一次函數(shù)是初中學(xué)生學(xué)習(xí)函數(shù)的開始,也是今后學(xué)習(xí)其它函數(shù)知識的基石。在學(xué)習(xí)本章內(nèi)容時(shí),教師應(yīng)該多從實(shí)際問題出發(fā),引出變量,從具體到抽象的認(rèn)識事物。培養(yǎng)學(xué)生良好的變化與對應(yīng)意識,體會數(shù)形結(jié)合的思想。在教學(xué)過程中,應(yīng)更加側(cè)重于理解和運(yùn)用,在解決實(shí)際問題的同時(shí),讓學(xué)習(xí)體會到數(shù)學(xué)的實(shí)用價(jià)值和樂趣。
第十五章整式的乘除與分解因式
一.知識概念
1.同底數(shù)冪的乘法法則:(m,n都是正數(shù))
2..冪的乘方法則:(m,n都是正數(shù))
3.整式的乘法
(1)單項(xiàng)式乘法法則:單項(xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。
(2)單項(xiàng)式與多項(xiàng)式相乘:單項(xiàng)式乘以多項(xiàng)式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
(3).多項(xiàng)式與多項(xiàng)式相乘
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
4.平方差公式:
5.完全平方公式:
6.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0,m、n都是正數(shù),且m>n).
在應(yīng)用時(shí)需要注意以下幾點(diǎn):
、俜▌t使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0.
、谌魏尾坏扔0的數(shù)的0次冪等于1,即,如,(-2.50=1),則00無意義.
③任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即(a≠0,p是正整數(shù)),而0-1,0-3都是無意義的;當(dāng)a>0時(shí),a-p的值一定是正的;當(dāng)a<0時(shí),a-p的值可能是正也可能是負(fù)的,如,
、苓\(yùn)算要注意運(yùn)算順序.
7.整式的除法
單項(xiàng)式除法單項(xiàng)式:單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;
多項(xiàng)式除以單項(xiàng)式:多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加.
8.分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.
分解因式的一般方法:1.提公共因式法2.運(yùn)用公式法3.十字相乘法
分解因式的步驟:(1)先看各項(xiàng)有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組后提取各組公因式或運(yùn)用公式法來達(dá)到分解的目的;
(4)因式分解的最后結(jié)果必須是幾個(gè)整式的乘積,否則不是因式分解;
(5)因式分解的結(jié)果必須進(jìn)行到每個(gè)因式在有理數(shù)范圍內(nèi)不能再分解為止.
整式的乘除與分解因式這章內(nèi)容知識點(diǎn)較多,表面看來零碎的概念和性質(zhì)也較多,但實(shí)際上是密不可分的整體。在學(xué)習(xí)本章內(nèi)容時(shí),應(yīng)多準(zhǔn)備些小組合作與交流活動,培養(yǎng)學(xué)生推理能力、計(jì)算能力。在做題中體驗(yàn)數(shù)學(xué)法則、公式的簡潔美、和諧美,提高做題效率。
數(shù)學(xué)八年級上冊知識點(diǎn)3
1 全等三角形的對應(yīng)邊、對應(yīng)角相等
2邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等
3 角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等
4 推論(AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等
5 邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個(gè)三角形全等
6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等
7 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
8 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
9 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
10 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對等角)
11 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
12 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
13 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°
14 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)
15 推論1 三個(gè)角都相等的三角形是等邊三角形
16 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形
17 在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半
18 直角三角形斜邊上的中線等于斜邊上的一半
19 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
20 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
初二數(shù)學(xué)求定義域口訣
求定義域有講究,四項(xiàng)原則須留意。
負(fù)數(shù)不能開平方,分母為零無意義。
指是分?jǐn)?shù)底正數(shù),數(shù)零沒有零次。
限制條件不唯一,滿足多個(gè)不等式。
求定義域要過關(guān),四項(xiàng)原則須注意。
負(fù)數(shù)不能開平方,分母為零無意義。
分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒有零次。
限制條件不唯一,不等式組求解集。
初中提高數(shù)學(xué)成績訣竅
很多初中生認(rèn)為自己只要上數(shù)學(xué)課聽得懂就夠了,但是一做到綜合題就蒙了,基礎(chǔ)題會做,但是會馬虎。這類問題都是學(xué)生在課堂上都以為自己聽得懂就夠了。
初中同學(xué)要首先對數(shù)學(xué)做一個(gè)認(rèn)知,聽得懂≠會做,會做≠拿的到分。聽得懂只占你數(shù)學(xué)成績的20%,僅僅聽得懂只說明你理解能力還可以,不說明你能拿到很高的數(shù)學(xué)成績。
只有聽的懂理解了加上練,再加上多練,達(dá)到最后又快又準(zhǔn)的做出來,這時(shí)候的數(shù)學(xué)成績才會有長足的進(jìn)步。
數(shù)學(xué)八年級上冊知識點(diǎn)4
一、平面直角坐標(biāo)系:
在平面內(nèi)有公共原點(diǎn)而且互相垂直的兩條數(shù)軸,構(gòu)成了平面直角坐標(biāo)系。
二、知識點(diǎn)與題型總結(jié):
1、由點(diǎn)找坐標(biāo):
A點(diǎn)的坐標(biāo)記作A( 2,1 ),規(guī)定:橫坐標(biāo)在前,縱坐標(biāo)在后。
2、由坐標(biāo)找點(diǎn):例找點(diǎn)B( 3,-2 ) ?
由坐標(biāo)找點(diǎn)的方法:先找到表示橫坐標(biāo)與縱坐標(biāo)的點(diǎn),然后過這兩點(diǎn)分別作x軸與y軸的垂線,垂線的交點(diǎn)就是該坐標(biāo)對應(yīng)的點(diǎn)。
各象限點(diǎn)坐標(biāo)的符號:
、偃酎c(diǎn)P(x,y)在第一象限,則x > 0,y > 0 ;
、谌酎c(diǎn)P(x,y)在第二象限,則x < 0,y > 0 ;
③若點(diǎn)P(x,y)在第三象限,則x < 0,y < 0 ;
、苋酎c(diǎn)P(x,y)在第四象限,則x > 0,y < 0 。
典型例題:
例1、點(diǎn)P的坐標(biāo)是(2,-3),則點(diǎn)P在第四象限。
例2、若點(diǎn)P(x,y)的坐標(biāo)滿足xy>0,則點(diǎn)P在第一或三象限。
例3、若點(diǎn)A的'坐標(biāo)為(a^2+1, -2–b^2) ,則點(diǎn)A在第四象限。
4、坐標(biāo)軸上點(diǎn)的坐標(biāo)符號:
坐標(biāo)軸上的點(diǎn)不屬于任何象限。
① x軸上的點(diǎn)的縱坐標(biāo)為0,表示為(x,0),
② y軸上的點(diǎn)的橫坐標(biāo)為0,表示為(0,y),
③原點(diǎn)(0,0)既在x軸上,又在y軸上。
例4、點(diǎn)P(x,y )滿足xy = 0,則點(diǎn)P在x軸上或y軸上。 .
5、與坐標(biāo)軸平行的兩點(diǎn)連線:
、偃鬉B‖ x軸,則A、B的縱坐標(biāo)相同;
、谌鬉B‖ y軸,則A、B的橫坐標(biāo)相同。
例5、已知點(diǎn)A(10,5),B(50,5),則直線AB的位置特點(diǎn)是(A )
A、與x軸平行B、與y軸平行C、與x軸相交,但不垂直D、與y軸相交,但不垂直
6、象限角平分線上的點(diǎn):
①若點(diǎn)P在第一、三象限角的平分線上,則P( m, m );
、谌酎c(diǎn)P在第二、四象限角的平分線上,則P( m, -m )。
例6、已知點(diǎn)A(2a+1,2+a)在第二象限的平分線上,試求A的坐標(biāo)。
解:由條件可知:2a+1 +(2+a)=0,解得a = -1,
∴ A(-1,1)。
例7、已知點(diǎn)M(a+1,3a-5)在兩坐標(biāo)軸夾角的平分線上,試求M的坐標(biāo)。
解:當(dāng)在一、三象限角平分線上時(shí),a+1=3a-5,
解得:a=3 ∴ M(4,4)
當(dāng)在二、四象限角平分線上時(shí),a+1+(3a-5 )=0,
解得:a=1 ∴ M(2,-2)
∴M的坐標(biāo)為(4,4)或(2,-2)
7、關(guān)于坐標(biāo)軸、原點(diǎn)的對稱點(diǎn):
、冱c(diǎn)(a, b )關(guān)于X軸的對稱點(diǎn)是(a , -b );
、邳c(diǎn)(a, b )關(guān)于Y軸的對稱點(diǎn)是( -a , b );
、埸c(diǎn)(a, b )關(guān)于原點(diǎn)的對稱點(diǎn)是( -a , -b )。
例8、已知點(diǎn)A(3a-1,1+a)在第一象限的平分線上,試求A關(guān)于原點(diǎn)的對稱點(diǎn)的坐標(biāo)。
解:由條件得:3a-1=1+a解得:a=1,∴ A(2,2),
∴ A關(guān)于原點(diǎn)的對稱點(diǎn)的坐標(biāo)為(-2,-2)。
8、點(diǎn)到坐標(biāo)軸的距離:
、冱c(diǎn)( x, y )到x軸的距離是∣y∣;
、邳c(diǎn)( x, y )到x軸的距離是∣x∣。
例9、點(diǎn)P到x軸、y軸的距離分別是2,1,則點(diǎn)P的坐標(biāo)可能為?
答案:(1,2)、(1,-2)、(-1,2)、(-1,-2) 。
三、知識拓展與提高:
例10、在平面直角坐標(biāo)系中,已知兩點(diǎn)A(0,1),B(8,5),點(diǎn)P在x軸上,則PA + PB的最小值是多少?
解:作點(diǎn)A(0,1)關(guān)于x軸的對稱點(diǎn)A'(0,-1),連接A'B與x軸交于點(diǎn)P,
則A'B路徑最短,即PA + PB最小。
根據(jù)勾股定理得:A'B = √[(1+5)^2 + 8^2] = 10 。
∴PA + PB的最小值是10 。
如何學(xué)好初中數(shù)學(xué)的方法
多做練習(xí)題
要想學(xué)好初中數(shù)學(xué),必須多做練習(xí),我們所說的“多做練習(xí)”,不是搞“題海戰(zhàn)術(shù)”。只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學(xué)過的知識攪得一塌糊涂,理不出頭緒,浪費(fèi)時(shí)間又收獲不大,我們所說的“多做練習(xí)”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識,是否可以多解,其結(jié)論是否還可以加強(qiáng)、推廣等等。
課后總結(jié)和反思
在進(jìn)行單元小結(jié)或?qū)W期總結(jié)時(shí),要做到以下幾點(diǎn):一看:看書、看筆記、看習(xí)題,通過看,回憶、熟悉所學(xué)內(nèi)容;二列:列出相關(guān)的知識點(diǎn),標(biāo)出重點(diǎn)、難點(diǎn),列出各知識點(diǎn)之間的關(guān)系,這相當(dāng)于寫出總結(jié)要點(diǎn);三做:在此基礎(chǔ)上有目的、有重點(diǎn)、有選擇地解一些各種檔次、類型的習(xí)題,通過解題再反饋,發(fā)現(xiàn)問題、解決問題。
初中數(shù)學(xué)有理數(shù)知識點(diǎn)
1、有理數(shù)的加法運(yùn)算
同號兩數(shù)來相加,絕對值加不變號。
異號相加大減小,大數(shù)決定和符號。
互為相反數(shù)求和,結(jié)果是零須記好。
“大”減“小”是指絕對值的大小。
2、有理數(shù)的減法運(yùn)算
減正等于加負(fù),減負(fù)等于加正。
有理數(shù)的乘法運(yùn)算符號法則。
同號得正異號負(fù),一項(xiàng)為零積是零。
3、有理數(shù)混合運(yùn)算的四種運(yùn)算技巧
轉(zhuǎn)化法:一是將除法轉(zhuǎn)化為乘法,二是將乘方轉(zhuǎn)化為乘法,三是在乘除混合運(yùn)算中,通常將小數(shù)轉(zhuǎn)化為分?jǐn)?shù)進(jìn)行約分計(jì)算。
湊整法:在加減混合運(yùn)算中,通常將和為零的兩個(gè)數(shù),分母相同的兩個(gè)數(shù),和為整數(shù)的兩個(gè)數(shù),乘積為整數(shù)的兩個(gè)數(shù)分別結(jié)合為一組求解。
分拆法:先將帶分?jǐn)?shù)分拆成一個(gè)整數(shù)與一個(gè)真分?jǐn)?shù)的和的形式,然后進(jìn)行計(jì)算。
巧用運(yùn)算律:在計(jì)算中巧妙運(yùn)用加法運(yùn)算律或乘法運(yùn)算律往往使計(jì)算更簡便。
數(shù)學(xué)八年級上冊知識點(diǎn)5
1、二元一次方程
①二元一次方程
含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的整式方程叫做二元一次方程。
②二元一次方程的解
適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
2、二元一次方程組
、俸袃蓚(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組。
、诙淮畏匠探M的解
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。
、鄱淮畏匠探M的解法
代入(消元)法
加減(消元)法
、芤淮魏瘮(shù)與二元一次方程(組)的關(guān)系:
一次函數(shù)與二元一次方程的關(guān)系:
直線y=kx+b上任意一點(diǎn)的坐標(biāo)都是它所對應(yīng)的二元一次方程kx- y+b=0的解
一次函數(shù)與二元一次方程組的關(guān)系:
二元一次方程組
的解可看作兩個(gè)一次函數(shù)
和 的圖象的交點(diǎn)。
當(dāng)函數(shù)圖象有交點(diǎn)時(shí),說明相應(yīng)的二元一次方程組有解;
當(dāng)函數(shù)圖象(直線)平行即無交點(diǎn)時(shí),說明相應(yīng)的二元一次方程組無解。
數(shù)學(xué)八年級上冊知識點(diǎn)6
實(shí)數(shù)的概念
實(shí)數(shù),是有理數(shù)和無理數(shù)的總稱。數(shù)學(xué)上,實(shí)數(shù)定義為與數(shù)軸上的實(shí)數(shù),是有理數(shù)和無理數(shù)的總稱。數(shù)學(xué)上,實(shí)數(shù)定義為與數(shù)軸上的實(shí)數(shù),點(diǎn)相對應(yīng)的數(shù)。實(shí)數(shù)可以直觀地看作有限小數(shù)與無限小數(shù),實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對應(yīng)。但僅僅以列舉的方式不能描述實(shí)數(shù)的整體。實(shí)數(shù)和虛數(shù)共同構(gòu)成復(fù)數(shù)。
實(shí)數(shù)可以分為有理數(shù)和無理數(shù)兩類,或代數(shù)數(shù)和超越數(shù)兩類。實(shí)數(shù)集通常用黑正體字母R表示。R表示n維實(shí)數(shù)空間。實(shí)數(shù)是不可數(shù)的。實(shí)數(shù)是實(shí)數(shù)理論的核心研究對象。
實(shí)數(shù)有什么范圍
在實(shí)數(shù)范圍內(nèi),是指對于全體實(shí)數(shù)都成立,實(shí)數(shù)包括有理數(shù)和無理數(shù),也可以分為正實(shí)數(shù),0和負(fù)實(shí)數(shù),不只是大于等于0,還包括負(fù)實(shí)數(shù)。
整數(shù)和小數(shù)的集合也是實(shí)數(shù),實(shí)數(shù)的定義是:有理數(shù)和無理數(shù)的集合。
而整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù),小數(shù)分為有限小數(shù),無限循環(huán)小數(shù),無限不循環(huán)小數(shù)(即無理數(shù)),其中有限小數(shù)和無限循環(huán)小數(shù)均能化為分?jǐn)?shù)。
所以小數(shù)即為分?jǐn)?shù)和無理數(shù)的集合,加上整數(shù),即為整數(shù)-分?jǐn)?shù)-無理數(shù),也就是有理數(shù)-無理數(shù),即實(shí)數(shù)。
實(shí)數(shù)的性質(zhì)
1.基本運(yùn)算:
實(shí)數(shù)可實(shí)現(xiàn)的基本運(yùn)算有加、減、乘、除、平方等,對非負(fù)數(shù)還可以進(jìn)行開方運(yùn)算。
實(shí)數(shù)加、減、乘、除(除數(shù)不為零)、平方后結(jié)果還是實(shí)數(shù)。
任何實(shí)數(shù)都可以開奇次方,結(jié)果仍是實(shí)數(shù),只有非負(fù)實(shí)數(shù),才能開偶次方其結(jié)果還是實(shí)數(shù)。
有理數(shù)范圍內(nèi)的運(yùn)算律、運(yùn)算法則在實(shí)數(shù)范圍內(nèi)仍適用:
交換律:a+b=b+a,ab=ba
結(jié)合律:(a+b)+c=a+(b+c)
分配律:a(b+c)=ab+ac
2.實(shí)數(shù)的相反數(shù):
實(shí)數(shù)的相反數(shù)的意義和有理數(shù)的相反數(shù)的意義相同。
實(shí)數(shù)只有符號不同的兩個(gè)數(shù),它們的和為零,我們就說其中一個(gè)是另一個(gè)的相反數(shù)。
實(shí)數(shù)a的相反數(shù)是-a,a和-a在數(shù)軸上到原點(diǎn)0的距離相等。
3.實(shí)數(shù)的絕對值:
實(shí)數(shù)的絕對值的意義和有理數(shù)的絕對值的意義相同。一個(gè)正實(shí)數(shù)的絕對值等于它本身;
一個(gè)負(fù)實(shí)數(shù)的絕對值等于它的相反數(shù),0的絕對值是0,實(shí)數(shù)a的絕對值是:|a|
、賏為正數(shù)時(shí),|a|=a(不變)
②a為0時(shí),|a|=0
③a為負(fù)數(shù)時(shí),|a|=a(為a的相反數(shù))
(任何數(shù)的絕對值都大于或等于0,因?yàn)榫嚯x沒有負(fù)的。)
4實(shí)數(shù)的倒數(shù):
實(shí)數(shù)的倒數(shù)與有理數(shù)的倒數(shù)一樣,如果a表示一個(gè)非零的實(shí)數(shù),那么實(shí)數(shù)a的倒數(shù)是:1/a(a≠0)
初中數(shù)學(xué)分式的運(yùn)算知識點(diǎn)
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”。
數(shù)學(xué)學(xué)習(xí)方法訣竅
養(yǎng)成良好的解題習(xí)慣
要想學(xué)好數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯(cuò)題,可備有錯(cuò)題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。
在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。
正確對待考試
首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
數(shù)學(xué)八年級上冊知識點(diǎn)7
第十一章全等三角形
1、全等三角形的性質(zhì):全等三角形對應(yīng)邊相等、對應(yīng)角相等。
2、全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應(yīng)相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。
3、角平分線的性質(zhì):角平分線平分這個(gè)角,角平分線上的點(diǎn)到角兩邊的距離相等
4、角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。
5、證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題)。
第十二章軸對稱
1、如果一個(gè)圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2、軸對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。
3、角平分線上的點(diǎn)到角兩邊距離相等。
4、線段垂直平分線上的任意一點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。
5、與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
6、軸對稱圖形上對應(yīng)線段相等、對應(yīng)角相等。
7、畫一圖形關(guān)于某條直線的軸對稱圖形的步驟:找到關(guān)鍵點(diǎn),畫出關(guān)鍵點(diǎn)的對應(yīng)點(diǎn),按照原圖順序依次連接各點(diǎn)。
8、點(diǎn)(x,y)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為(x,—y)
點(diǎn)(x,y)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為(—x,y)
點(diǎn)(x,y)關(guān)于原點(diǎn)軸對稱的點(diǎn)的坐標(biāo)為(—x,—y)
9、等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對等角)
等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
10、等腰三角形的判定:等角對等邊。
11、等邊三角形的三個(gè)內(nèi)角相等,等于60°,
12、等邊三角形的判定:三個(gè)角都相等的三角形是等腰三角形。
有一個(gè)角是60°的等腰三角形是等邊三角形。
有兩個(gè)角是60°的三角形是等邊三角形。
13、直角三角形中,30°角所對的直角邊等于斜邊的一半。
14、直角三角形斜邊上的中線等于斜邊的一半
第十三章實(shí)數(shù)
※算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時(shí),a才有算術(shù)平方根。
※平方根:一般地,如果一個(gè)數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。
※正數(shù)有兩個(gè)平方根(一正一負(fù))它們互為相反數(shù);0只有一個(gè)平方根,就是它本身;負(fù)數(shù)沒有平方根。
※正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
數(shù)a的相反數(shù)是—a,一個(gè)正實(shí)數(shù)的絕對值是它本身,一個(gè)負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0
第十四章一次函數(shù)
1、畫函數(shù)圖象的一般步驟:一、列表(一次函數(shù)只用列出兩個(gè)點(diǎn)即可,其他函數(shù)一般需要列出5個(gè)以上的點(diǎn),所列點(diǎn)是自變量與其對應(yīng)的函數(shù)值),二、描點(diǎn)(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)函數(shù)的值為縱坐標(biāo),描出表格中的個(gè)點(diǎn),一般畫一次函數(shù)只用兩點(diǎn)),三、連線(依次用平滑曲線連接各點(diǎn))。
2、根據(jù)題意寫出函數(shù)解析式:關(guān)鍵找到函數(shù)與自變量之間的等量關(guān)系,列出等式,既函數(shù)解析式。
3、若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。
4、正比列函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(diǎn)(0,0)的一條直線。
5、正比列函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點(diǎn)的直線,當(dāng)k>0時(shí),直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時(shí),直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:k="">0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。
6、已知兩點(diǎn)坐標(biāo)求函數(shù)解析式(待定系數(shù)法求函數(shù)解析式):
把兩點(diǎn)帶入函數(shù)一般式列出方程組
求出待定系數(shù)
把待定系數(shù)值再帶入函數(shù)一般式,得到函數(shù)解析式
7、會從函數(shù)圖象上找到一元一次方程的解(既與x軸的交點(diǎn)坐標(biāo)橫坐標(biāo)值),一元一次不等式的解集,二元一次方程組的解(既兩函數(shù)直線交點(diǎn)坐標(biāo)值)
第十五章整式的乘除與因式分解
1、同底數(shù)冪的乘法
※同底數(shù)冪的乘法法則:(m,n都是正數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時(shí),要注意以下幾點(diǎn):
、俜▌t使用的前提條件是:冪的底數(shù)相同而且是相乘時(shí),底數(shù)a可以是一個(gè)具體的數(shù)字式字母,也可以是一個(gè)單項(xiàng)或多項(xiàng)式;
、谥笖(shù)是1時(shí),不要誤以為沒有指數(shù);
、鄄灰獙⑼讛(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可以相加;而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;
、墚(dāng)三個(gè)或三個(gè)以上同底數(shù)冪相乘時(shí),法則可推廣為(其中m、n、p均為正數(shù));
、莨竭可以逆用:(m、n均為正整數(shù))
2、冪的乘方與積的乘方
※1、冪的乘方法則:(m,n都是正數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆。
※2、底數(shù)有負(fù)號時(shí),運(yùn)算時(shí)要注意,底數(shù)是a與(—a)時(shí)不是同底,但可以利用乘方法則化成同底,如將(—a)3化成—a3。
※3、底數(shù)有時(shí)形式不同,但可以化成相同。
※4、要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※5、積的乘方法則:積的乘方,等于把積每一個(gè)因式分別乘方,再把所得的冪相乘,即(n為正整數(shù))。
※6、冪的乘方與積乘方法則均可逆向運(yùn)用。
3、整式的乘法
※(1)單項(xiàng)式乘法法則:單項(xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。
單項(xiàng)式乘法法則在運(yùn)用時(shí)要注意以下幾點(diǎn):
①積的系數(shù)等于各因式系數(shù)積,先確定符號,再計(jì)算絕對值。這時(shí)容易出現(xiàn)的錯(cuò)誤的是,將系數(shù)相乘與指數(shù)相加混淆;
、谙嗤帜赶喑,運(yùn)用同底數(shù)的乘法法則;
、壑辉谝粋(gè)單項(xiàng)式里含有的字母,要連同它的指數(shù)作為積的一個(gè)因式;
④單項(xiàng)式乘法法則對于三個(gè)以上的單項(xiàng)式相乘同樣適用;
、輪雾(xiàng)式乘以單項(xiàng)式,結(jié)果仍是一個(gè)單項(xiàng)式。
※(2)單項(xiàng)式與多項(xiàng)式相乘
單項(xiàng)式乘以多項(xiàng)式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
單項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):
、賳雾(xiàng)式與多項(xiàng)式相乘,積是一個(gè)多項(xiàng)式,其項(xiàng)數(shù)與多項(xiàng)式的項(xiàng)數(shù)相同;
、谶\(yùn)算時(shí)要注意積的符號,多項(xiàng)式的每一項(xiàng)都包括它前面的符號;
③在混合運(yùn)算時(shí),要注意運(yùn)算順序。
※(3)多項(xiàng)式與多項(xiàng)式相乘
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
多項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):
、俣囗(xiàng)式與多項(xiàng)式相乘要防止漏項(xiàng),檢查的方法是:在沒有合并同類項(xiàng)之前,積的項(xiàng)數(shù)應(yīng)等于原兩個(gè)多項(xiàng)式項(xiàng)數(shù)的積;
②多項(xiàng)式相乘的結(jié)果應(yīng)注意合并同類項(xiàng);
、蹖型粋(gè)字母的一次項(xiàng)系數(shù)是1的兩個(gè)一次二項(xiàng)式相乘,其二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)等于兩個(gè)因式中常數(shù)項(xiàng)的和,常數(shù)項(xiàng)是兩個(gè)因式中常數(shù)項(xiàng)的積。對于一次項(xiàng)系數(shù)不為1的兩個(gè)一次二項(xiàng)式(mx+a)和(nx+b)相乘可以得
4、平方差公式
¤1、平方差公式:兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,
※即。
¤其結(jié)構(gòu)特征是:
、俟阶筮吺莾蓚(gè)二項(xiàng)式相乘,兩個(gè)二項(xiàng)式中第一項(xiàng)相同,第二項(xiàng)互為相反數(shù);
、诠接疫吺莾身(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方之差。
5、完全平方公式
¤1、完全平方公式:兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍。
¤即;
¤口決:首平方,尾平方,2倍乘積在中央;
¤2、結(jié)構(gòu)特征:
、俟阶筮吺嵌(xiàng)式的完全平方;
、诠接疫吂灿腥(xiàng),是二項(xiàng)式中二項(xiàng)的平方和,再加上或減去這兩項(xiàng)乘積的2倍。
¤3、在運(yùn)用完全平方公式時(shí),要注意公式右邊中間項(xiàng)的符號,以及避免出現(xiàn)這樣的錯(cuò)誤。
添括號法則:添正不變號,添負(fù)各項(xiàng)變號,去括號法則同樣
6、同底數(shù)冪的除法
※1、同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0,m、n都是正數(shù),且m>n)。
※2、在應(yīng)用時(shí)需要注意以下幾點(diǎn):
①法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0。
、谌魏尾坏扔0的數(shù)的0次冪等于1,即,如,(—2.0=1),則00無意義。
③任何不等于0的數(shù)的—p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即(a≠0,p是正整數(shù)),而0—1,0—3都是無意義的;當(dāng)a>0時(shí),a—p的值一定是正的;當(dāng)a<0時(shí),a—p的值可能是正也可能是負(fù)的,如,
、苓\(yùn)算要注意運(yùn)算順序。
7、整式的除法
¤1、單項(xiàng)式除法單項(xiàng)式
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;
¤2、多項(xiàng)式除以單項(xiàng)式
多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加,其特點(diǎn)是把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成單項(xiàng)式除以單項(xiàng)式,所得商的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同,另外還要特別注意符號。
8、分解因式
※1、把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。
※2、因式分解與整式乘法是互逆關(guān)系。
因式分解與整式乘法的區(qū)別和聯(lián)系:
(1)整式乘法是把幾個(gè)整式相乘,化為一個(gè)多項(xiàng)式;
。2)因式分解是把一個(gè)多項(xiàng)式化為幾個(gè)因式相乘。
數(shù)學(xué)八年級上冊知識點(diǎn)8
全等三角形知識點(diǎn)
1、全等圖形:能夠完全重合的兩個(gè)圖形就是全等圖形。
2、全等圖形的性質(zhì):全等多邊形的對應(yīng)邊、對應(yīng)角分別相等。
3、全等三角形:三角形是特殊的多邊形,因此,全等三角形的對應(yīng)邊、對應(yīng)角分別相等。同樣,如果兩個(gè)三角形的邊、角分別對應(yīng)相等,那么這兩個(gè)三角形全等。
說明:
全等三角形對應(yīng)邊上的高,中線相等,對應(yīng)角的平分線相等;全等三角形的周長,面積也都相等。
這里要注意:
。1)周長相等的兩個(gè)三角形,不一定全等;
。2)面積相等的兩個(gè)三角形,也不一定全等。
小練習(xí)
1、下列說法中正確的說法為()
、偃葓D形的形狀相同、大小相等;②全等三角形的對應(yīng)邊相等;③全等三角形的對應(yīng)角相等;④全等三角形的周長、面積分別相等,
A、①②③④B、①③④C、①②④D、②③④
2、一個(gè)正方形的側(cè)面展開圖有()個(gè)全等的正方形
A、2個(gè)B、3個(gè)C、4個(gè)D、6個(gè)
3、對于兩個(gè)圖形,給出下列結(jié)論,其中能獲得這兩個(gè)圖形全等的結(jié)論共有()
①兩個(gè)圖形的周長相等;②兩個(gè)圖形的面積相等;③兩個(gè)圖形的周長和面積都相等;④兩個(gè)圖形的形狀相同,大小也相等、
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)
三角形全等的判定知識點(diǎn)
1、三角形全等的判定公理及推論有:
。1)“邊角邊”簡稱“SAS”,兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等(“邊角邊”或“SAS”)。
。2)“角邊角”簡稱“ASA”,兩個(gè)角和它們的夾邊分別對應(yīng)相等的兩個(gè)三角形全等(“角邊角”或“ASA”)。
。3)“邊邊邊”簡稱“SSS”,三邊對應(yīng)相等的兩個(gè)三角形全等(“邊邊邊”或“SSS”)。
。4)“角角邊”簡稱“AAS”,有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等(“角角邊”或“AAS”)。
2、直角三角形全等的判定
利用一般三角形全等的判定都能證明直角三角形全等、
斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等(“斜邊、直角邊”或“HL”)、
注意:兩邊一對角(SSA)和三角(AAA)對應(yīng)相等的兩個(gè)三角形不一定全等。
小練習(xí)
1、已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可補(bǔ)充的條件是______
核心考點(diǎn):全等三角形的判定
2、王師傅在做完門框后,常常在門框上斜釘兩根木條,這樣做的數(shù)學(xué)原理是______
核心考點(diǎn):三角形的穩(wěn)定性
3、將兩根鋼條AA’、BB’的中點(diǎn)O連在一起,使AA’、BB’可以繞著點(diǎn)O自由旋轉(zhuǎn),就做成了一個(gè)測量工件,則A’B’的長等于內(nèi)槽寬AB,那么判定△OAB≌△OA’B’的理由是______
核心考點(diǎn):全等三角形的判定
角的平分線的性質(zhì)知識點(diǎn)
1、角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。
2、判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上。
3、證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:
、佟⒋_定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),
、凇⒒仡櫲切闻卸,搞清我們還需要什么,
、邸⒄_地書寫證明格式(順序和對應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題)
數(shù)學(xué)八年級上冊知識點(diǎn)9
一、分式
※1、兩個(gè)整數(shù)不能整除時(shí),出現(xiàn)了分?jǐn)?shù);類似地,當(dāng)兩個(gè)整式不能整除時(shí),就出現(xiàn)了分式.
整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那么稱 為分式,對于任意一個(gè)分式,分母都不能為零.
※2、整式和分式統(tǒng)稱為有理式,即有:
※3、進(jìn)行分?jǐn)?shù)的化簡與運(yùn)算時(shí),常要進(jìn)行約分和通分,其主要依據(jù)是分?jǐn)?shù)的基本性質(zhì):
分式的分子與分母都乘以(或除以)同一個(gè)不等于零的整式,分式的值不變.
※4、一個(gè)分式的分子、分母有公因式時(shí),可以運(yùn)用分式的基本性質(zhì),把這個(gè)分式的分子、分母同時(shí)除以它的們的公因式,也就是把分子、分母的公因式約去,這叫做約分.
二、分式的乘除法
※1、分式乘以分式,用分子的積做積的分子,分母的積做積的分母;分式除以以分式,把除式的分子、分母顛倒位置后,與被除式相乘.
※2、分式乘方,把分子、分母分別乘方.
逆向運(yùn)用 ,當(dāng)n為整數(shù)時(shí),仍然有 成立.
※3、分子與分母沒有公因式的分式,叫做最簡分式.
三、分式的加減法
※1、分式與分?jǐn)?shù)類似,也可以通分.根據(jù)分式的基本性質(zhì),把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
※2、分式的加減法:
分式的加減法與分?jǐn)?shù)的加減法一樣,分為同分母的分式相加減與異分母的分式相加減.
(1)同分母的分式相加減,分母不變,把分子相加減;
上述法則用式子表示是:
(2)異號分母的分式相加減,先通分,變?yōu)橥帜傅姆质?然后再加減;
上述法則用式子表示是:
※3、概念內(nèi)涵:
通分的關(guān)鍵是確定最簡分母,其方法如下:最簡公分母的系數(shù),取各分母系數(shù)的最小公倍數(shù);最簡公分母的字母,取各分母所有字母的次冪的積,如果分母是多項(xiàng)式,則首先對多項(xiàng)式進(jìn)行因式分解.
四、分式方程
※1、解分式方程的一般步驟:
、僭诜匠痰膬蛇叾汲俗詈喒帜,約去分母,化成整式方程;
、诮膺@個(gè)整式方程;
、郯颜椒匠痰母胱詈喒帜,看結(jié)果是不是零,使最簡公母為零的根是原方程的增根,必須舍去.
※2、列分式方程解應(yīng)用題的一般步驟:
、賹徢孱}意;
、谠O(shè)未知數(shù);
③根據(jù)題意找相等關(guān)系,列出(分式)方程;
、芙夥匠,并驗(yàn)根;
⑤寫出答案.
數(shù)學(xué)解題方法與技巧
填空題答題技巧
要求熟記的基本概念、基本事實(shí)、數(shù)據(jù)公式、原理,復(fù)習(xí)時(shí)要特別細(xì)心,注意記熟,做到臨考前能準(zhǔn)確無誤、清晰回憶。
對那些起關(guān)鍵作用的,或最容易混淆記錯(cuò)的概念、符號或圖形要特別注意,因?yàn)榭疾榈耐褪撬鼈。如區(qū)間的端點(diǎn)開還是閉、定義域和值域要用區(qū)間或集合表示、單調(diào)區(qū)間誤寫成不等式或把兩個(gè)單調(diào)區(qū)間取了并集等等。
解答題答題技巧
(1)仔細(xì)審題。注意題目中的關(guān)鍵詞,準(zhǔn)確理解考題要求。
(2)規(guī)范表述。分清層次,要注意計(jì)算的準(zhǔn)確性和簡約性、邏輯的條理性和連貫性。
(3)給出結(jié)論。注意分類討論的問題,最后要?dú)w納結(jié)論。
(4)講求效率。合理有序的書寫試卷和使用草稿紙,節(jié)省驗(yàn)算時(shí)間。
初中數(shù)學(xué)有理數(shù)的運(yùn)算知識點(diǎn)
加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。③一個(gè)數(shù)與0相加不變。
減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘。②任何數(shù)與0相乘得0。③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。②0不能作除數(shù)。
乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
數(shù)學(xué)八年級上冊知識點(diǎn)10
函數(shù)及其相關(guān)概念
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個(gè)變量x與y,如果對于x的每一個(gè)值,y都有確定的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
(1)解析法
兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號的等式表示,這種表示法叫做解析法。
。2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
。3)圖像法
用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
。1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值
(2)描點(diǎn):以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)
。3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
數(shù)據(jù)的收集、整理與描述
一、知識框架
二、知識概念
1、全面調(diào)查:考察全體對象的調(diào)查方式叫做全面調(diào)查、
2、抽樣調(diào)查:調(diào)查部分?jǐn)?shù)據(jù),根據(jù)部分來估計(jì)總體的調(diào)查方式稱為抽樣調(diào)查、
3、總體:要考察的全體對象稱為總體、
4、個(gè)體:組成總體的每一個(gè)考察對象稱為個(gè)體、
5、樣本:被抽取的所有個(gè)體組成一個(gè)樣本、
6、樣本容量:樣本中個(gè)體的數(shù)目稱為樣本容量、
7、頻數(shù):一般地,我們稱落在不同小組中的數(shù)據(jù)個(gè)數(shù)為該組的頻數(shù)、
8、頻率:頻數(shù)與數(shù)據(jù)總數(shù)的比為頻率、
9、組數(shù)和組距:在統(tǒng)計(jì)數(shù)據(jù)時(shí),把數(shù)據(jù)按照一定的范圍分成若干各組,分成組的個(gè)數(shù)稱為組數(shù),每一組兩個(gè)端點(diǎn)的差叫做組距、
四邊形
平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
平行四邊形的性質(zhì):平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。
平行四邊形的判定
1、兩組對邊分別相等的四邊形是平行四邊形
2、對角線互相平分的四邊形是平行四邊形;
3、兩組對角分別相等的四邊形是平行四邊形;
4、一組對邊平行且相等的四邊形是平行四邊形。
三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
直角三角形斜邊上的中線等于斜邊的一半。
矩形的定義:有一個(gè)角是直角的平行四邊形。
矩形的性質(zhì):矩形的四個(gè)角都是直角;矩形的對角線平分且相等。AC=BD
矩形判定定理:
1、有一個(gè)角是直角的平行四邊形叫做矩形。
2、對角線相等的平行四邊形是矩形。
3、有三個(gè)角是直角的四邊形是矩形。
菱形的定義:鄰邊相等的平行四邊形。
菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
菱形的判定定理:
1、一組鄰邊相等的平行四邊形是菱形。
2、對角線互相垂直的平行四邊形是菱形。
3、四條邊相等的四邊形是菱形。S菱形=1/2×ab(a、b為兩條對角線)
正方形定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。
正方形的性質(zhì):四條邊都相等,四個(gè)角都是直角。正方形既是矩形,又是菱形。
正方形判定定理:
1、鄰邊相等的矩形是正方形。
2、有一個(gè)角是直角的菱形是正方形。
梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
直角梯形的定義:有一個(gè)角是直角的梯形
等腰梯形的定義:兩腰相等的梯形。
等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對角線相等。
等腰梯形判定定理:同一底上兩個(gè)角相等的梯形是等腰梯形。
解梯形問題常用的輔助線:如圖
線段的重心就是線段的中點(diǎn)。平行四邊形的重心是它的兩條對角線的交點(diǎn)。三角形的三條中線交于疑點(diǎn),這一點(diǎn)就是三角形的重心。寬和長的比是—1(約為0、618)的矩形叫做黃金矩形。
如何提高解答數(shù)學(xué)題的能力
數(shù)學(xué)的解答能力,主要通過實(shí)際的練習(xí)來提高。數(shù)學(xué)練習(xí)應(yīng)注意以下幾點(diǎn):
。1)、端正態(tài)度,充分認(rèn)識到數(shù)學(xué)練習(xí)的重要性。實(shí)際練習(xí)不僅可以提高解答速度,掌握解答技能技巧,而且,許多的新問題常在練習(xí)中出現(xiàn)。
。2)、要有自信心與意志力。數(shù)學(xué)練習(xí)常有繁雜的計(jì)算,深奧的證明,自己應(yīng)有充足的信心,頑強(qiáng)的意志,耐心細(xì)致的習(xí)慣。
。3)、要養(yǎng)成先思考,后解答,再檢查的良好習(xí)慣,遇到一個(gè)題,不能盲目地進(jìn)行練習(xí),無效計(jì)算,應(yīng)先深入領(lǐng)會題意,認(rèn)真思考,抓住關(guān)鍵,再作解答。解答后,還應(yīng)進(jìn)行檢查。
多項(xiàng)式定義
在數(shù)學(xué)中,多項(xiàng)式是指由變量、系數(shù)以及它們之間的加、減、乘、冪運(yùn)算(非負(fù)整數(shù)次方)得到的表達(dá)式。
對于比較廣義的定義,1個(gè)或0個(gè)單項(xiàng)式的和也算多項(xiàng)式。按這個(gè)定義,多項(xiàng)式就是整式。實(shí)際上,還沒有一個(gè)只對狹義多項(xiàng)式起作用,對單項(xiàng)式不起作用的定理。0作為多項(xiàng)式時(shí),次數(shù)定義為負(fù)無窮大(或0)。單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。
數(shù)學(xué)八年級上冊知識點(diǎn)11
1、分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個(gè)不等于零的整式,分式的值不變。
2、通分:利用分式的基本性質(zhì),使分子和分母都乘以適當(dāng)?shù)恼剑桓淖兎质降闹,把幾個(gè)異分母分式化成同分母的分式,這樣的分式變形叫做分式的通分。
通分的關(guān)鍵是:確定幾個(gè)分式的最簡公分母。確定最簡公分母的一般方法是:(1)如果各分母都是單項(xiàng)式,那么最簡公分母就是各系數(shù)的最小公倍數(shù)、相同字母的次冪、所有不同字母及指數(shù)的積。
(2)如果各分母中有多項(xiàng)式,就先把分母是多項(xiàng)式的分解因式,再參照單項(xiàng)式求最簡公分母的方法,從系數(shù)、相同因式、不同因式三個(gè)方面去確定。
3、約分:根據(jù)分式的基本性質(zhì),約去分式的分子和分母的公因式,不改變分式的值,這樣的分式變形叫做分式的約分。
在約分時(shí)要注意:(1)如果分子、分母都是單項(xiàng)式,那么可直接約去分子、分母的公因式,即約去分子、分母系數(shù)的公約數(shù),相同字母的最低次冪;(2)如果分子、分母中至少有一個(gè)多項(xiàng)式就應(yīng)先分解因式,然后找出它們的公因式再約分;(3)約分一定要把公因式約完。
數(shù)學(xué)八年級上冊知識點(diǎn)12
1、實(shí)數(shù)的概念及分類
、賹(shí)數(shù)的分類
、跓o理數(shù)
無限不循環(huán)小數(shù)叫做無理數(shù)。
在理解無理數(shù)時(shí),要抓住“無限不循環(huán)”這一時(shí)之,歸納起來有四類:
開方開不盡的數(shù),如 √7 ,3 √2等;
有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如π /?+8等;
有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;
某些三角函數(shù)值,如sin60°等
2、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對值
、傧喾磾(shù)
實(shí)數(shù)與它的相反數(shù)是一對數(shù)(只有符號不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對應(yīng)的點(diǎn)關(guān)于原點(diǎn)對稱,如果a與b互為相反數(shù),則有a+b=0,a=-b,反之亦成立。
、诮^對值
在數(shù)軸上,一個(gè)數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對值。|a|≥0。0的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。
、鄣箶(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。0沒有倒數(shù)。
、軘(shù)軸
規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。
解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對應(yīng)的,并能靈活運(yùn)用。
⑤估算
3、平方根、算數(shù)平方根和立方根
、偎阈g(shù)平方根
一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。特別地,0的算術(shù)平方根是0。
性質(zhì):正數(shù)和零的算術(shù)平方根都只有一個(gè),0的算術(shù)平方根是0。
、谄椒礁
一般地,如果一個(gè)數(shù)x的平方等于a,即x2=a,那么這個(gè)數(shù)x就叫做a的平方根(或二次方根)。
性質(zhì):一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根。
開平方求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方。注意 √a的雙重非負(fù)性:√a≥0 ; a≥0
、哿⒎礁
一般地,如果一個(gè)數(shù)x的立方等于a,即x3=a,那么這個(gè)數(shù)x就叫做a 的立方根(或三次方根)。
表示方法:記作 3 √a
性質(zhì):一個(gè)正數(shù)有一個(gè)正的立方根;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根;零的立方根是零。
注意:- 3 √a=3 √-a,這說明三次根號內(nèi)的負(fù)號可以移到根號外面。
4、實(shí)數(shù)大小的比較
①實(shí)數(shù)比較大小
正數(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù);
數(shù)軸上的兩個(gè)點(diǎn)所表示的數(shù),右邊的總比左邊的大;
兩個(gè)負(fù)數(shù),絕對值大的反而小。
②實(shí)數(shù)大小比較的幾種常用方法
數(shù)軸比較:在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。
求差比較:設(shè)a、b是實(shí)數(shù) a-b>0a>b; a-b=0a=b; a-b<0a<b 。
求商比較法:設(shè)a、b是兩正實(shí)數(shù),
絕對值比較法:設(shè)a、b是兩負(fù)實(shí)數(shù),則∣a∣>∣b∣a<b。
平方法:設(shè)a、b是兩負(fù)實(shí)數(shù),則 a2>b2a<b 。
5、算術(shù)平方根有關(guān)計(jì)算(二次根式)
、俸卸胃枴 √ ”;被開方數(shù)a必須是非負(fù)數(shù)。
②性質(zhì):
、圻\(yùn)算結(jié)果若含有“ √ ”形式,必須滿足:
被開方數(shù)的因數(shù)是整數(shù),因式是整式
被開方數(shù)中不含能開得盡方的因數(shù)或因式
6、實(shí)數(shù)的運(yùn)算
①六種運(yùn)算:加、減、乘、除、乘方 、開方。
、趯(shí)數(shù)的運(yùn)算順序
先算乘方和開方,再算乘除,最后算加減,如果有括號,就先算括號里面的。
、圻\(yùn)算律
加法交換律 a+b= b+a
加法結(jié)合律 (a+b)+c= a+( b+c )
乘法交換律 ab= ba
乘法結(jié)合律 (ab)c = a( bc )
乘法對加法的分配律 a( b+c )=ab+ac
數(shù)學(xué)八年級上冊知識點(diǎn)13
四邊形的相關(guān)概念
1、四邊形
在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。
2、四邊形具有不穩(wěn)定性
3、四邊形的內(nèi)角和定理及外角和定理
四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。
四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n?2)?180°;
多邊形的外角和定理:任意多邊形的外角和等于360°。
6、設(shè)多邊形的邊數(shù)為n,則多邊形的對角線共有n(n?3)條。從n邊形的一個(gè)頂點(diǎn)出2發(fā)能引(n-3)條對角線,將n邊形分成(n-2)個(gè)三角形。
數(shù)學(xué)八年級上冊知識點(diǎn)14
全等三角形
一、知識框架:
二、知識概念:
1.基本定義:
、湃刃危耗軌蛲耆睾系膬蓚(gè)圖形叫做全等形。
、迫热切危耗軌蛲耆睾系膬蓚(gè)三角形叫做全等三角形。
、菍(yīng)頂點(diǎn):全等三角形中互相重合的頂點(diǎn)叫做對應(yīng)頂點(diǎn)。
、葘(yīng)邊:全等三角形中互相重合的邊叫做對應(yīng)邊。
、蓪(yīng)角:全等三角形中互相重合的角叫做對應(yīng)角。
2.基本性質(zhì):
、湃切蔚姆(wěn)定性:三角形三邊的長度確定了,這個(gè)三角形的形狀、大小就全確定,這個(gè)性質(zhì)叫做三角形的穩(wěn)定性。
、迫热切蔚男再|(zhì):全等三角形的對應(yīng)邊相等,對應(yīng)角相等。
3.全等三角形的判定定理:
、胚呥呥():三邊對應(yīng)相等的兩個(gè)三角形全等。
、七吔沁():兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等。
、墙沁吔():兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等。
、冉墙沁():兩角和其中一個(gè)角的對邊對應(yīng)相等的兩個(gè)三角形全等。
、尚边叀⒅苯沁():斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等。
4.角平分線:
、女嫹ǎ
、菩再|(zhì)定理:角平分線上的點(diǎn)到角的兩邊的距離相等。
、切再|(zhì)定理的逆定理:角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的平分線上。
5.證明的基本方法:
、琶鞔_命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)
、聘鶕(jù)題意,畫出圖形,并用數(shù)字符號表示已知和求證。
、墙(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。
數(shù)學(xué)不能只依靠上課聽得懂
很多初中生認(rèn)為自己只要上數(shù)學(xué)課聽得懂就夠了,但是一做到綜合題就蒙了,基礎(chǔ)題會做,但是會馬虎。這類問題都是學(xué)生在課堂上都以為自己聽得懂就夠了。
初中同學(xué)要首先對數(shù)學(xué)做一個(gè)認(rèn)知,聽得懂≠會做,會做≠拿的到分。聽得懂只占你數(shù)學(xué)成績的20%,僅僅聽得懂只說明你理解能力還可以,不說明你能拿到很高的數(shù)學(xué)成績。
只有聽的懂理解了加上練,再加上多練,達(dá)到最后又快又準(zhǔn)的做出來,這時(shí)候的數(shù)學(xué)成績才會有長足的進(jìn)步。
質(zhì)數(shù)和合數(shù)應(yīng)用
1、質(zhì)數(shù)與密碼學(xué):所謂的公鑰就是將想要傳遞的信息在編碼時(shí)加入質(zhì)數(shù),編碼之后傳送給收信人,任何人收到此信息后,若沒有此收信人所擁有的密鑰,則解密的過程中(實(shí)為尋找素?cái)?shù)的過程),將會因?yàn)檎屹|(zhì)數(shù)的過程(分解質(zhì)因數(shù))過久,使即使取得信息也會無意義。
2、質(zhì)數(shù)與變速箱:在汽車變速箱齒輪的設(shè)計(jì)上,相鄰的兩個(gè)大小齒輪齒數(shù)設(shè)計(jì)成質(zhì)數(shù),以增加兩齒輪內(nèi)兩個(gè)相同的齒相遇嚙合次數(shù)的最小公倍數(shù),可增強(qiáng)耐用度減少故障。
數(shù)學(xué)八年級上冊知識點(diǎn)15
第五章 二元一次方程組
1、二元一次方程
①二元一次方程、含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的整式方程叫做二元一次方程。
、诙淮畏匠痰慕、適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
2、二元一次方程組
①含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組。
、诙淮畏匠探M的解二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。
、鄱淮畏匠探M的解法代入(消元)法、加減(消元)法
、芤淮魏瘮(shù)與二元一次方程(組)的關(guān)系:
一次函數(shù)與二元一次方程的關(guān)系:直線y=kx+b上任意一點(diǎn)的坐標(biāo)都是它所對應(yīng)的二元一次方程kx- y+b=0的解
一次函數(shù)與二元一次方程組的關(guān)系:二元一次方程組的解可看作兩個(gè)一次函數(shù)和的圖象的交點(diǎn)。
當(dāng)函數(shù)圖象有交點(diǎn)時(shí),說明相應(yīng)的二元一次方程組有解;
當(dāng)函數(shù)圖象(直線)平行即無交點(diǎn)時(shí),說明相應(yīng)的二元一次方程組無解。
【數(shù)學(xué)八年級上冊知識點(diǎn)15篇】相關(guān)文章:
數(shù)學(xué)八年級上冊知識點(diǎn)12-07
數(shù)學(xué)八年級上冊十三章知識點(diǎn)11-17
數(shù)學(xué)人教版八年級上冊知識點(diǎn)07-31
八年級上冊數(shù)學(xué)知識點(diǎn)提綱11-16
人教版八年級上冊數(shù)學(xué)實(shí)數(shù)知識點(diǎn)10-08
中考八年級上冊數(shù)學(xué)知識點(diǎn)11-09