亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

數(shù)學(xué) 百文網(wǎng)手機站

初中數(shù)學(xué)知識點

時間:2022-07-16 16:35:25 數(shù)學(xué) 我要投稿

初中數(shù)學(xué)知識點大全(完整版)

  在我們平凡的學(xué)生生涯里,說到知識點,大家是不是都習(xí)慣性的重視?知識點也可以通俗的理解為重要的內(nèi)容。掌握知識點是我們提高成績的關(guān)鍵!下面是小編為大家收集的初中數(shù)學(xué)知識點大全(完整版),僅供參考,歡迎大家閱讀。

初中數(shù)學(xué)知識點大全(完整版)

初中數(shù)學(xué)知識點大全(完整版)1

  三角形的知識點

  1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  2、三角形的分類

  3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

  5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

  6、角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

  7、高線、中線、角平分線的意義和做法

  8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。

  9、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°

  推論1直角三角形的兩個銳角互余

  推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角和

  推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半

  10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

  11、三角形外角的性質(zhì)

  (1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

  (2)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和;

  (3)三角形的一個外角大于與它不相鄰的任一內(nèi)角;

  (4)三角形的外角和是360°。

  四邊形(含多邊形)知識點、概念總結(jié)

  一、平行四邊形的定義、性質(zhì)及判定

  1、兩組對邊平行的四邊形是平行四邊形。

  2、性質(zhì):

  (1)平行四邊形的對邊相等且平行

  (2)平行四邊形的對角相等,鄰角互補

  (3)平行四邊形的對角線互相平分

  3、判定:

  (1)兩組對邊分別平行的四邊形是平行四邊形

  (2)兩組對邊分別相等的四邊形是平行四邊形

  (3)一組對邊平行且相等的四邊形是平行四邊形

  (4)兩組對角分別相等的四邊形是平行四邊形

  (5)對角線互相平分的四邊形是平行四邊形

  4、對稱性:平行四邊形是中心對稱圖形

  二、矩形的定義、性質(zhì)及判定

  1、定義:有一個角是直角的平行四邊形叫做矩形

  2、性質(zhì):矩形的四個角都是直角,矩形的對角線相等

  3、判定:

  (1)有一個角是直角的平行四邊形叫做矩形

  (2)有三個角是直角的四邊形是矩形

  (3)兩條對角線相等的平行四邊形是矩形

  4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。

  三、菱形的定義、性質(zhì)及判定

  1、定義:有一組鄰邊相等的平行四邊形叫做菱形

  (1)菱形的四條邊都相等

  (2)菱形的對角線互相垂直,并且每一條對角線平分一組對角

  (3)菱形被兩條對角線分成四個全等的直角三角形

  (4)菱形的面積等于兩條對角線長的積的一半

  2、s菱=爭6(n、6分別為對角線長)

  3、判定:

  (1)有一組鄰邊相等的平行四邊形叫做菱形

  (2)四條邊都相等的四邊形是菱形

  (3)對角線互相垂直的平行四邊形是菱形

  4、對稱性:菱形是軸對稱圖形也是中心對稱圖形

  四、正方形定義、性質(zhì)及判定

  1、定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形

  2、性質(zhì):

  (1)正方形四個角都是直角,四條邊都相等

  (2)正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  (3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形

  (4)正方形的對角線與邊的夾角是45°

  (5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形

  3、判定:

  (1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等

  (2)先判定一個四邊形是菱形,再判定出有一個角是直角

  4、對稱性:正方形是軸對稱圖形也是中心對稱圖形

  五、梯形的定義、等腰梯形的性質(zhì)及判定

  1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等

  3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形

  4、對稱性:等腰梯形是軸對稱圖形

  六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。

  七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。

  八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。

  九、多邊形

  1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

  2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

  3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

  4、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

  5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。

  6、正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫做正多邊形。

  7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

  8、公式與性質(zhì)

  多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°

  9、多邊形外角和定理:

  (1)n邊形外角和等于n·180°-(n-2)·180°=360°

  (2)邊形的每個內(nèi)角與它相鄰的外角是鄰補角,所以n邊形內(nèi)角和加外角和等于n·180°

  10、多邊形對角線的條數(shù):

  (1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形

  (2)n邊形共有n(n-3)/2條對角線

  圓知識點、概念總結(jié)

  1、不在同一直線上的三點確定一個圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對稱中心的中心對稱圖形

  4、圓是定點的距離等于定長的點的集合

  5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點的集合

  7、同圓或等圓的半徑相等

  8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

  11、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

  12、①直線L和⊙O相交d

 、谥本L和⊙O相切d=r

 、壑本L和⊙O相離d>r

  13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑

  15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  18、圓的外切四邊形的兩組對邊的和相等,外角等于內(nèi)對角

  19、如果兩個圓相切,那么切點一定在連心線上

  20、①兩圓外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交R-rr)

 、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

  21、定理:相交兩圓的連心線垂直平分兩圓的公共弦

  22、定理:把圓分成n(n≥3):

  (1)依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

  (2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  23、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  24、正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

  27、正三角形面積√3a/4a表示邊長

  28、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29、弧長計算公式:L=n兀R/180

  30、扇形面積公式:S扇形=n兀R^2/360=LR/2

  31、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

  32、定理:一條弧所對的圓周角等于它所對的圓心角的一半

  33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  35、弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

初中數(shù)學(xué)知識點大全(完整版)2

  簡單解釋就是,用不等號可以將兩個解析式連接起來所成的式子就是我們這一章節(jié)所說的不等式。

  不等式

  例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等>x是超越不等式。

  不等式分為嚴格不等式與非嚴格不等式。一般地,用純粹的大于號、小于號“>”“<”連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)

  “≥”(大于等于符號)“≤”(小于等于符號)連接的不等式稱為非嚴格不等式,或稱廣義不等式。

  通常不等式中的數(shù)是實數(shù),字母也代表實數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z )(其中不等號也可以為<,≥,> 中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。

  其實在一個式子中的數(shù)的關(guān)系,不全是等號,含不等符號的式子,那它就是一個不等式了。

  初中數(shù)學(xué)知識點總結(jié):平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

  三個規(guī)定:

  ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

  ②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

  ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。

  通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)

  下面是對數(shù)學(xué)中點的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認真看看哦。

  點的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。

  一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。

  希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。

  初中數(shù)學(xué)知識點:因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。

  初中數(shù)學(xué)知識點:因式分解

  因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

 、俅_定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

 、诓粶(zhǔn)丟常數(shù)項注意查項數(shù)

 、垭p重括號化成單括號

 、芙Y(jié)果按數(shù)單字母單項式多項式順序排列

  ⑤相同因式寫成冪的形式

 、奘醉椮撎柗爬ㄌ柾

 、呃ㄌ杻(nèi)同類項合并。

  通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

初中數(shù)學(xué)知識點大全(完整版)3

  我們在學(xué)習(xí)三角形的知識中,老師經(jīng)常會提到的一句話就是:三角形具有穩(wěn)定性。

  穩(wěn)定性證明

  任取三角形兩條邊,則兩條邊的非公共端點被第三條邊連接。

  ∵第三條邊不可伸縮或彎折 ,

  ∴兩端點距離固定 ,

  ∴這兩條邊的夾角固定;

  ∵這兩條邊是任取的 ,

  ∴三角形三個角都固定,進而將三角形固定,

  ∴三角形有穩(wěn)定性 。

  任取n邊形(n≥4)兩條相鄰邊,則兩條邊的非公共端點被不止一條邊連接

  ∴兩端點距離不固定 ,

  ∴這兩邊夾角不固定 ,

  ∴n邊形(n≥4)每個角都不固定,所以n邊形(n≥4)沒有穩(wěn)定性。

  如果不看上面的證明過程,我們就沒有辦法清晰的理解三角形穩(wěn)定性的所有定理。

  正方形定理公式

  正方形的特征:

  ①正方形的四邊相等;

  ②正方形的四個角都是直角;

  ③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;

  正方形的判定:

 、儆幸粋角是直角的菱形是正方形;

  ②有一組鄰邊相等的矩形是正方形。

  希望上面對正方形定理公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會取得很好的成績的哦。

  平行四邊形

  平行四邊形的性質(zhì):

  ①平行四邊形的對邊相等;

 、谄叫兴倪呅蔚膶窍嗟龋

 、燮叫兴倪呅蔚膶蔷互相平分;

  平行四邊形的判定:

 、賰山M對角分別相等的四邊形是平行四邊形;

 、趦山M對邊分別相等的四邊形是平行四邊形;

 、蹖蔷互相平分的四邊形是平行四邊形;

 、芤唤M對邊平行且相等的四邊形是平行四邊形。

  上面對數(shù)學(xué)中平行四邊形定理公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,相信同學(xué)們會從中學(xué)習(xí)的更好的哦。

  直角三角形的性質(zhì):

 、僦苯侨切蔚膬蓚銳角互為余角;

  ②直角三角形斜邊上的中線等于斜邊的一半;

  ③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);

  ④直角三角形中30度

  角所對的直角邊等于斜邊的一半;

  直角三角形的判定:

  ①有兩個角互余的三角形是直角三角形;

  ②如果三角形的三邊長a、b 、c有下面關(guān)系a^2+b^2=c^2

  ,那么這個三角形是直角三角形(勾股定理的逆定理)。

  以上對數(shù)學(xué)直角三角形定理公式的內(nèi)容講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望同學(xué)們都能考試成功。

  等腰三角形的性質(zhì):

 、俚妊切蔚膬蓚底角相等;

 、诘妊切蔚捻斀瞧椒志、底邊上的中線、底邊上的高互相重合(三線合一)

  上面對等腰三角形的性質(zhì)定理公式的內(nèi)容講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望同學(xué)們在考試中取得很好的成績。

  三角形

  三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;

  三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度;

  三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;

  三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;

  三角形的三條角平分線交于一點(內(nèi)心);

  三角形的三邊的垂直平分線交于一點(外心);

  三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半;

初中數(shù)學(xué)知識點大全(完整版)4

  1、正數(shù)和負數(shù)的有關(guān)概念

  (1)正數(shù):比0大的數(shù)叫做正數(shù);

  負數(shù):比0小的數(shù)叫做負數(shù);

  0既不是正數(shù),也不是負數(shù)。

  (2)正數(shù)和負數(shù)表示相反意義的量。

  2、有理數(shù)的概念及分類

  3、有關(guān)數(shù)軸

  (1)數(shù)軸的三要素:原點、正方向、單位長度。數(shù)軸是一條直線。

  (2)所有有理數(shù)都可以用數(shù)軸上的點來表示,但數(shù)軸上的點不一定都是有理數(shù)。

  (3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點在原點的右側(cè),表示負數(shù)的點在原點的左側(cè)。

  (2)相反數(shù):符號不同、絕對值相等的兩個數(shù)互為相反數(shù)。

  若a、b互為相反數(shù),則a+b=0;

  相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負數(shù),負數(shù)的相反數(shù)是正數(shù)。

  (3)絕對值最小的數(shù)是0;絕對值是本身的數(shù)是非負數(shù)。

  4、任何數(shù)的絕對值是非負數(shù)。

  最小的正整數(shù)是1,最大的負整數(shù)是-1。

  5、利用絕對值比較大小

  兩個正數(shù)比較:絕對值大的那個數(shù)大;

  兩個負數(shù)比較:先算出它們的絕對值,絕對值大的反而小。

  6、有理數(shù)加法

  (1)符號相同的兩數(shù)相加:和的符號與兩個加數(shù)的符號一致,和的絕對值等于兩個加數(shù)絕對值之和.

  (2)符號相反的兩數(shù)相加:當(dāng)兩個加數(shù)絕對值不等時,和的符號與絕對值較大的加數(shù)的符號相同,和的絕對值等于加數(shù)中較大的絕對值減去較小的絕對值;當(dāng)兩個加數(shù)絕對值相等時,兩個加數(shù)互為相反數(shù),和為零.

  (3)一個數(shù)同零相加,仍得這個數(shù).

  加法的交換律:a+b=b+a

  加法的結(jié)合律:(a+b)+c=a+(b+c)

  7、有理數(shù)減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  8、在把有理數(shù)加減混合運算統(tǒng)一為最簡的形式,負數(shù)前面的加號可以省略不寫.

  例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和.”

  9、有理數(shù)的乘法

  兩個數(shù)相乘,同號得正,異號得負,再把絕對值相乘;任何數(shù)與0相乘都得0。

  第一步:確定積的符號 第二步:絕對值相乘

  10、乘積的符號的確定

  幾個有理數(shù)相乘,因數(shù)都不為 0 時,積的符號由負因數(shù)的個數(shù)確定:當(dāng)負因數(shù)有奇數(shù)個時,積為負;

  當(dāng)負因數(shù)有偶數(shù)個時,積為正。幾個有理數(shù)相乘,有一個因數(shù)為零,積就為零。

  11、倒數(shù):乘積為1的兩個數(shù)互為倒數(shù),0沒有倒數(shù)。

  正數(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)是負數(shù)。(互為倒數(shù)的兩個數(shù)符號一定相同)

  倒數(shù)是本身的只有1和-1。

初中數(shù)學(xué)知識點大全(完整版)5

  初中數(shù)學(xué)多項式的加法中考知識點

  多項式和單項式一起被稱為整式,整式的運算離不開加法,多項式也是如此。

  多項式的加法

  有限個單項式之和稱為多元多項式,簡稱多項式。不同類的單項式之和表示的多項式,其中系數(shù)不為零的單項式的最高次數(shù),稱為此多項式的次數(shù)。

  多項式的加法,是指多項式中同類項的系數(shù)相加,字母保持不變(即合并同類項)。多項式的乘法,是指把一個多項式中的每個單項式與另一個多項式中的每個單項式相乘之后合并同類項。

  F上x1,x2,…,xn的多項式全體所成的集合F[x1,x2,…,xn],對于多項式的加法和乘法成為一個環(huán),是具有單位元素的整環(huán)。 域上的多元多項式也有因式分解惟一性定理。

  關(guān)于多項式的加法計算的中考知識要領(lǐng)已經(jīng)為大家整合出來了,請同學(xué)們相應(yīng)做好筆記了。

初中數(shù)學(xué)知識點大全(完整版)6

  第一章 有理數(shù)

  1.1 正數(shù)與負數(shù)

  正數(shù):大于0的數(shù)叫正數(shù)。(根據(jù)需要,有時在正數(shù)前面也加上“+”)

  負數(shù):在以前學(xué)過的0以外的數(shù)前面加上負號“—”的數(shù)叫負數(shù)。與正數(shù)具有相反意義。

  0既不是正數(shù)也不是負數(shù)。0是正數(shù)和負數(shù)的分界,是唯一的中性數(shù)。

  1.2 有理數(shù)

  1、有理數(shù):整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。

  2、數(shù)軸 :通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸;所有的有理數(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點,不都是表示有理數(shù)。

  3、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。

  4、絕對值:數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記作|a|。正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。

  1.3 有理數(shù)的加減法

  有理數(shù)加法法則:

  1、同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  2、絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0。

  3、一個數(shù)同0相加,仍得這個數(shù)

  4、加法交換律:a+b=b+a

  5、加法結(jié)合律:a+b+c=a+(b+c)=(a+c)+b

  有理數(shù)減法法則:

  減去一個數(shù),等于加這個數(shù)的相反數(shù)。

  1.4 有理數(shù)的乘除法

  1、有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;

  乘法交換律:a*b=b*a

  結(jié)合律:a*b*c=a*(b*c)

  分配律:a(b+c)=ab+ac

  2、有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù);

  兩數(shù)相除,同號得正,異號得負,并把絕對值相除;

  0除以任何一個不等于0的數(shù),都得0。

  1.5 有理數(shù)的乘方

  1、求n個相同因數(shù)的積的運算,叫乘方,乘方的結(jié)果叫冪。在a的n次方中,a叫做底數(shù),n叫做指數(shù)。負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。

  2、有理數(shù)的混合運算法則:先乘方,再乘除,最后加減;同級運算,從左到右進行;如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進行。

  3、把一個大于10的數(shù)表示成a×10的n次方的形式,使用的就是科學(xué)計數(shù)法,注意a的范圍為1≤a<10。

  第二章 整式的加減

  2.1 整式

  1、單項式:由數(shù)字和字母乘積組成的式子。判斷代數(shù)式是否是單項式,關(guān)鍵要看代數(shù)式中數(shù)與字母是否是乘積關(guān)系,即分母中不含有字母,若式子中含有加、減運算關(guān)系,其也不是單項式。

  2、多項式:幾個單項式的和。判斷代數(shù)式是否是多項式,關(guān)鍵要看代數(shù)式中的每一項是否是單項式。每個單項式稱項,常數(shù)項,多項式的次數(shù)就是多項式中次數(shù)最高的次數(shù)。

  3、單項式和多項式統(tǒng)稱為整式。

  2.2整式的加減

  1、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項。與字母前面的系數(shù)(≠0)無關(guān)。

  2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數(shù)相同,二者缺一不可.同類項與系數(shù)大小、字母的排列順序無關(guān)

  3、合并同類項:把多項式中的同類項合并成一項?梢赃\用交換律,結(jié)合律和分配律。

  4、合并同類項法則:合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變;

  5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。

  6、整式加減的一般步驟:

  一去、二找、三合

 。1)如果遇到括號按去括號法則先去括號. (2)結(jié)合同類項. (3)合并同類項

  第三章 一元一次方程

  3.1 一元一次方程

  1、方程是含有未知數(shù)的等式。

  2、方程都只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。

  3、等式的性質(zhì):

  1)等式兩邊同時加(或減)同一個數(shù)(或式子),結(jié)果仍相等;

  2)等式兩邊同時乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。

  3.2 、3.3解一元一次方程

  在實際解方程的過程中,以下步驟不一定完全用上,有些步驟還需重復(fù)使用。

 、偃シ帜福涸诜匠虄蛇叾汲艘愿鞣帜傅淖钚」稊(shù),不要漏乘不含分母的項;分子是一個整體,去分母后應(yīng)加上括號;去分母與分母化整是兩個概念,不能混淆;

  ②去括號:遵從先去小括號,再去中括號,最后去大括號;不要漏乘括號的項;不要弄錯符號;

 、垡祈棧喊押形粗獢(shù)的項移到方程的一邊,其他項都移到方程的另一邊(移項要變符號) 移項要變號;

 、芎喜⑼愴棧翰灰獊G項,解方程是同解變形,每一步都是一個方程,不能像計算或化簡題那樣寫能連等的形式;

  ⑤系數(shù)化為1:字母及其指數(shù)不變系數(shù)化成1,在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解。不要分子、分母搞顛倒。

  3.4 實際問題與一元一次方程

  1、一元一次方程解決實際問題的一般步驟

 、賹忣},特別注意關(guān)鍵的字和詞的意義,弄清相關(guān)數(shù)量關(guān)系;

 、谠O(shè)出未知數(shù)(注意單位);

 、鄹鶕(jù)相等關(guān)系列出方程;

 、芙膺@個方程;

 、輽z驗并寫出答案(括單位名稱)。

 、埔恍┕潭P椭械牡攘筷P(guān)系及典型例題參照一元一次方程應(yīng)用題專練學(xué)案。

  2、 列方程解應(yīng)用題的檢驗包括兩個方面:

  ⑴檢驗求得的結(jié)果是不是方程的解;

 、剖且袛喾匠痰慕馐欠穹项}目中的實際意義.

  3、應(yīng)用(常見等量關(guān)系)

  行程問題:s=v×t

  工程問題:工作總量=工作效率×?xí)r間

  盈虧問題:利潤=售價-成本

  利率=利潤÷成本×100%

  售價=標(biāo)價×折扣數(shù)×10%

  儲蓄利潤問題:利息=本金×利率×?xí)r間

  本息和=本金+利息

初中數(shù)學(xué)知識點大全(完整版)7

  一、基本知識

  一、數(shù)與代數(shù)

  A、數(shù)與式:

  1、有理數(shù):①整數(shù)→正整數(shù),0,負整數(shù);

 、诜謹(shù)→正分數(shù),負分數(shù)

  數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。

 、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。

 、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。

 、軘(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

  絕對值:①在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。

  ②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運算:帶上符號進行正常運算。

  加法:

  ①同號相加,取相同的符號,把絕對值相加。

 、诋愄栂嗉樱^對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  ③一個數(shù)與0相加不變。

  減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。

  ②任何數(shù)與0相乘得0。

 、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。

  除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。

  ②0不能作除數(shù)。

  乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)或指數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實數(shù)

  無理數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù),例如:π=3.1415926…

  平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。

 、谌绻粋數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。

  ③一個正數(shù)有2個平方根;0的平方根為0;負數(shù)沒有平方根。

 、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。

 、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。

  ③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

  實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。

 、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣;

 、勖恳粋實數(shù)都可以在數(shù)軸上的一個點來表示。

  3、代數(shù)式

  代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

  合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項;②把同類項合并成一項就叫做合并同類項。

 、墼诤喜⑼愴棔r,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

  ②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。

 、垡粋多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:

  A^M+A^N=A^(M+N)

 。ˋ^M)^N=A^(MN

  )

 。ˋ/B)^N=A^N/B^N

  除法一樣。

  整式的乘法:

 、賳雾検脚c單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

  ②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

 、鄱囗検脚c多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式:A^2-B^2=(A+B)(A-B);

  完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。

  整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

 、诙囗検匠詥雾検,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

 、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。

  分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個分式等于乘以這個分式的倒數(shù)。

  加減法:①同分母分式相加減,分母不變,把分子相加減。

 、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。

  分式方程:①分母中含有未知數(shù)的方程叫分式方程。

 、谑狗匠痰姆帜笧0的解稱為原方程的增根。

  B、方程與不等式

  1、方程與方程組

  一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。

  二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。

  二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

  適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。

  二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

  解二元一次方程組的方法:代入消元法;加減消元法。

  一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程:ax^2+bx+c=0;

  1)一元二次方程的二次函數(shù)的關(guān)系

  大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當(dāng)Y=0的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖像與X軸的交點。也就是該方程的解了

  2)一元二次方程的解法

  大家知道,二次函數(shù)有頂點式(-b/2a

  ,4ac-b^2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

  (1)配方法

  利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_平方法去求出解

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

  (3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a

  3)解一元二次方程的步驟:

  (1)配方法的步驟:

  先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

  (3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c

  4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

  也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

  5)一元二次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao

  ta”,而△=b2-4ac,這里可以分為3種情況:

  I當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根;

  II當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根;

  III當(dāng)△B,則A+C>B+C;

  在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;

  例如:如果A>B,則A-C>B-C;

  在不等式中,如果乘以同一個正數(shù),不等式符號不改向;

  例如:如果A>B,則A*C>B*C(C>0);

  在不等式中,如果乘以同一個負數(shù),不等號改向;

  例如:如果A>B,則A*C

  如果不等式乘以0,那么不等號改為等號;

  所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘的數(shù)就不等于0,否則不等式不成立;

  3、函數(shù)

  變量:因變量Y,自變量X。

  在用圖像表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。

  一次函數(shù):①若兩個變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

  ②當(dāng)B=0時,稱Y是X的正比例函數(shù)。

  一次函數(shù)的圖像:

 、侔岩粋函數(shù)的自變量X與對應(yīng)的因變量Y的值分別作為點的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖像。

  ②正比例函數(shù)Y=KX的圖像是經(jīng)過原點的一條直線。

 、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O時,則經(jīng)234象限;

  當(dāng)K〈0,B〉0時,則經(jīng)124象限;

  當(dāng)K〉0,B〈0時,則經(jīng)134象限;

  當(dāng)K〉0,B〉0時,則經(jīng)123象限。

 、墚(dāng)K〉0時,Y的值隨X值的增大而增大,當(dāng)X〈0時,Y的值隨X值的增大而減少。

  二空間與圖形

  A、圖形的認識

  1、點,線,面

  點,線,面:①圖形是由點,線,面構(gòu)成的。

  ②面與面相交得線,線與線相交得點。

  ③點動成線,線動成面,面動成體。

  展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。

 、贜棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

  弧、扇形:①由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。

  ②圓可以分割成若干個扇形。

  2、角

  線:①線段有兩個端點。

 、趯⒕段向一個方向無限延長就形成了射線。射線只有一個端點。

 、蹖⒕段的兩端無限延長就形成了直線。直線沒有端點。

 、芙(jīng)過兩點有且只有一條直線。

  比較長短:①兩點之間的所有連線中,線段最短。兩點之間直線最短。

 、趦牲c之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

 、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。

  角的比較:①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。

 、谝粭l射線繞著他的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所成的角叫做平角,180。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時,所成的角叫做周角,360。

  ③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。

 、诮(jīng)過直線外一點,有且只有一條直線與這條直線平行。

 、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。

 、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。

 、燮矫鎯(nèi),過一點有且只有一條直線與已知直線垂直。

  垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;

  判定定理:到線段2端點距離相等的點在這線段的垂直平分線上;

  角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角的角平分線就是到角兩邊距離相等的點的集合。

  性質(zhì)定理:角平分線上的點到該角兩邊的距離相等;

  判定定理:到角的兩邊距離相等的點在該角的角平分線上;

  正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

  判定:1、對角線相等的菱形2、鄰邊相等的矩形

  二、基本定理

  1、過兩點有且只有一條直線

  2、兩點之間線段最短

  3、同角或等角的補角相等

  ——補角=180-角度。

  4、同角或等角的余角相等——余角=90-角度。

  5、過一點有且只有一條直線和已知直線垂直

  6、直線外一點與直線上各點連接的所有線段中,垂線段最短

  7、平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內(nèi)錯角相等,兩直線平行

  11、同旁內(nèi)角互補,兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內(nèi)錯角相等

  14、兩直線平行,同旁內(nèi)角互補

  15、定理

  三角形兩邊的和大于第三邊

  16、推論

  三角形兩邊的差小于第三邊

  17、三角形內(nèi)角和定理:

  三角形三個內(nèi)角的和等于180°

  18、推論1

  直角三角形的兩個銳角互余

  19、推論2

  三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

  20、推論3

  三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

  21、全等三角形的對應(yīng)邊、對應(yīng)角相等

  22、邊角邊公理(SAS):有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等

  23、角邊角公理(

  ASA):有兩角和它們的夾邊對應(yīng)相等的

  兩個三角形全等

  24、推論(AAS):有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等

  25、邊邊邊公理(SSS):有三邊對應(yīng)相等的兩個三角形全等

  26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等

  27、定理1

  在角的平分線上的點到這個角的兩邊的距離相等

  28、定理2

  到一個角的兩邊的距離相同的點,在這個角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點的集合

  30、推論1

  等腰三角形頂角的平分線平分底邊并且垂直于底邊

  31、推論2等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

  32、推論3

  等邊三角形的各角都相等,并且每一個角都等于60°

  33、等腰三角形的判定定理

  如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  34、等腰三角形的性質(zhì)定理

  等腰三角形的兩個底角相等

  (即等邊對等角)

  35、推論1

  三個角都相等的三角形是等邊三角形

  36、推論

  有一個角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

  38、直角三角形斜邊上的中線等于斜邊上的一半

  39、定理

  線段垂直平分線上的點和這條線段兩個端點的距離相等

  40、逆定理

  和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42、定理1

  關(guān)于某條直線對稱的兩個圖形是全等形

  43、定理

  如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

  44、定理3

  兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

  45、逆定理

  如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

  46、勾股定理

  直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理

  如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形

  48、定理

  四邊形的內(nèi)角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理

  n邊形的內(nèi)角的和等于(n-2)×180°

  51、推論

  任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1

  平行四邊形的對角相等

  53、平行四邊形性質(zhì)定理2

  平行四邊形的對邊相等

  54、推論

  夾在兩條平行線間的平行線段相等

  55、平行四邊形性質(zhì)定理3

  平行四邊形的對角線互相平分

  56、平行四邊形判定定理1

  兩組對角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2

  兩組對邊分別相等的四邊

  形是平行四邊形

  58、平行四邊形判定定理3

  對角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4

  一組對邊平行相等的四邊形是平行四邊形

  60、矩形性質(zhì)定理1

  矩形的四個角都是直角

  61、矩形性質(zhì)定理2

  矩形的對角線相等

  62、矩形判定定理1

  有三個角是直角的四邊形是矩形

  63、矩形判定定理2

  對角線相等的平行四邊形是矩形

  64、菱形性質(zhì)定理1

  菱形的四條邊都相等

  65、菱形性質(zhì)定理2

  菱形的對角線互相垂直,并且每一條對角線平分一組對角

  66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1

  四邊都相等的四邊形是菱形

  68、菱形判定定理2

  對角線互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1

  正方形的四個角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71、定理1

  關(guān)于中心對稱的兩個圖形是全等的

  72、定理2

  關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

  73、逆定理

  如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

  74、等腰梯形性質(zhì)定理

  等腰梯形在同一底上的兩個角相等

  75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理

  在同一底上的兩個角相等的梯

  形是等腰梯形

  77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理

  如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1

  經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

  80、推論2

  經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊

  81、三角形中位線定理

  三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理

  梯形的中位線平行于兩底,并且等于兩底和的一半

  L=(a+b)÷2

  S=L×h

  83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc

  如果

  ad=bc,那么a:b=c:d

  84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線分線段成比例定理

  三條平行線截兩條直線,所得的對應(yīng)線段成比例

  87、推論

  平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  88、定理

  如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線,

  所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

  90、定理

  平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91、相似三角形判定定理1

  兩角對應(yīng)相等,兩三角形相似(ASA)

  92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

  93、判定定理2

  兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

  94、判定定理3

  三邊對應(yīng)成比例,兩三角形相似(SSS)

  95、定理

  如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似(HL)

  96、性質(zhì)定理1

  相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

  97、性質(zhì)定理2

  相似三角形周長的比等于相似比

  98、性質(zhì)定理3

  相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

  (a<90)

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

  101、圓是定點的距離等于定長的點的集合

  102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點的集合

  104、同圓或等圓的半徑相等

  105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理

  不在同一直線上的三點確定一個圓。

  110、垂徑定理

  垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111、推論1

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條。ㄖ睆剑

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112、推論2

  圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對稱中心的中心對稱圖形

  114、定理

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論

  在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  116、定理

  一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1

  同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118、推論2

  半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3

  如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

  120、定理

  圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

  121、①直線L和⊙O相交

  0<=d<r

 、谥本L和⊙O相切

  d=r

 、壑本L和⊙O相離

  d>r

  122、切線的判定定理

  經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123、切線的性質(zhì)定理

  圓的切線垂直于經(jīng)過切點的半徑

  124、推論1

  經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  125、推論2

  經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  126、切線長定理

  從圓外一點引圓的兩條切線相交與一點,它們的切線長相等

  ,圓心和這一點的連線平分兩條切線的夾角

  127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理

  弦切角等于它所夾的弧對的圓周角?

  129、推論

  如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

  130、相交弦定理

  圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的'積相等

  131、推論

  如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

  132、切割線定理

  從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?

  133、推論

  從圓外一點引圓的兩條割線,這一點到每條

  割線與圓的交點的兩條線段長的積相等

  134、如果兩個圓相切,那么切點一定在連心線上

  135、①兩圓外離

  d>R+r

  ②兩圓外切

  d=R+r

 、蹆蓤A相交

  R-r<d<R+r(R>r)

  ④兩圓內(nèi)切

  d=R-r(R>r)

 、輧蓤A內(nèi)含

  d<R-r(R>r)

  136、定理

  相交兩圓的連心線垂直平分兩圓的公共弦

  137、定理

  把圓平均分成n(n≥3):

  ⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

 、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  138、定理

  任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  139、正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  140、定理

  正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  141、正n邊形的面積Sn=pn*rn/2

  p表示正n邊形的周長

  142、正三角形面積√3a^2/4

  a表示邊長

  143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長計算公式:L=n兀R/180——》L=nR

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2

  146、內(nèi)公切線長=d-(R-r)

  外公切線長=d-(R+r)

初中數(shù)學(xué)知識點大全(完整版)8

  三角和的公式

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  倍角公式

  tan2A = 2tanA/(1-tan2 A)

  Sin2A=2SinA?CosA

  Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

  三倍角公式

  sin3A = 3sinA-4(sinA)3;

  cos3A = 4(cosA)3 -3cosA

  tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

  三角函數(shù)特殊值

  α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

  α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

  a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

  α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

  α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

  α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

  α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

  α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

  α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

  α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

  α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  三角函數(shù)記憶順口溜

  1三角函數(shù)記憶口訣

  “奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。

  以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號為負,所以右邊為-sinα。

  2符號判斷口訣

  全,S,T,C,正。這五個字口訣的意思就是說:第一象限內(nèi)任何一個角的四種三角函數(shù)值都是“+”;第二象限內(nèi)只有正弦是“+”,其余全部是“-”;第三象限內(nèi)只有正切是“+”,其余全部是“-”;第四象限內(nèi)只有余弦是“+”,其余全部是“-”。

  也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應(yīng)象限三角函數(shù)為正值的名稱?谠E中未提及的都是負值。

  “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應(yīng)的三角函數(shù)為正值。

  3三角函數(shù)順口溜

  三角函數(shù)是函數(shù),象限符號坐標(biāo)注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。

  同角關(guān)系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

  中心記上數(shù)字一,連結(jié)頂點三角形。向下三角平方和,倒數(shù)關(guān)系是對角,

  頂點任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負化正后大化小,

  變成銳角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,

  將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,

  余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

  計算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。

  逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。

  萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

  一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

  三角函數(shù)反函數(shù),實質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

  利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。

初中數(shù)學(xué)知識點大全(完整版)9

  一.列方程解應(yīng)用題的一般步驟:

  1.認真審題:分析題中已知和未知,明確題中各數(shù)量之間的關(guān)系;

  2.尋找等量關(guān)系:可借助圖表分析題中的已知量和未知量之間關(guān)系,找出能夠表示應(yīng)用題全部含義的相等關(guān)系;

  3.設(shè)未知數(shù):用字母表示題目中的未知數(shù)時一般采用直接設(shè)法,當(dāng)直接設(shè)法使列方程有困難可采用間接設(shè)法;

  4.列方程:根據(jù)這個相等關(guān)系列出所需要的代數(shù)式,從而列出方程注意它們的量要一致,使它們都表示一個相等或相同的量;

  列方程應(yīng)滿足三個條件:方程各項是同類量,單位一致,左右兩邊是等量;

  5.解方程:解所列出的方程,求出未知數(shù)的值;

  6.寫出答案:檢查方程的解是否符合應(yīng)用題的實際意義,進行取舍,并注意單位。

  簡記為六個字:審、找、設(shè)、列、解、答。

  二.列一元一次方程解應(yīng)用題的幾點注意:

  1.注意語言與解析式的互化:

  如,“多”、“少”、“增加了”、“增加為(到)”、“同時”、“擴大為(到)”、“擴大了”、……

  2.注意從語言敘述中寫出相等關(guān)系:

  如,x比y大3,則x-y=3或x=y+3或x-3=y。

  3.注意單位換算:

  如,“小時”、“分鐘”的換算;s、v、t單位的一致等。

  三.一元一次方程的實際應(yīng)用:

  常見考法

  一元一次方程應(yīng)用題的題型很多,每種題型又不完全孤立,其中有些題型的解題思想有相似之處,如工程問題和行程問題。所以一直受命題者青睞,近年來中考考查的實際問題多貼近生活,而且立意新穎,設(shè)計巧妙,所以決不能靠死背題型,要具體分析每一題的實際情況。

  誤區(qū)提醒

  由于對題意理解不透,不能正確的找出相等關(guān)系列出方程。

初中數(shù)學(xué)知識點大全(完整版)10

  棱柱是多面體中最簡單的一種,我們常見的一些物體,例如三棱鏡、方磚以及螺桿的頭部,它們都呈棱柱的形狀。

  棱柱:有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個多邊形的公共邊都互相平行,由這些面所圍成的多面體叫做棱柱。棱柱用表示底面各頂點的字母來表示。

  棱柱的底面:棱柱中兩個互相平行的面,叫做棱柱的底面。

  棱柱的側(cè)面:棱柱中除兩個底面以外的其余各個面都叫做棱柱的側(cè)面。

  棱柱的側(cè)棱:棱柱中兩個側(cè)面的公共邊叫做棱柱的側(cè)棱。

  棱柱的形成方式:棱柱是由一個由直線構(gòu)成的平面沿著不平行于此平面的直線整體平移而形成的。

  棱柱的頂點:在棱柱中,側(cè)面與底面的公共頂點叫做棱柱的頂點。

  棱柱的對角線:棱柱中不在表面同一平面上的兩個頂點的連線叫做棱柱的對角線。

  棱柱的高:棱柱的兩個底面的距離叫做棱柱的高。

  棱柱的對角面:棱柱中過不相鄰的兩條側(cè)棱的截面叫做棱柱的對角面。

  棱柱有很多,三棱柱、四棱柱、五棱柱、還有直棱柱、斜棱柱。

初中數(shù)學(xué)知識點大全(完整版)11

  1 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  2 定理1 關(guān)于某條直線對稱的兩個圖形是全等形

  3 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

  4定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

  5逆定理 如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

  6勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

  7勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個三角形是直角三角形

  8定理 四邊形的內(nèi)角和等于360

  9四邊形的外角和等于360

  10多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)180

  11推論 任意多邊的外角和等于360

  12平行四邊形性質(zhì)定理1 平行四邊形的對角相等

  13平行四邊形性質(zhì)定理2 平行四邊形的對邊相等

  14推論 夾在兩條平行線間的平行線段相等

  15平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分

  16平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

  17平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

  18平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

  19平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

  20矩形性質(zhì)定理1 矩形的四個角都是直角

初中數(shù)學(xué)知識點大全(完整版)12

  1.通過猜想,驗證,計算得到的定理:

  (1)全等三角形的判定定理:

  (2)與等腰三角形的相關(guān)結(jié)論:

 、俚妊切蝺傻捉窍嗟(等邊對等角)

 、诘妊切雾斀堑钠椒志,底邊上的中線,底邊上的高互相重合(三線合一)

  ③有兩個角相等的三角形是等腰三角形(等角對等邊)

  (3)與等邊三角形相關(guān)的結(jié)論:

 、儆幸粋角是60°得等腰三角形是等邊三角形

 、谌齻角都相等的三角形是等邊三角形

  ③三條邊都相等的三角形是等邊三角形

  (4)與直角三角形相關(guān)的結(jié)論:

 、俟垂啥ɡ恚涸谥苯侨切沃校瑑芍苯沁叺钠椒胶偷扔谛边叺钠椒

 、诠垂啥ɡ砟娑ɡ恚涸谝粋三角形中兩直角邊的平方和等于斜邊的平方,那么這個三角形一定是直角三角形

 、跦L定理:斜邊和一條直角邊對應(yīng)相等的兩個三角形全等

 、茉谌切沃30°角所對的直角邊等于斜邊的一半

  2.兩條特殊線

  (1)線段的垂直平分線

  ①線段的垂直平分線上的點到線段兩邊的距離相等互為逆定理{

 、诘揭粭l線段兩個端點距離相等的點在這條線段的垂直平分線上

  ③三角形的三條垂直平分線交于一點,并且這一點到這三個頂點的距離相等

  (2)角平分線

 、俳瞧椒志上的點到這個角的兩邊距離相等互為逆定理{

 、谠谝粋角的內(nèi)部,并且到這個角的兩邊距離相等的的點,在這個角的角平分線上

  3.命題的逆命題及真假

 、僭趦蓚命題中,如果一個命題的條件與結(jié)論是另一個命題的結(jié)論與條件,我們就說這兩個命題互為逆命題,其中一個是另一個的逆命題

 、谌绻粋定理的逆命題是真命題,那么他也是一個定理,我們稱這兩個定理為互逆定理

 、鄯凑ǎ簭姆穸}的結(jié)論入手,并把對命題結(jié)論的否定作為推理的已知條件,進行正確的邏輯推理,使之得到與已知條件,定理相矛盾,矛盾的原因是假設(shè)不成立,所以肯定了命題的結(jié)論,使命題獲得了證明

  第二章一元二次方程

  1.一元二次方程:只含有一個未知數(shù)X的整式方程,并且可以化成aX?+bX+C=0(a≠0)形式稱它為一元二次方程

  aX?+bX+C=0(a≠0)→一般形式

  aX?叫二次項bX叫一次項C叫常數(shù)項a叫二次項系數(shù)b叫一次項系數(shù)

  2.一元二次方程解法:

  (1)配方法:(X±a)?=b(b≥0)注:二次項系數(shù)必須化為1

  (2)公式法:aX?+bX+C=0(a≠0)確定a,b,c的值,計算b?-4ac≥0

  若b?-4ac>0則有兩個不相等的實根,若b?-4ac=0則有兩個相等的實根,若b?-4ac<0則無解

  若b?-4ac≥0則用公式X=-b±√b?-4ac/2a注:必須化為一般形式

  (3)分解因式法

  ①提公因式法:ma+mb=0→m(a+b)=0

  平方差公式:a?-b?=0→(a+b)(a-b)=0

 、谶\用公式法:{

  完全平方公式:a?±2ab+b?=0→(a±b)?=0

 、凼窒喑朔

  例題:X?-2X-3=0

  1/111

  ×}X?的系數(shù)為1則可以寫成{常數(shù)項系數(shù)為3則可寫成{

  1/-31-3

  --------

  -3+1=-2交叉相乘在相加求值,值必須等于一次項系數(shù)

  (X+1)(X-3)=o

初中數(shù)學(xué)知識點大全(完整版)13

  二次函數(shù)基本知識點

  I.定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a

  二次函數(shù)表達式的右邊通常為二次三項式。

  II.二次函數(shù)的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

  交點式:y=a(x-x)(x-x)[僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a

  拋物線的性質(zhì)

  1.拋物線是軸對稱圖形。對稱軸為直線

  x=-b/2a。

  對稱軸與拋物線唯一的交點為拋物線的頂點P。

  特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個頂點P,坐標(biāo)為

  P[-b/2a,(4ac-b^2;)/4a]。

  當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b^2-4ac=0時,P在x軸上。

  3.二次項系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

  當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;

  當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。

  二次函數(shù)的三種表達式

 、僖话闶剑簓=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  ②頂點式[拋物線的頂點P(h,k)]:y=a(x-h)^2+k

 、劢稽c式[僅限于與x軸有交點A(x1,0)和B(x2,0)的拋物線]:y=a(x-x1)(x-x2)

  以上3種形式可進行如下轉(zhuǎn)化:

  ①一般式和頂點式的關(guān)系

  對于二次函數(shù)y=ax^2+bx+c,其頂點坐標(biāo)為(-b/2a,(4ac-b^2)/4a),即

  h=-b/2a=(x1+x2)/2

  k=(4ac-b^2)/4a

 、谝话闶胶徒稽c式的關(guān)系

  x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)

初中數(shù)學(xué)知識點大全(完整版)14

  全等三角形的對應(yīng)邊、對應(yīng)角相等

  2邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等

  3角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等

  4推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等

  5邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等

  6斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等

  7定理1在角的平分線上的點到這個角的兩邊的距離相等

  8定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

  9角的平分線是到角的兩邊距離相等的所有點的集合

  10等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)

  21推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

  22等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  23推論3等邊三角形的各角都相等,并且每一個角都等于60°

  24等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  25推論1三個角都相等的三角形是等邊三角形

  26推論2有一個角等于60°的等腰三角形是等邊三角形

  27在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

  28直角三角形斜邊上的中線等于斜邊上的一半

  29定理線段垂直平分線上的點和這條線段兩個端點的距離相等

  30逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  31線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  32定理1關(guān)于某條直線對稱的兩個圖形是全等形

  33定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

  34定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

  35逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

  36勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

  37勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形

  38定理四邊形的內(nèi)角和等于360°

  39四邊形的外角和等于360°

  40多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

  41推論任意多邊的外角和等于360°

  42平行四邊形性質(zhì)定理1平行四邊形的對角相等

  43平行四邊形性質(zhì)定理2平行四邊形的對邊相等

  44推論夾在兩條平行線間的平行線段相等

  45平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

  46平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形

  47平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形

  48平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

  49平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

  50矩形性質(zhì)定理1矩形的四個角都是直角

  51矩形性質(zhì)定理2矩形的對角線相等

  52矩形判定定理1有三個角是直角的四邊形是矩形

  53矩形判定定理2對角線相等的平行四邊形是矩形

  54菱形性質(zhì)定理1菱形的四條邊都相等

  55菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角

  56菱形面積=對角線乘積的一半,即S=(a×b)÷2

  57菱形判定定理1四邊都相等的四邊形是菱形

  58菱形判定定理2對角線互相垂直的平行四邊形是菱形

  59正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等

  60正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  61定理1關(guān)于中心對稱的兩個圖形是全等的

  62定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

  63逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

  64等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等

  65等腰梯形的兩條對角線相等

  66等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形

  67對角線相等的梯形是等腰梯形

  68平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  69推論1經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

  70推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊

  71三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半

  72梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2 S=L×h

  73 (1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d

  74 (2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d

  75 (3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  76平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例

  77推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  78定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  79平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

  80定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  81相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)

  82直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

  83判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

  84判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)

  85定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似

  86性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

  87性質(zhì)定理2相似三角形周長的比等于相似比

  88性質(zhì)定理3相似三角形面積的比等于相似比的平方

  89任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  90任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

初中數(shù)學(xué)知識點大全(完整版)15

  1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

  2、菱形的性質(zhì):⑴矩形具有平行四邊形的一切性質(zhì);

 、屏庑蔚乃臈l邊都相等;

  ⑶菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。

  ⑷菱形是軸對稱圖形。

  提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對角線與邊之間的關(guān)系,即邊長的平方等于對角線一半的平方和。

  3、因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  4、因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④因式分解與整式乘法的關(guān)系:m(a+b+c)

  5、公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  6、公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫成積的形式。

  8、平方根表示法:一個非負數(shù)a的平方根記作,讀作正負根號a。a叫被開方數(shù)。

  9、中被開方數(shù)的取值范圍:被開方數(shù)a≥0

  10、平方根性質(zhì):①一個正數(shù)的平方根有兩個,它們互為相反數(shù)。②0的平方根是它本身0。③負數(shù)沒有平方根開平方;求一個數(shù)的平方根的運算,叫做開平方。

  11、平方根與算術(shù)平方根區(qū)別:定義不同、表示方法不同、個數(shù)不同、取值范圍不同。

  12、聯(lián)系:二者之間存在著從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0

  13、含根號式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負的平方根。

  14、求正數(shù)a的算術(shù)平方根的方法;

  完全平方數(shù)類型:①想誰的平方是數(shù)a。②所以a的平方根是多少。③用式子表示。

  求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。

【初中數(shù)學(xué)知識點】相關(guān)文章:

知識點初中數(shù)學(xué)總結(jié)03-16

初中數(shù)學(xué)知識點11-30

初中數(shù)學(xué)中考幾何知識點09-02

初中數(shù)學(xué)知識點資料03-07

初中數(shù)學(xué)簡單的統(tǒng)計知識點03-13

初中數(shù)學(xué)知識點歸納02-26

初中數(shù)學(xué)圓的概念知識點11-09

初中數(shù)學(xué)菱形知識點歸納03-16

初中數(shù)學(xué)整式知識點總結(jié)11-27

初中數(shù)學(xué)軸對稱知識點03-15