亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

中考備考 百文網(wǎng)手機站

中考數(shù)學(xué)知識點

時間:2021-12-13 14:34:39 中考備考 我要投稿

中考數(shù)學(xué)知識點通用15篇

  在日常過程學(xué)習(xí)中,相信大家一定都接觸過知識點吧!知識點是傳遞信息的基本單位,知識點對提高學(xué)習(xí)導(dǎo)航具有重要的作用。哪些知識點能夠真正幫助到我們呢?下面是小編為大家收集的中考數(shù)學(xué)知識點,歡迎大家借鑒與參考,希望對大家有所幫助。

中考數(shù)學(xué)知識點通用15篇

中考數(shù)學(xué)知識點1

  一概述

  列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實際的一個重要方面。其具體步驟是:

 、艑忣}。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。

 、圃O(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。

 、怯煤粗獢(shù)的代數(shù)式表示相關(guān)的量。

 、葘ふ蚁嗟汝P(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個數(shù)與方程個數(shù)是相同的。

  ⑸解方程及檢驗。

  ⑹答案。

  綜上所述,列方程(組)解應(yīng)用題實質(zhì)是先把實際問題轉(zhuǎn)化為數(shù)學(xué)問題(設(shè)元、列方程),在由數(shù)學(xué)問題的解決而導(dǎo)致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。

  二常用的相等關(guān)系

  1.行程問題(勻速運動)

  基本關(guān)系:s=vt

  ⑴相遇問題(同時出發(fā)):

 、谱芳皢栴}(同時出發(fā)):

  若甲出發(fā)t小時后,乙才出發(fā),而后在B處追上甲,則

 、撬泻叫校;

  2.配料問題:溶質(zhì)=溶液濃度

  溶液=溶質(zhì)+溶劑

  3.增長率問題:

  4.工程問題:基本關(guān)系:工作量=工作效率工作時間(常把工作量看著單位“1”)。

  5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關(guān)比例性質(zhì)等。

  三注意語言與解析式的互化

  如,“多”、“少”、“增加了”、“增加為(到)”、“同時”、“擴大為(到)”、“擴大了”、……

  又如,一個三位數(shù),百位數(shù)字為a,十位數(shù)字為b,個位數(shù)字為c,則這個三位數(shù)為:100a+10b+c,而不是abc。

  四注意從語言敘述中寫出相等關(guān)系。

  如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。五注意單位換算

  如,“小時”“分鐘”的換算;s、v、t單位的一致等。

中考數(shù)學(xué)知識點2

  1、變量與常量

  在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

  一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。

  2、函數(shù)解析式

  用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

  3、函數(shù)的三種表示法及其優(yōu)缺點

 。1)解析法

  兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。

 。2)列表法

  把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

  (3)圖像法

  用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

  4、由函數(shù)解析式畫其圖像的一般步驟

 。1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值。

 。2)描點:以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點。

  (3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

中考數(shù)學(xué)知識點3

  一、三角形的有關(guān)概念

  1.三角形:由不在同一直線上的三條線段首尾順次相接組成的圖形叫三角形。

  三角形的特征:①不在同一直線上;②三條線段;③首尾順次相接;④三角形具有穩(wěn)定性。

  2.三角形中的三條重要線段:角平分線、中線、高

  (1)角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

  (2)中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

  (3)高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

  說明:①三角形的角平分線、中線、高都是線段;②三角形的角平分線、中線都在三角形內(nèi)部且都交于一點;三角形的高可能在三角形的內(nèi)部(銳角三角形)、外部(鈍角三角形),也可能在邊上(直角三角形),它們(或延長線)相交于一點。

  二、等腰三角形的性質(zhì)和判定

  (1)性質(zhì)

  1.等腰三角形的兩個底角相等(簡寫成"等邊對等角")。

  2.等腰三角形的頂角的平分線,底邊上的中線,底邊上的高重合(簡寫成"等腰三角形的三線合一")。

  3.等腰三角形的兩底角的平分線相等(兩條腰上的中線相等,兩條腰上的高相等)。

  4.等腰三角形底邊上的垂直平分線到兩條腰的距離相等。

  5.等腰三角形的一腰上的高與底邊的夾角等于頂角的一半。

  6.等腰三角形底邊上任意一點到兩腰距離之和等于一腰上的高(需用等面積法證明)。

  7.等腰三角形是軸對稱圖形,只有一條對稱軸,頂角平分線所在的直線是它的對稱軸,等邊三角形有三條對稱軸。

  (2)判定

  在同一三角形中,有兩條邊相等的三角形是等腰三角形(定義)。

  在同一三角形中,有兩個角相等的三角形是等腰三角形(簡稱:等角對等邊)。

  三、直角三角形和勾股定理

  有一個角是直角的三角形是直角三角形,在直角三角形中,斜邊中線等于斜邊的一半;30度所對的直角邊等于斜邊的一半;直角三角形常用面積法求斜邊上的高。

  勾股定理:直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。

  勾股數(shù)一定是正整數(shù),常見勾股數(shù):3,4,5;5,12,13;6,8,10,;7,24,25;8,15,17;9,12,15。

  方法總結(jié):

  當(dāng)不明確直角三角形的斜邊長,應(yīng)把已知最長邊分為直角邊和斜邊兩種情況討論。無理數(shù)在數(shù)軸上的表示和線段長表示通常用到勾股定理。翻折題型常用勾股定理(口訣:翻折求邊找直角,勾股定理設(shè)未知量)

  如果三角形的三邊長a,b,c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形。勾股定理的逆定理,常用于判斷三角形的形狀,先確定最大邊(可以設(shè)為c)。

  四、初中三角形中線定理

  中線定理又稱阿波羅尼奧斯定理,是歐氏幾何的定理,表述三角形三邊和中線長度關(guān)系。

  定理內(nèi)容:三角形一條中線兩側(cè)所對邊平方和等于底邊的一半平方與該邊中線平方和的2倍。

  中線的定義:任何三角形都有三條中線,而且這三條中線都在三角形的內(nèi)部,并交于一點。

  由定義可知,三角形的中線是一條線段。

  由于三角形有三條邊,所以一個三角形有三條中線。

  且三條中線交于一點。這點稱為三角形的重心。

  每條三角形中線分得的兩個三角形面積相等。

  五、直角三角形的判定

  判定1:有一個角為90°的三角形是直角三角形。

  判定2:若a的平方+b的平方=c的平方,則以a、b、c為邊的三角形是以c為斜邊的直角三角形(勾股定理的逆定理)。

  判定3:若一個三角形30°內(nèi)角所對的邊是某一邊的一半,那么這個三角形是以這條長邊為斜邊的直角三角形。

  判定4:兩個銳角互余的三角形是直角三角形。

  判定5:證明直角三角形全等時可以利用HL,兩個三角形的斜邊長對應(yīng)相等,以及一個直角邊對應(yīng)相等,則兩直角三角形全等。[定理:斜邊和一條直角對應(yīng)相等的兩個直角三角形全等。簡稱為HL]

  判定6:若兩直線相交且它們的斜率之積互為負倒數(shù),則這兩直線垂直。

  判定7:在一個三角形中若它一邊上的中線等于這條中線所在邊的一半,那么這個三角形為直角三角形。

  六、勾股定理的逆定理

  如果三角形三邊長a,b,c滿足,那么這個三角形是直角三角形,其中c為斜邊。

 、俟垂啥ɡ淼哪娑ɡ硎桥卸ㄒ粋三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運用這一定理時,可用兩小邊的平方和與較長邊的平方作比較,若它們相等時,以a,b,c為三邊的三角形是直角三角形;若時,以a,b,c為三邊的三角形是鈍角三角形;若時,以a,b,c為三邊的三角形是銳角三角形;

 、诙ɡ碇衋,b,c及只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足,那么以a,b,c為三邊的三角形是直角三角形,但是b為斜邊.

 、酃垂啥ɡ淼哪娑ɡ碓谟脝栴}描述時,不能說成:當(dāng)斜邊的平方等于兩條直角邊的平方和時,這個三角形是直角三角形。

  七、三角形定理公式

  三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊。

  三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度。

  三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和。

  三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。

  三角形的三條角平分線交于一點(內(nèi)心)。

  三角形的三邊的垂直平分線交于一點(外心)。

  三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半。

中考數(shù)學(xué)知識點4

  一、數(shù)與代數(shù)

 、、數(shù)與式

  1.有理數(shù)的加法、乘法運算

  同號相加一邊倒,異號相加“大”減“小”;符號跟著大的跑,絕對值相等“零”正好。

  同號得正異號負,一項為零積是零!咀ⅰ俊按蟆睖p“小”是指絕對值的大小。

  2.合并同類項

  合并同類項,法則不能忘;只求系數(shù)代數(shù)和,字母、指數(shù)不變樣。

  3.去、添括號法則

  去括號、添括號,關(guān)鍵看符號;括號前面是正號,去、添括號不變號;

  括號前面是負號,去、添括號都變號。

  4.單項式運算

  加、減、乘、除、乘(開)方,三級運算分得清;系數(shù)進行同級(運)算,指數(shù)運算降級(進)行。

  5.分式混合運算法則

  分式四則運算,順序乘除加減;乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先;分子分母相約,然后再行運算;加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;

  變號必須兩處,結(jié)果要求最簡。

  6.平方差公式

  兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差;積化和差變兩項,完全平方不是它。

  7.完全平方公式

  首平方又末平方,二倍首末在中央;和的平方加再加,先減后加差平方。

  8.因式分解

  一提二套三分組,十字相乘也上數(shù);四種方法都不行,拆項添項去重組;重組無望試求根,

  換元或者算余數(shù);多種方法靈活選,連乘結(jié)果是基礎(chǔ);同式相乘若出現(xiàn),乘方表示要記住。

  【注】一提(提公因式)二套(套公式)

  9.二次三項式的因式分解

  先想完全平方式,十字相乘是其次;兩種方法行不通,求根分解去嘗試。

  10.比和比例

  兩數(shù)相除也叫比,兩比相等叫比例;基本性質(zhì)第一條,外項積等內(nèi)項積;

  前后項和比后項,組成比例叫合比;前后項差比后項,組成比例是分比;

  兩項和比兩項差,比值相等合分比;前項和比后項和,比值不變叫等比;

  商定變量成正比,積定變量成反比;判斷四數(shù)成比例,兩端積等中間積。

  11.根式和無理式

  表示方根代數(shù)式,都可稱其為根式;根式異于無理式,被開方式無限制;

  無理式都是根式,區(qū)分它們有標(biāo)志;被開方式有字母,才能稱為無理式。

  12.最簡根式的條件

  最簡根式三條件:號內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點。

中考數(shù)學(xué)知識點5

  一、代數(shù)式

  1. 概念:用基本的運算符號(加、減、乘、除、乘方、開方)把數(shù)與字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或字母也是代數(shù)式。

  2. 代數(shù)式的值:用數(shù)代替代數(shù)式里的字母,按照代數(shù)式的運算關(guān)系,計算得出的結(jié)果。

  二、整式

  單項式和多項式統(tǒng)稱為整式。

  1. 單項式:1)數(shù)與字母的乘積這樣的代數(shù)式叫做單項式。單獨的一個數(shù)或字母(可以是兩個數(shù)字或字母相乘)也是單項式。

  2) 單項式的系數(shù):單項式中的 數(shù)字因數(shù)及性質(zhì)符號叫做單項式的系數(shù)。

  3) 單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。

  2. 多項式:1)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數(shù)項。一個多項式有幾項就叫做幾項式。

  2)多項式的次數(shù):多項式中,次數(shù)最高的項的次數(shù),就是這個多項式的次數(shù)。

  3. 多項式的排列:

  1).把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

  2).把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

  由于單項式的項,包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符號看作是這一項的一部分,一起移動。

  三、整式的運算

  1. 同類項——所含字母相同,并且相同字母的次數(shù)也相同的項叫做同類項,幾個常數(shù)項也叫同類項。同類項與系數(shù)無關(guān),與字母排列的順序也無關(guān)。

  2. 合并同類項:把多項式中的同類項合并成一項叫做合并同類項。即同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。

  3. 整式的加減:有括號的先算括號里面的,然后再合并同類項。

  4. 冪的運算:

  5. 整式的乘法:

  1) 單項式與單項式相乘法則:把它們的系數(shù)、同底數(shù)冪分別相乘,其余只在一個單項式里含有的字母連同它的指數(shù)作為積的因式。

  2) 單項式與多項式相乘法則:用單項式去乘多項式的每一項,再把所得的積相加。

  3) 多項式與多項式相乘法則:先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。

  6. 整式的除法

  1) 單項式除以單項式:把系數(shù)與同底數(shù)冪分別相除作為上的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。

  2) 多項式除以單項式:把這個多項式的每一項除以單項式,再把所得的商相加。

  四、因式分解——把一個多項式化成幾個整式的積的形式

  1) 提公因式法:(公因式——多項式各項都含有的公共因式)吧公因式提到括號外面,將多項式寫成因式乘積的形式。 取各項系數(shù)的最大公約數(shù)作為因式的系數(shù),取相同字母最低次冪的積。公因式可以是單項式,也可以是多項式。

  2) 公式法:A.平方差公式; B.完全平方公式

中考數(shù)學(xué)知識點6

  1.解直角三角形

  1.1.銳角三角函數(shù)

  銳角a的正弦、余弦和正切統(tǒng)稱∠a的三角函數(shù)。

  如果∠a是Rt△ABC的一個銳角,則有

  1.2.銳角三角函數(shù)的計算

  1.3.解直角三角形

  在直角三角形中,由已知的一些邊、角,求出另一些邊、角的過程,叫做解直角三角形。

  2.直線與圓的位置關(guān)系

  2.1.直線與圓的位置關(guān)系

  當(dāng)直線與圓有兩個公共點時,叫做直線與圓相交;當(dāng)直線與圓有公共點時,叫做直線與圓相切,公共點叫做切點;當(dāng)直線與圓沒有公共點時,叫做直線與圓相離。

  直線與圓的位置關(guān)系有以下定理:

  直線與圓相切的判定定理:

  經(jīng)過半徑的外端并且垂直這條半徑的直線是圓的切線。

  圓的切線性質(zhì):

  經(jīng)過切點的半徑垂直于圓的切線。

  2.2.切線長定理

  從圓外一點作圓的切線,通常我們把圓外這一點到切點間的線段的長叫做切線長。

  切線長定理:過圓外一點所作的.圓的兩條切線長相等。

  2.3.三角形的內(nèi)切圓

  與三角形三邊都相切的圓叫做三角形的內(nèi)切圓,圓心叫做三角形的內(nèi)心,三角形叫做圓的外切三角形。三角形的內(nèi)心是三角形的三條角平分線的交點。

  3.三視圖與表面展開圖

  3.1.投影

  物體在光線的照射下,在某個平面內(nèi)形成的影子叫做投影。光線叫做投影線,投影所在的平面叫做投影面。由平行的投射線所形成的投射叫做平行投影。

  可以把太陽光線、探照燈的光線看成平行光線,它們所形成的投影就是平行投影。

  3.2.簡單幾何體的三視圖

  物體在正投影面上的正投影叫做主視圖,在水平投影面上的正投影叫做俯視圖,在側(cè)投影面上的正投影叫做左視圖。

  主視圖、左視圖和俯視圖合稱三視圖。

  產(chǎn)生主視圖的投影線方向也叫做主視方向。

  3.3.由三視圖描述幾何體

  三視圖不僅反映了物體的形狀,而且反映了各個方向的尺寸大小。

  3.4.簡單幾何體的表面展開圖

  將幾何體沿著某些棱“剪開”,并使各個面連在一起,鋪平所得到的平面圖形稱為幾何體的表面展開圖。

  圓柱可以看做由一個矩形ABCD繞它的一條邊BC旋轉(zhuǎn)一周,其余各邊所成的面圍成的幾何體。AB、CD旋轉(zhuǎn)所成的面就是圓柱的兩個底面,是兩個半徑相同的圓。AD旋轉(zhuǎn)所成的面就是圓柱的側(cè)面,AD不論轉(zhuǎn)動到哪個位置,都是圓柱的母線。

  圓錐可以看做將一根直角三角形ACB繞它的一條直角邊(AC)旋轉(zhuǎn)一周,它的其余各邊所成的面圍成的一個幾何體。直角邊BC旋轉(zhuǎn)所成的面就是圓錐的底面,斜邊AB旋轉(zhuǎn)所成的面就是圓錐的側(cè)面,斜邊AB不論轉(zhuǎn)動到哪個位置,都叫做圓錐的母線。

中考數(shù)學(xué)知識點7

  一、目標(biāo)與要求

  1、感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過解決簡單的實際問題,使學(xué)生自發(fā)地尋找不等式的解,會把不等式的解集正確地表示到數(shù)軸上;

  2、經(jīng)歷由具體實例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結(jié)合思想;

  3、通過對不等式、不等式解與解集的探究,引導(dǎo)學(xué)生在獨立思考的基礎(chǔ)上積極參與對數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識;讓學(xué)生充分體會到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個領(lǐng)域。

  二、重點

  理解并掌握不等式的性質(zhì);正確運用不等式的性質(zhì);建立方程解決實際問題,會解ax+b=cx+d類型的一元一次方程;尋找實際問題中的不等關(guān)系,建立數(shù)學(xué)模型;一元一次不等式組的解集和解法。

  三、難點

  一元一次不等式組解集的理解;弄清列不等式解決實際問題的思想方法,用去括號法解一元一次不等式;正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。

中考數(shù)學(xué)知識點8

  概率初步的有關(guān)概念

  (1)必然事件是指一定能發(fā)生的事件,或者說發(fā)生的可能性是100%;

  (2)不可能事件是指一定不能發(fā)生的事件;

  (3)隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件;

  (4)隨機事件的可能性

  一般地,隨機事件發(fā)生的可能性是有大小的,不同的隨機事件發(fā)生的可能性的大小有可能不同.

  (5)概率

  一般地,在大量重復(fù)試驗中,如果事件A發(fā)生的頻率會穩(wěn)定在某個常數(shù)P附近,那么這個常數(shù)P就叫做事件A的概率,記為P(A)=P.

  (6)可能性與概率的關(guān)系

  事件發(fā)生的可能性越大,它的概率越接近于1,反之事件發(fā)生的可能性越小,則它的概率越接近0.

  統(tǒng)計初步的有關(guān)概念

  總體:所要考查對象的全體叫總體;個體:總體中每一個考查對象.

  樣本:從總體中所抽取的一部分個體叫總體的一個樣本.

  樣本容量:樣本中個體的數(shù)目.

  樣本平均數(shù):樣本中所有個體的平均數(shù)叫樣本平均數(shù).

  總體平均數(shù):總體中所有個體的平均數(shù)叫做總體平均數(shù).

  統(tǒng)計學(xué)中的基本思想就是用樣本對總體進行估計、推斷,用樣本的平均水平、波動情況、分布規(guī)律等特征估計總體的平均水平、波動情況和分析規(guī)律.

中考數(shù)學(xué)知識點9

  一、 重要概念

  1。數(shù)的分類及概念

  數(shù)系表:

  說明:“分類”的原則:1)相稱(不重、不漏)

  2)有標(biāo)準(zhǔn)

  2。非負數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x≥0)

  常見的非負數(shù)有:

  性質(zhì):若干個非負數(shù)的和為0,則每個非負擔(dān)數(shù)均為0。

  3。倒數(shù): ①定義及表示法

 、谛再|(zhì):A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a1時,1/a1;D。積為1。

  4。相反數(shù): ①定義及表示法

  ②性質(zhì):A.a≠0時,a≠-a;B.a與-a在數(shù)軸上的位置;C。和為0,商為-1。

  5。數(shù)軸:①定義(“三要素”)

 、谧饔茫篈。直觀地比較實數(shù)的大小;B。明確體現(xiàn)絕對值意義;C。建立點與實數(shù)的一一對應(yīng)關(guān)系。

  6。奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))

  定義及表示:

  奇數(shù):2n-1

  偶數(shù):2n(n為自然數(shù))

  7。絕對值:①定義(兩種):

  代數(shù)定義:

  幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實數(shù)a在數(shù)軸上所對應(yīng)的點到原點的距離。

 、讴│≥0,符號“││”是“非負數(shù)”的標(biāo)志;③數(shù)a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號。

中考數(shù)學(xué)知識點10

  直線(Straight line)是幾何學(xué)基本概念,是點在空間內(nèi)沿相同或相反方向運動的軌跡;蛘叨x為:曲率最小的曲線(以無限長為半徑的圓弧)。

  從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個二元一次方程所表示的圖形。

  求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當(dāng)這個聯(lián)立方程組無解時,二直線平行;有無窮多解時,二直線重合;只有一解時,二直線相交于一點。常用直線與 X 軸正向的夾角( 叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度。可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標(biāo)軸的交點在該坐標(biāo)軸上的坐標(biāo),稱為直線在該坐標(biāo)軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。

  在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標(biāo)系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。

  空間直線的方向用一個與該直線平行的非零向量來表示,該向量稱為這條直線的一個方向向量。直線在空間中的位置, 由它經(jīng)過的空間一點及它的一個方向向量完全確定。在歐幾里得幾何學(xué)中,直線只是一個直觀的幾何對象。在建立歐幾里得幾何學(xué)的公理體系時,直線與點、平面等都是不加定義的,它們之間的關(guān)系則由所給公理刻畫。

  在非歐幾何中直線指連接兩點間最短的線,又稱短程線。

  方向向量:截取直線l上兩點A(l,n,0)和B(k+l,m+n,1)方向向量為:AB=(k,m,1)

中考數(shù)學(xué)知識點11

  1.旋轉(zhuǎn)和平移

  平移和旋轉(zhuǎn)是幾何中全等變換的一種重要的方式,其中旋轉(zhuǎn)是對大家?guī)缀巫兓芰M行考察的常用手段。

  旋轉(zhuǎn)問題之所以難,就是因為他通過旋轉(zhuǎn)使得圖形中出現(xiàn)很多相等的邊和相等的角,但是這不是圖中直接告訴的,是需要大家自己發(fā)現(xiàn)的,而旋轉(zhuǎn)與后面的二次函數(shù)、反比例函數(shù)、四邊形等知識結(jié)合在一起,會使的題目靈活性非常強,所以這一塊在學(xué)基礎(chǔ)知識的時候一定要牢固把握。

  2.平行四邊形

  平行四邊形,是學(xué)習(xí)矩形、菱形、正方形的基礎(chǔ),他的判定方式有五種,在實際應(yīng)用的時候,同學(xué)們往往難以決定到底要采取哪種方式,這就需要同學(xué)們根據(jù)圖形靈活的選擇,不同的辦法進行解決。

  3.特殊平行四邊形行

  特殊平行四邊形是初三的內(nèi)容,但是很多地方都把它提到初二來講。這部分知識靈活性強,變化大,綜合難度高,往往是同學(xué)們覺得幾何難學(xué)的開端。解決的辦法就是把他們的性質(zhì)和判定列表寫出來,由于表述非常的類似和接近,記憶起來比較困難。這就需要同學(xué)們運用對比分析的方法,搞清楚這三種圖形各自的性質(zhì)和判定,這樣才能在應(yīng)用的時候不至于混淆。

  整式

  1.整式:整式為單項式和多項式的統(tǒng)稱,是有理式的一部分,在有理式中可以包含加,減,乘,除、乘方五種運算,但在整式中除數(shù)不能含有字母。

  2.乘法

  (1)同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。

  (2)冪的乘方,底數(shù)不變,指數(shù)相乘。

  (3)積的乘方,先把積中的每一個因數(shù)分別乘方,再把所得的冪相乘。

  3.整式的除法

  (1)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。

  (2)任何不等于零的數(shù)的零次冪為1。

  分式

  1.一般地,如果A、B(B不等于零)表示兩個整式,且B中含有字母,那么式子A/B就叫做分式,其中A稱為分子,B稱為分母。

  2.分式條件

  (1)分式有意義條件:分母不為0。

  (2)分式值為0條件:分子為0且分母不為0。

  (3)分式值為正(負)數(shù)條件:分子分母同號得正,異號得負。

  (4)分式值為1的條件:分子=分母≠0。

  (5)分式值為-1的條件:分子分母互為相反數(shù),且都不為0。

  二次根式

  1.一般地,形如√a的代數(shù)式叫做二次根式,其中,a叫做被開方數(shù)。當(dāng)a≥0時,√a表示a的算術(shù)平方根;當(dāng)a小于0時,√a的值為純虛數(shù)。

  2.二次根式的加減法

  (1)同類二次根式:一般地,把幾個二次根式化為最簡二次根式后,如果它們的被開方數(shù)相同,就把這幾個二次根式叫做同類二次根式。

  (2)合并同類二次根式:把幾個同類二次根式合并為一個二次根式就叫做合并同類二次根式。

  (3)二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數(shù)相同的進行合并。

  3.二次根式的乘除法

  二次根式相乘除,把被開方數(shù)相乘除,根指數(shù)不變,再把結(jié)果化為最簡二次根式。

中考數(shù)學(xué)知識點12

  1.把一個分式的分子與分母的公因式約去,叫做分式的約分.

  2.分式進行約分的目的是要把這個分式化為最簡分式.

  3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.

  4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負來處理.當(dāng)然,簡單的分式之分子分母可直接乘方.

  6.注意混合運算中應(yīng)先算括號,再算乘方,然后乘除,最后算加減.

中考數(shù)學(xué)知識點13

  一、重點

  從現(xiàn)實物體中抽象出幾何圖形,把立體圖形轉(zhuǎn)化為平面圖形是重點;

  正確判定圍成立體圖形的面是平面還是曲面,探索點、線、面、體之間的關(guān)系是重點;

  畫一條線段等于已知線段,比較兩條線段的長短是一個重點,在現(xiàn)實情境中,了解線段的性質(zhì)兩點之間,線段最短是另一個重點。

  二、難點

  立體圖形與平面圖形之間的轉(zhuǎn)化是難點;

  探索點、線、面、體運動變化后形成的圖形是難點;

  畫一條線段等于已知線段的尺規(guī)作圖方法,正確比較兩條線段長短是難點。

  三、知識點、概念總結(jié)

  幾何圖形:點、線、面、體這些可幫助人們有效的刻畫錯綜復(fù)雜的世界,它們都稱為幾何圖形。從實物中抽象出的各種圖形統(tǒng)稱為幾何圖形。有些幾何圖形的各部分不在同一平面內(nèi),叫做立體圖形。有些幾何圖形的各部分都在同一平面內(nèi),叫做平面圖形。雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯(lián)系的。

中考數(shù)學(xué)知識點14

  1、二次函數(shù)的概念

  一般地,如果,那么y叫做x的二次函數(shù)。

  叫做二次函數(shù)的一般式。

  2、二次函數(shù)的圖像

  二次函數(shù)的圖像是一條關(guān)于對稱的曲線,這條曲線叫拋物線。

  拋物線的主要特征:

 、儆虚_口方向;②有對稱軸;③有頂點。

  3、二次函數(shù)圖像的畫法

  五點法:

  (1)先根據(jù)函數(shù)解析式,求出頂點坐標(biāo),在平面直角坐標(biāo)系中描出頂點M,并用虛線畫出對稱軸

  (2)求拋物線與坐標(biāo)軸的交點:

  當(dāng)拋物線與x軸有兩個交點時,描出這兩個交點A,B及拋物線與y軸的交點C,再找到點C的對稱點D。將這五個點按從左到右的順序連接起來,并向上或向下延伸,就得到二次函數(shù)的圖像。

  當(dāng)拋物線與x軸只有一個交點或無交點時,描出拋物線與y軸的交點C及對稱點D。由C、M、D三點可粗略地畫出二次函數(shù)的草圖。如果需要畫出比較精確的圖像,可再描出一對對稱點A、B,然后順次連接五點,畫出二次函數(shù)的圖像。

中考數(shù)學(xué)知識點15

  1.有理數(shù):

  (1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);不是有理數(shù);

  (2)有理數(shù)的分類:①②

  2.?dāng)?shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.

  3.相反數(shù):

  (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

  (2)相反數(shù)的和為0a+b=0a、b互為相反數(shù).

  4.絕對值:

  (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

  (2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;

  5.有理數(shù)比大。

 。1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0。唬3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.

  6.互為倒數(shù):

  乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a0,那么的倒數(shù)是;若ab=1a、b互為倒數(shù);若ab=-1a、b互為負倒數(shù).

  7.有理數(shù)加法法則:

  (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

 。2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

 。3)一個數(shù)與0相加,仍得這個數(shù).

  8.有理數(shù)加法的運算律:

 。1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).

  9.有理數(shù)減法法則:

  減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).

  10.有理數(shù)乘法法則:

 。1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;

 。2)任何數(shù)同零相乘都得零;

  (3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定.

  11.有理數(shù)乘法的運算律:

 。1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);

 。3)乘法的分配律:a(b+c)=ab+ac.

  12.有理數(shù)除法法則:

  除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),.

  13.有理數(shù)乘方的法則:

 。1)正數(shù)的任何次冪都是正數(shù);

 。2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時:(-a)n=-an或(a-b)n=-(b-a)n,當(dāng)n為正偶數(shù)時:(-a)n=an或(a-b)n=(b-a)n.

  14.乘方的定義:

  (1)求相同因式積的運算,叫做乘方;

 。2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

  15.科學(xué)記數(shù)法:把一個大于10的數(shù)記成a10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.

  16.近似數(shù)的精確位:

  一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.

  17.有效數(shù)字:

  從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.

  18.混合運算法則:

  先乘方,后乘除,最后加減.

  本章內(nèi)容要求學(xué)生正確認識有理數(shù)的概念,在實際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負數(shù)、相反數(shù)、絕對值的意義所在。重點利用有理數(shù)的運算法則解決實際問題.

  體驗數(shù)學(xué)發(fā)展的一個重要原因是生活實際的需要.激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實際問題的能力。教師在講授本章內(nèi)容時,應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。

【中考數(shù)學(xué)知識點通用15篇】相關(guān)文章:

數(shù)學(xué)中考的知識點通用15篇11-25

數(shù)學(xué)中考的知識點01-25

數(shù)學(xué)中考的知識點11-22

數(shù)學(xué)中考知識點集錦11-02

中考數(shù)學(xué)知識點10-31

數(shù)學(xué)中考知識點匯總10-26

中考數(shù)學(xué)知識點【圓】02-08

中考數(shù)學(xué)知識點:圓11-13

中考數(shù)學(xué)知識點總結(jié)05-27