亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

《比例的意義》教案

時間:2022-12-06 14:02:21 意義 我要投稿

《比例的意義》教案(通用15篇)

  作為一位不辭辛勞的人民教師,就難以避免地要準備教案,教案有助于學生理解并掌握系統(tǒng)的知識。怎樣寫教案才更能起到其作用呢?以下是小編精心整理的《比例的意義》教案,僅供參考,大家一起來看看吧。

《比例的意義》教案(通用15篇)

《比例的意義》教案1

  教學目標

  1.使學生理解反比例的意義,掌握成反比例的變化規(guī)律,并能初步運用,反比例的意義(參考教案二)。

  2.能正確判斷成正反比例的量,為解答正反比例應用題打下基礎。

  教學重點和難點

  理解反比例的意義,掌握兩種相關聯(lián)的量變化規(guī)律。

  教學過程設計

  (一)復習準備

  1.(出示幻燈)

  一種練習本的數(shù)量和總頁數(shù)如下表:

  師:請回答下列問題。

  (1)表中哪個量是固定不變的量?

  (2)哪兩種量是相關聯(lián)的量?它們的變化規(guī)律是怎樣的?

  (3)表內(nèi)相關聯(lián)的兩種量成正比例嗎?為什么?

  2.填空。(小黑板(一))

  兩種相關聯(lián)的量,一種量變化另一種量也隨著變化,如果這兩種量中________,這兩種量叫做成________的量,它們的關系叫做________關系。

  3.判斷下面各題中兩種量是否成正比例。

  (1)文具盒的單價一定,買文具盒的個數(shù)和總價( )。

  (2)水稻產(chǎn)量一定,水稻的種植面積和總產(chǎn)量( )。

  (3)一堆貨物一定,運出的.和剩下的( )。

  (4)汽車行駛的速度一定,行駛的時間和路程( )。

  (5)比值一定,比的前項和后項( )。

  可選其中一、二題,說一說為什么?

  師:通過剛才的復習,我們對正比例的意義理解得很好。你們想一想,有正比例就一定有反比例。什么時候成反比例呢?今天我們就學習反比例的意義。(板書課題:反比例的意義)

  (二)學習新課

  1.出示例4。(小黑板(二))

  例4 華豐機械廠加工一批零件,每小時加工的數(shù)量和加工的時間如下表:

  (1)分析表,回答下列問題。(幻燈出示)

  ①表中有哪種量?

 、趦煞N相關聯(lián)的量是如何變化的?

 、勰隳苷f出它們的關系式嗎?

  ④相對應的每兩個數(shù)的乘積各是多少?

 、菽姆N量是固定不變的?

  師:請同學們打開書自學,然后分組討論以上問題。(老師巡視、指導。)

  (2)同學們發(fā)言。

《比例的意義》教案2

  教學目標:

  (1)通過計算、觀察、比較,讓學生概括、理解比例的意義和比例的基本性質(zhì)。

  (2)認識比例的各部分名稱。

  (3)學會用比例的意義或比例的基本性質(zhì),判斷兩個比能不能組成比例,并寫出比例。

  教學重點難點:

  理解比例的意義和基本性質(zhì),會用比例的意義和基本性質(zhì)判斷兩個比能不能組成比例,并寫出比例。

  教具學具準備:幻燈片、學習卡。

  教學過程:

  一、創(chuàng)設情景,引入新課。

  出示三幅場景圖。

  (1)圖上描述的是什么情景?這幾幅圖都與什么有關?

 。2)這三面國旗有什么相同和不同的地方?(形狀相同,大小不同)

 。3)你們有見過這樣的國旗嗎?或者這樣的?

  我們的國旗,不論大小,之所以形狀相同,是因為它們都是按照一定的比例來制作的,從今天開始,我們將要學習有關比例的知識。板書課題

  二、自主探究,明確意義

  1、提問:你們知道每一幅圖中國旗的長和寬分別是多少嗎?

  2、談話:在制作國旗的過程中存在著有趣的比。請同學們拿出第一張自主學習卡,算一算這三幅國旗的長、寬之比,求出比值,并同桌互相說一說你有什么發(fā)現(xiàn)?

  3、學生匯報。

  4、我們以操場上和教室里的國旗為例,2.4:1.6= ,60:40= ,這兩個比的比值相等,中間可以用等號連接起來,寫成2.4:1.6=60:40,因為比還可以寫成分數(shù)形式,所以還可以寫成=。

  像這樣表示兩個比相等的式子叫做比例。(板書)

  5、在上圖的三面國旗的尺寸中,還有哪些比可以組成比例?

  6、深入探討:

 。1)比例有幾個比組成?

 。2)是不是任意兩個比都能組成比例?

 。3)判斷兩個比能不能組成比例,關鍵要看什么?

  7、完成“做一做”。

  三、探究比例的基本性質(zhì)。

  1、學習比例各部分的名稱。

  教師:我們知道組成比的兩個數(shù)分別叫前項和后項,組成比例的四個數(shù)也有自己的.名字,你們知道它們分別叫什么嗎?(課件出示)

 。1)指名讀一讀有關知識。

 。2)誰來介紹一下在2.4:1.6=60:40中,內(nèi)項和外項分別是誰?

  隨著學生的回答教師出示:

  2.4: 1.6 = 60: 40 (外項)(內(nèi)項)

  └-內(nèi)項-┘ =

  └------外項-------┘ (內(nèi)項)(外項)

 。3)如果把比例寫成分數(shù)形式,你能找出它的內(nèi)項和外項嗎?

 。4)任意選擇一個比例式,標出內(nèi)項、外項,同桌兩人互相檢查。

  2、研究比例的基本性質(zhì)。

 。1)活動探究,總結性質(zhì)。

  談話:比有基本性質(zhì),比例表示兩個比相等的式子,也有它特有的性質(zhì),請同學們拿出2號自主學習卡,小組討論一下,寫一寫,算一算,解決以下問題。

 、儆嬎阆旅姹壤袃蓚外項的積和兩個內(nèi)項的積,比較一下,你能發(fā)現(xiàn)什么?

  2.4:1.6=60:40 =

 、谀隳芘e一個例子,驗證你的發(fā)現(xiàn)嗎?

 、勰隳艿贸鍪裁唇Y論?

 、苣隳苡米帜副硎具@個性質(zhì)嗎?

 。2)運用性質(zhì)。

 、偬釂枺簩W了比例的基本性質(zhì),你覺得運用它能解決什么問題?

 、谶\用比例的基本性質(zhì),判斷下面哪組中的兩個比可以組成比例。

  (1) 6:3和8:5 (2) 0.2:2.5 和 4:50

  (3) :和 : (4) 1.2: 和 :5

  四、鞏固練習。

  1、填空

  (1)在a:7=9:b中,( )是內(nèi)項,( )是外項,a×b=( )。

 。2)一個比例的兩個內(nèi)項分別是3和8,則兩個外項的積是( ),兩個外項可能是( )和( )。

  (3)在一個比例里,兩個外項互為倒數(shù),那么兩個內(nèi)項的積是( ),如果一個外項是 ,另一個外項是( )。

  (4)在比例里,兩個內(nèi)項的積是18,其中一個外項是2,另一個外項是( )。

  (5)如果5a=3b,那么, = , = 。

  2、判斷。

 。1)在比例中,兩個外項的積減去兩個內(nèi)項的積,差是0。( )

 。2)18:30和3:5可以組成比例。( )

 。3)如果4X=3Y,(X和Y均不為0),那么4:X=3:Y。( )

 。4)因為3×10=5×6,所以3:5=10:6。( )

  3、把下面的等式改寫成比例:(能寫幾個寫幾個)

  16 × 3 = 4 × 12

  四、總結歸納

  1、這節(jié)課我們學習了什么知識?你有什么收獲?

  2、判斷兩個比能不能組成比例,有幾種方法?

  比例在生活中有著廣泛的應用,比如:警察可以根據(jù)腳印的長短判斷罪犯的大致身高,根據(jù)影子的長度可以算出一棵大樹的高度等,都與比例有關,我們只要認真學好比例,就一定能幫助我們了解其中的奧秘。

  板書設計

  比例的意義和基本性質(zhì)

  表示兩個比相等的式子叫做比例。

  2.4: 1.6 = 60: 40 (外項)(內(nèi)項)

  └-內(nèi)項-┘ 或 =

  └------外項-------┘ (外項)(內(nèi)項)

  在比例里,兩個外項的積等于兩個內(nèi)項的積。

  A:B=C → AD=BC

《比例的意義》教案3

  1.使學生初步認識正比例的意義、掌握正比例意義的變化規(guī)律。

  2.學會判斷成正比例關系的量。

  3.進一步培養(yǎng)學生觀察、分析、概括的能力。

  教學重點和難點

  理解正比例的意義,掌握正比例變化的規(guī)律。

  教學過程設計

  (一)復習準備

  請同學口述三量關系:

  (1)路程、速度、時間;(2)單價、總價、數(shù)量;(3)工作效率、時間、工作總量。

  (學生口述關系式、老師板書。)

  (二)學習新課

  今天我們進一步研究這些數(shù)量關系中的一些特征,請同學們回答老師的問題。

  幻燈出示:

  一列火車1小時行60千米,2小時行多少千米?3小時、4小時、5小時……各行多少千米?

  生:60千米、120干米、180千米……

  師:根據(jù)剛才口答的問題,整理一個表格。

  出示例1。(小黑板)

  例1 一列火車行駛的時間和所行的路程如下表。

  師:(看著表格)回答下面的問題。表中有幾種量?是什么?

  生:表中有兩種量,時間和路程。

  師:路程是怎樣隨著時間變化的?

  生:時間1小時,路程是60千米;2小時,路程為120千米;3小時,路程為180千米……

  師:像這樣一種量變化,另一種量也隨著變化,這兩種量就叫做兩種相關聯(lián)的量。

  (板書:兩種相關聯(lián)的量)

  師:表中誰和誰是兩種相關聯(lián)的量?

  生:時間和路程是兩種相關聯(lián)的量。

  師:我們看一看他們之間是怎樣變化的?

  生:時間由1小時變2小時,路程由60千米變?yōu)?20千米……時間擴大了,路程也隨著擴大,路程隨著時間的變化而變化。

  師:現(xiàn)在我們從后往前看,時間由8小時變?yōu)?小時、6小時、4小時……路程又是如何變化的?

  生:路程由480千米變?yōu)?20千米、360千米……

  師:從上面變化的情況,你發(fā)現(xiàn)了什么樣的規(guī)律?(同桌進行討論。)

  生:時間從小到大,路程也隨著從小到大變化;時間從大到小,路程也隨著從大到小變化。

  師:我們對比一下老師提出的兩個問題,互相討論一下,這兩種變化的原因是什么?

  (分組討論)

  師:請同學發(fā)表意見。

  生:第一題時間擴大了,行的路程也隨著擴大;第二題時間縮小了,所行的路程也隨著縮短了。

  師:我們對這種變化規(guī)律簡稱為“同擴同縮”。(板書)讓我們再看一看,它們擴大縮小的變化規(guī)律是什么?

  師:根據(jù)時間和路程可以求出什么?

  生:可以求出速度。

  師:這個速度是誰與誰的比?它們的結果又叫什么?

  生:這個速度是路程和時間的比,它們的結果是比值。

  師:這個60實際是什么?變化了嗎?

  生:這個60是火車的速度,是路程和時間的比值,也是路程和時間的商,速度不變。

  駛多少千米,速度都是60千米,這個速度是一定的,是固定不變的量,我們簡稱為定量。

  師:誰是定量時,兩種相關聯(lián)的量同擴同縮?

  生:速度一定時,時間和路程同擴同縮。

  師:對。這兩種相關聯(lián)的量的商,也就是比值一定時,它們同擴同縮。我們看著表再算一算表中路程與時間相對應的商是不是一定。

  (學生口算驗證。)

  生:都是60千米,速度不變,符合變化的規(guī)律,同擴同縮。

  師:同學們總結得很好。時間和路程是兩種相關聯(lián)的量,路程是隨著時間的變化而變化的:時間擴大,路程也隨著擴大;時間縮小,路程也隨著縮小。擴大和縮小的規(guī)律是:路程和時間的比的比值總是一樣的。

  師:誰能像老師這樣敘述一遍?

  (看黑板引導學生口述。)

  師:我們再看一題,研究一下它的變化規(guī)律。

  出示例2。(小黑板)

  例2 某種花布的米數(shù)和總價如下表:

  (板書)

  按題目要求回答下列問題。(幻燈)

  (1)表中有哪兩種量?

  (2)誰和誰是相關聯(lián)的量?關系式是什么?

  (3)總價是怎樣隨著米數(shù)變化的?

  (4)相對應的總價和米數(shù)的比各是多少?

  (5)誰是定量?

  (6)它們的變化規(guī)律是什么?

  生:(答略)

  師:比較一下兩個例題,它們有什么共同點?

  生:都有兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化。

  師:對。兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。這就是今天我們學習的新內(nèi)容。(板書課題:正比例的意義)

  師:你能按照老師說的敘述一下例1中兩個相關聯(lián)的量之間的關系嗎?

  生:路程隨著時間的變化而變化,它們的比值(也就是速度)一定,所以路程和時間是成正比例的量,它們的關系是正比例關系。

  師:想一想例2,你能敘述它們是不是成正比例的量?為什么?(兩人互相試說。)

  師:很好。請打開書,看書上是怎樣總結的?

  (生看書,并畫出重點,讀一遍意義。)

  師:如果表中第一種量用x表示,第二種量用y表示,定量用k表示,誰能用字母表示成正比例的兩種相關聯(lián)的量與定量的關系?

  師:你能舉出日常生活中成正比例關系的兩種相關聯(lián)的量的例子嗎?

  生:(答略)

  師:日常生活和生產(chǎn)中有很多相關聯(lián)的.量,有的成正比例關系,有的是相關聯(lián),但不成比例關系。所以判斷兩種相關聯(lián)的量是否成正比例關系,要抓住相對應的兩個量是否商(比值)一定,只有商(比值)一定時,才能成正比例關系。

  (三)鞏固反饋

  1.課本上的“做一做”。

  2.幻燈出示題,并說明理由。

  (1)蘋果的單價一定,買蘋果的數(shù)量和總價( )。

  (2)每小時織布米數(shù)一定,織布總米數(shù)和時間( )。

  (3)小明的年齡和體重( )。

  (四)課堂總結

  師:今天主要講的是什么內(nèi)容?你是如何理解的?

  (生自己總結,舉手發(fā)言。)

  師:打開書,并說出正比例的意義。有什么不明白的地方提出來。

  (五)布置作業(yè)

  (略)

  課堂教學設計說明

  第一部分:復習三量關系,為本節(jié)內(nèi)容引路。

  第二部分:新課從創(chuàng)設正比例表象入手,引導學生主動、自覺地觀察、分析、概括,緊緊圍繞判斷正比例的兩種相關聯(lián)的兩個量、商一定展開思路,結合例題中的數(shù)據(jù)整理知識,發(fā)現(xiàn)規(guī)律,由討論表象到抽象概念,使知識得到深化。

  第三部分:鞏固練習。幫助學生鞏固新知識,由此驗證學生對知識的理解和掌握情況,幫助學生掌握判斷方法。最后指導學生看書,抓住本節(jié)重點,突破難點。安排適當?shù)木毩曨},在反復的練習中,加強概念的理解,牢牢掌握住判斷的方法。合理安排作業(yè),進一步鞏固所學知識。

  總之,在設計教案的過程中,力爭體現(xiàn)教師為主導,學生為主體的精神,使學生認識結構不斷發(fā)展,認識水平不斷提高,做到在加強雙基的同時發(fā)展智力,培養(yǎng)能力,并為以后學習打下良好的基礎。

  板書設計

《比例的意義》教案4

  教學內(nèi)容:教材第42~44頁例4~例6,“練一練”,練習八第4—7題。

  教學要求:

  1.使學生認識反比例關系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據(jù)反比例的意義判斷兩種量成不成反比例關系。

  2.進一步培養(yǎng)學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯(lián)的量成不成反比例的方法,培養(yǎng)學生判斷、推理的能力。

  教學重點:認識反比例關系的意義。

  教學難點:掌握成反比例量的變化規(guī)律及其特征。

  教學過程:

  一、復習舊知

  1.正比例關系的意義是什么?怎樣用字母表示這種關系?

  判斷兩種相關聯(lián)量成不成正比例的關鍵是什么?

  2.下面哪兩種量成正比例關系?為什么?

  (1)時間一定,行駛的速度和路程。

  (2)數(shù)量一定,單價和總價。

  3.說一說工作效率、工作時間和工作總量之間的數(shù)量關系。(學生回答后老師板書)在什么條件下,其中兩種量成正比例?

  4.引入新課。

  如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關系呢?這就是今天要學習的反比例關系。(板書課題)

  二、教學新課

  1.教學例4。

  出示例4。讓學生計算,在課本上填表,并觀察思考能發(fā)現(xiàn)什么?指名口答,老師板書填表。讓學生按學習正比例的方法觀察表里內(nèi)容,相互之間討論,發(fā)現(xiàn)了什么。

  指名學生口答討論的結果,得出:

  (1)每天運的噸數(shù)和需要的天數(shù)是兩種相關聯(lián)的量,(板書:兩種相關聯(lián)的量)需要的天數(shù)隨著每天運的噸數(shù)的變化而變化。

  (2)每天運的噸數(shù)縮小,需要的天數(shù)反而擴大,每天運的噸數(shù)擴大,需要的天數(shù)反而縮小。

  (3)可以看出它們的變化規(guī)律是:每天運的噸數(shù)和天數(shù)的積總是一定的。(板書:每天運的噸數(shù)和天數(shù)的積一定)因為每天運的噸數(shù)和天數(shù)的積都是240。提問:這里的240是什么數(shù)量?誰能說出這里的數(shù)量關系式?想一想,這個式子表示的是什么意思?(把上面的板書補充成:運的總噸數(shù)一定時,每天運的噸數(shù)和天數(shù)的積一定)

  2.教學例5。

  出示例5。

  請同學們按照剛才學習例4的方法,自己學習例5,仔細想想你發(fā)現(xiàn)了些什么?學生觀察思考后,指名學生口答從表里發(fā)現(xiàn)了些什么,再提問:這兩種相關聯(lián)量變化的規(guī)律是什么?(板書:每袋重量和袋數(shù)的積一定)乘積8000是什么數(shù)量,這種數(shù)量關系用式子怎樣表示?[板書:每袋重量×袋數(shù)=糖果總重量(一定)]這個式子表示什么意思?(把上面板書補充成:糖果總重量一定時,每袋重量和袋數(shù)的積一定)

  3.概括反比例的意義。

  (1)綜合例4、例5的共同點。

  提問:請你比較一下例4和例5,說一說,這兩個例題有什么共同的地方?

  (2)概括反比例意義。

  例4、例5里兩種相關聯(lián)的量,它們是什么關系的量呢?請同學們看第43頁倒數(shù)第二節(jié)。說明:像例4、例5里這樣兩種相關聯(lián)的.量,一種量變化,另一種量也隨著變,變化時兩種量中相對應的兩個數(shù)的積一定。這樣兩種相關聯(lián)的量就叫做成反比例的量,它們之間的關系叫做反比例關系。迫問:兩種相關聯(lián)的量成不成反比例的關鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關聯(lián)的量,用k表示它們的乘積,那么上面這種關系式可以怎樣寫呢?【板書:x×y=k(一定)】指出:這個式子表示兩種相關聯(lián)的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關系。所以,兩種量成反比例關系,我們就用x×y=k(一定)來表示。

  4.具體認識。

  (1)提問:例4里有哪兩種相關聯(lián)的量?這兩種量成反比例關系嗎?為什么,

  例5里的兩種量成反比例關系嗎?為什么?

  (2)提問:看兩種相關聯(lián)的量成不成反比例,關鍵要看什么?

  (3)做練習八第4題。

  讓學生讀題思考。指名依次口答題里的問題。[結合板書;每天裝配的臺數(shù)×天數(shù)=一批計算機的總臺數(shù)(一定)]

  (4)判斷。

  現(xiàn)在回過來看開始寫的關系式:工作效率×工作時間=工作總量,當工作總量一定時,工作效率和工作時間成什么關系?為什么?指出:根據(jù)上面所說的反比例的意義,要知道兩個量成不成反比例關系,只要先看這兩種量是不是相關聯(lián)的量,再看兩種量變化時乘積是不是一定。如果兩種相關聯(lián)的量變化時乘積一定,它們就是成反比例的量,相互之間的關系就是反比例關系。

  5.教學例6。

  出示例6,學生讀題、思考。提問:怎樣判斷成不成反比例?哪位同學說說每本的頁數(shù)和裝訂的本數(shù)成不成反比例?為什么?【板書;每本的頁數(shù)×本數(shù)=紙的總頁數(shù)(一定)】請同學們看書上例6是怎樣判斷的,看看我們說得對不對。追問:判斷兩種量成不成反比例要怎樣想?其中關鍵是看什么?

  三、鞏固練習

  用剛才我們說的判斷方法來做幾道題。

  1.做“練一練”第l題。

  指名學生口答,說明理由。(可以寫出數(shù)量關系式看一看)

  2.做“練一練”第2題。

  指名口答,說說理由。思考時可以引導看數(shù)量關系式。

  3.做練習八第5題。

  讓學生先在書上判斷。指名口答,要求說出數(shù)量關系式判斷。

  4.下題兩種相關聯(lián)量成不成反比例?為什么?

  一根鐵絲,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

  5.做練習八第6題。

  各人先在書上寫各成什么比例。指名口答,要求說明理由。

  6.做練習八第7題。

  先讓學生默讀題目。提問:題里有怎樣的關系式?(板書:圓柱底面積×高=體積)指名學生口答.

  四、課堂小結

  這節(jié)課學習的是什么內(nèi)容?反比例關系的意義是什么?用怎樣的式子表示x和y這兩種相關聯(lián)的量成反比例?判斷兩種量是不是成反比例,關鍵是什么?

  五、課堂作業(yè)

  練習八第7題。

《比例的意義》教案5

  教學目標

  1.使學生理解正、反比例的意義,能夠初步判斷兩種相關聯(lián)的量是否成比例,成什么比例.

  2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.

  3.滲透辯證唯物主義的觀點,進行運用變化觀點的啟蒙教育.

  教學重難點

  理解正反比例的意義,掌握正反比例的變化的.規(guī)律.

  教學過程

  一、導入新課

  (一)昨天老師買了一些蘋果,吃了一部分,你能想到什么?

 。ǘ┙處熖釂

  1.你為什么馬上能想到還剩多少呢?

  2.是不是因為吃了的和剩下的是兩種相關聯(lián)的量?

  教師板書:兩種相關聯(lián)的量

 。ㄈ┙處熣勗

  在實際生活中兩種相關的量是很多的,例如總價和單價是兩種相關聯(lián)的量,總價和

  數(shù)量也是兩種相關聯(lián)的量.你還能舉出一些例子嗎?

  二、新授教學

  (一)成正比例的量

  例1.一列火車行駛的時間和所行的路程如下表:

  時間(時):路程(千米)

  1:90

  2:180

  3:270

  4:360

  5:450

  6:540

  7:630

  8:720

  1.寫出路程和時間的比并計算比值.

 。1)2表示什么?180呢?比值呢?

 。2)這個比值表示什么意義?

 。3)360比5可以嗎?為什么?

  2.思考

 。1)180千米對應的時間是多少?4小時對應的路程又是多少?

  (2)在這一組題中上邊的一列數(shù)表示什么?下邊一列數(shù)表示什么?所求出的比值呢?

  教師板書:時間、路程、速度

 。3)速度是怎樣得到的?

  教師板書:

 。4)路程比時間得到了速度,速度也就是比值,比值相當于除法中的什么?

  (5)在這組題中誰與誰是兩種相關聯(lián)的量?它們是如何相關聯(lián)的?舉例說明變化規(guī)律.

  3.小結:有什么規(guī)律?

《比例的意義》教案6

  素質(zhì)教育目標

 。ㄒ唬┲R教學點

  1.使學生理解正比例的意義。

  2.能根據(jù)正比例的意義判斷兩種量是不是成正比例。

 。ǘ┠芰τ柧汓c

  1.培養(yǎng)學生用發(fā)展變化的觀點來分析問題的能力。

  2.培養(yǎng)學生抽象概括能力和分析判斷能力。

 。ㄈ┑掠凉B透點

  1.通過引導學生用發(fā)展變化的觀點來分析問題,使學生進一步受到辯證唯物主義觀點的啟蒙教育。

  2.進一步滲透函數(shù)思想。

  教學重點:使學生理解正比例的意義。

  教學難點:引導學生通過觀察、思考發(fā)現(xiàn)兩種相關聯(lián)的量的變化規(guī)律,即它們相對應的數(shù)的比值一定,從而概括出正比例關系的概念。

  教具學具準備:投影儀、投影片、小黑板。

  教學步驟

  一、鋪墊孕伏

  用投影逐一出示下列題目,請同學回答:

  1.已知路程和時間,怎樣求速度?

  2.已知總價和數(shù)量,怎樣求單價?

  3.已知工作總量和工作時間,怎樣求工作效率?

  二、探究新知

  1.導入新課:這些都是我們已經(jīng)學過的常見的數(shù)量關系。這節(jié)課,我們繼續(xù)研究這些數(shù)量關系中的一些特征。

  2.教學例1

  (1)投影出示:一列火車1小時行駛60千米,2小時行駛120千米,3小時行駛180千米,4小時行駛240千米,5小時行駛300千米,6小時行駛360千米,7小時行駛420千米,8小時行駛480千米……

  (2)出示下表,并根據(jù)上述內(nèi)容填表。

  一列火車行駛的時間和所行的路程如下表

 。3)邊填表邊思考:在填表過程中,你發(fā)現(xiàn)了什么?

  學生交流時,使之明確。

 、俦碇杏袝r間和路程兩種量。

  ②當時間是1小時,路程則是60千米,時間是2小時,路程是120千米……時間變化,路程也隨著變化,時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。

  教師點撥:

  像這樣,時間變化,路程也隨著變化,我們就說,時間和路程是兩種相關聯(lián)的量。(板書:兩種相關聯(lián)的量)

  ③如果學生沒有問題,教師提示:請每位同學任選一組相對應的數(shù)據(jù),計算出路程與時間的比的比值。

  教師問:根據(jù)計算,你發(fā)現(xiàn)了什么?

  引導學生得出:相對應的兩個數(shù)的比值都是60或都一樣,固定不變等。

  教師指出:相對應的兩個數(shù)的比的比值都一樣或固定不變,在數(shù)學上叫做“一定”。(板書:相對應的兩個數(shù)的比值一定)

 、鼙戎60,實際就是火車的速度。用式子表示它們的關系就是:

  (4)教師小結:

  剛才同學們通過填表、交流,我們知道時間和路程是兩種相關聯(lián)的量,路程隨著時間的變化而變化。時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。它們擴大、縮小的規(guī)律是:路程和時間的比的比值總是一定的。

  3.教學例2

  (1)出示例2:在一間布店的柜臺上,有一張寫著某種花布的米數(shù)和總價的表。

 。2)觀察上表,引導學生明確:

  ①表中有數(shù)量(米數(shù))和總價這兩種量,它們是兩種相關聯(lián)的量。

 、诳們r隨米數(shù)的變化情況是:

  米數(shù)擴大,總價隨著擴大;米數(shù)縮小,總價也隨著縮小。

  ③相對應的總價和米數(shù)的比的比值是一定的。

 、鼙戎3.1,實際就是這種花布的單價。用式子表示它們的關系就是:

 。3)師生小結:通過剛才的觀察和分析,我們知道總價和米數(shù)也是兩種什么樣的量?(兩種相關聯(lián)的量)為什么?(總價隨著米數(shù)的變化而變化。)怎樣變化?(米數(shù)擴大,總價隨著擴大;米數(shù)縮小,總價隨著縮小。)它們擴大、縮小的規(guī)律是怎樣的?(總價和米數(shù)的比的比值總是一定的。)

  4.抽象概括正比例的意義。

 。1)比較例1、例2,思考并討論,這兩個例子有什么共同點?

 。2)學生初步交流時引導學生明確:

 、倮1中有路程和時間兩種量;例2中有米數(shù)和總價兩種量。即它們都有兩種相關聯(lián)的量;

 、诶1中時間變化,路程就隨著變化;例2中米數(shù)變化,總價也隨著變化。

  教師點撥:像這樣,我們就可以說:一種量變化,另一種量也隨著變化。(板書)

 、劾1中路程與時間的比的比值一定:例2中總價與米數(shù)的比的比值一定。概括地講就是:兩種量中相對應的兩個數(shù)的.比值(也就是商)一定。

 。▽W生答不出來時,教師引導、點撥,并補充板書:兩種量中)

  (3)引導學生抽象概括出兩例的共同點:

  兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,這兩種量中相對應的兩個數(shù)的比值(也就是商)一定。

  (4)教師指明:兩種相關聯(lián)的量,一種變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。

 。ㄑa充板書:如果這成正比例的量正比例關系)

  這就是我們這節(jié)課學習的“正比例的意義”(板書課題)

  (5)看書19、20頁的內(nèi)容,進一步理解正比例的意義。

 。6)教師說明:在例1中,路程隨著時間的變化而變化,它們的比的比值(速度)保持一定,所以路程和時間是成正比例的量。

 。7)想一想:在例2中,有哪兩種相關聯(lián)的量?它們是不是成正比例的量?為什么?

  (8)教師提出:如果字母x和y表示兩種相關聯(lián)的量,用k表示它們的比值(一定),正比例關系怎樣用字母表示出來?

 。9)教師提出:根據(jù)正比例的意義以及表示正比例關系的式子想一想:構成正比例關系的兩種量必須具備哪些條件?

  5.教學例3

  (1)出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù)是不是成正比例?

 。2)根據(jù)正比例的意義,由學生討論解答。

 。3)匯報判斷結果,并說明判斷的根據(jù)。

  教師板書:

  面粉的總重量和袋數(shù)是兩種相關聯(lián)的量。

  所以面粉的總重量和袋數(shù)成正比例。

  6.反饋練習

  讓學生試做第21頁的做一做,并訂正。

  三、鞏固發(fā)展

  1.完成練習三第1題。

  先想一想成正比例的量要滿足哪幾個條件?再算出各表相對應數(shù)的比的比值。如果相等,列關系式判斷。第(3)題不成比例,訂正時要學生說明為什么?

  2.完成練習三第2題的(1)-(9)

  先讓學生自己判斷,再訂正。

  四、全課小結(師生共同進行)

  通過這節(jié)課的學習,你都知道了什么?怎樣判斷兩種量是否成正比例?

《比例的意義》教案7

  教學過程:

  一、復習鋪墊

  1、下面兩種量是不是成正比例?為什么?

  購買練習本的價錢0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。

  2、成正比例的量有什么特征?

  二、探究新知

  1、導入新課:這節(jié)課我們繼續(xù)學習常見的數(shù)量關系中的另一種特征成反比例的量。

  2、教學P42例3。

  (1)引導學生觀察上表內(nèi)數(shù)據(jù),然后回答下面問題:

  A、表中有哪兩種量?這兩種量相關聯(lián)嗎?為什么?

  B、水的高度是否隨著底面積的變化而變化?怎樣變化的?

  C、表中兩個相對應的數(shù)的比值各是多少?一定嗎?兩個相對應的數(shù)的積各是多少?你能從中發(fā)現(xiàn)什么規(guī)律嗎?

  D、這個積表示什么?寫出表示它們之間的數(shù)量關系式

 。2)從中你發(fā)現(xiàn)了什么?這與復習題相比有什么不同?

  A、學生討論交流。

  B、引導學生回答:

 。3)教師引導學生明確:因為水的體積一定,所以水的高度隨著底面積的變化面變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成反比例關系,高度和底面積叫做成反比例的量。

 。4)如果用字母x和y表示兩種相關的量,用k表示它們的積一定,反比例可以用一個什么樣的.式子表示?板書:xy=k(一定)

  三、鞏固練習

  1、想一想:成反比例的量應具備什么條件?

  2、判斷下面每題中的兩個量是不是成反比例,并說明理由。

  (1)路程一定,速度和時間。

 。2)小明從家到學校,每分走的速度和所需時間。

 。3)平行四邊形面積一定,底和高。

 。4)小林做10道數(shù)學題,已做的題和沒有做的題。

 。5)小明拿一些錢買鉛筆,單價和購買的數(shù)量。

  (6)你能舉一個反比例的例子嗎?

  四、全課小節(jié)

  這節(jié)課我們學習了成反比例的量,知道了什么樣的兩個量是成反比例的兩個量,也學會了怎樣判斷兩種量是不是成反比例。

  五、課堂練習

  P45~46練習七第6~11題。

  教學目的:

  1、理解反比例的意義,能根據(jù)反比例的意義,正確的判斷兩種量是否成反比例。

  2、通過引導學生討論探究,分析合作,使學生進一步認識事物之間的聯(lián)系和發(fā)展變化的規(guī)律。

  3、初步滲透函數(shù)思想。

  教學重點:引導學生總結出成反比例的量,是相關的兩種量中相對應的兩個數(shù)積一定,進而抽象概括出成反比例的關系式。

  教學難點:利用反比例的意義,正確判斷兩個量是否成反比例。

《比例的意義》教案8

  教學目標:

  1、使學生理解正比例的意義,能根據(jù)正比例的意義判斷是不是成正比例。

  2、培養(yǎng)學生概括能力和分析判斷能力。

  3、培養(yǎng)學生用發(fā)展變化的觀點來分析問題的能力。

  教學重點:

  成正比例的量的特征及其判斷方法。

  教學難點:

  理解兩個變量之間的比例關系,發(fā)現(xiàn)思考兩種相關聯(lián)的量的變化規(guī)律.

  教 法:

  啟發(fā)引導法

  學 法:

  自主探究法

  教 具:

  課件

  教學過程:

  一、定向?qū)W(5分)

  1、已知路程和時間,求速度

  2、已知總價和數(shù)量,求單價

  3、已知工作總量和工作時間,求工作效率

  4、導入課題

  今天我們來學習成正比例的量。

  5、出示學習目標

  1、理解正比例的意義。

  2、能根據(jù)正比例的意義判斷兩種量是不是成正比例。

  二、自主學習(8分)

  自學內(nèi)容:書上45頁例1

  自學時間:8分鐘

  自學方法:讀書法、自學法

  自學思考:

  1、舉例說明什么是成正比例的量,成正比例的量要具備幾個條件?

  2、正比例關系式是什么?

 。1)兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關系叫做正比例關系。例如底面積一定,體積和高成正比例。

 。2)構成正比例關系的兩種量,必須具備三個條件:一是必須是兩種相關聯(lián)的量,二是一種量變化另一種量也隨著變化,三是比值(商)一定

 。3)如果用x和y表示兩種相關聯(lián)的量,用k表示它們的比值(一定),正比例關系怎樣用字母表示出來?

  y/x=k(一定)

 。4)不計算,根據(jù)圖像判斷,如果杯中水的高度是7厘米,那么水的體積是175立方米?225立方厘米的`水有9厘米。

  2、歸類提升

  引導學生小結成正比例的量的意義和關系式。

  三、合作交流(5分)

  第46頁正比例圖像

  1、正比例圖像是什么樣子的?

  2、完成46頁做一做

  3、各組的b1同學上臺講解

  四、質(zhì)疑探究(5分)

  1、第49頁第1題

  2、第49頁第2題

  3、你還有什么問題?

  五、小結檢測(8分)

  1、什么是正比例關系?如何判斷是不是正比例關系?

  2、檢測

  1、49頁第3題。

  六、堂清作業(yè)(9分)

  練習九頁第4、5題。

  板書設計:

  成正比例的量

  兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關系叫做正比例關系。

  關系式:

  y/x=k

  (一定)

《比例的意義》教案9

  設計說明

  本節(jié)課的教學內(nèi)容包含“比例的意義和比例的基本性質(zhì)”兩部分。本節(jié)課的內(nèi)容是這個單元的起始,屬于概念教學,是為以后解比例,講解正比例、反比例做準備的。學生學好這部分的知識,不僅可以初步接觸函數(shù)的思想,還可以解決日常生活中的一些具體問題。遵循“自主探索與合作交流”的《數(shù)學課程標準》理念,本節(jié)課在教學設計上有以下特點:

  1.重視有效學習情境的創(chuàng)造。

  新課伊始,通過談話激活學生對國旗的已有認識,引出本節(jié)課要用的中國國旗的三種不同規(guī)格的相關數(shù)據(jù),激發(fā)學生的學習興趣,使學生在熟悉的現(xiàn)實情境中,情緒飽滿地進入到對比例知識的探究學習中。

  2.重視引導學生自主探究。

  教學比例的意義時,先引導學生依據(jù)三面國旗的長與寬寫出多個比,再引導學生發(fā)現(xiàn)它們的比值相等,可以寫成一個等式,引出比例,最后引導學生通過自己的分析、思考,進行歸納總結出比例的意義。

  3.重視引導學生合作交流。

  《數(shù)學課程標準》指出:“合作交流是學生學習數(shù)學的重要方式!睘榇耍覀冊诮虒W中,不但要引導學生進行自主探究,還要引導學生進行合作交流。以“比例的基本性質(zhì)”的探究為例,在教學中,通過小組合作交流,讓學生思維互補,既有利于知識的學習,又有利于學生概括能力及語言表達能力的培養(yǎng)。

  課前準備

  教師準備 PPT課件

  教學過程

  ⊙滲透情感,導入新課

  1.課件出示國旗畫面,學生觀察,激發(fā)愛國情操。

  (天安門升國旗儀式、校園升旗儀式、教室場景)

  師:這三幅不同的場景都有共同的標志——五星紅旗,五星紅旗是中華人民共和國的象征;這些國旗有大有小,你知道這些國旗的長和寬分別是多少嗎?

  2.課件出示國旗的`長和寬,并提出問題。

  天安門升旗儀式上的國旗:長5 m,寬 m。

  操場升旗儀式上的國旗:長2.4 m,寬1.6 m。

  教室里的國旗:長60 cm,寬40 cm。

  師:這些國旗的大小不一,是不是國旗想做多大就做多大呢?是不是這中間隱含著什么共同的特點呢?

  3.導入新課。

  師:每面國旗的大小不一樣,但是它們的長和寬中卻隱含著共同的特點,是什么呢?這節(jié)課我們就結合國旗的知識來學習比例的意義和基本性質(zhì)。

  (板書課題:比例的意義和基本性質(zhì))

  設計意圖:通過談話,激發(fā)學生的愛國情感和求知欲,在加強學生對國旗知識了解的同時,有效地引入學習資源,為學生探究比例的意義和基本性質(zhì)提供第一手資料。

  ⊙合作交流,探究新知

  1.教學比例的意義。

  (1)自主嘗試。

  課件出示教材40頁主題圖,根據(jù)圖中給出的數(shù)據(jù)分別寫出不同場景中國旗的長和寬的比,并求出比值。

  (2)匯報、交流。

  預設

  生1:天安門升旗儀式上的國旗。

  長∶寬=5∶=

  生2:操場升旗儀式上的國旗。

  長∶寬=2.4∶1.6=

  生3:教室里的國旗。

  長∶寬=60∶40=

  (3)感知比例的意義。

  觀察寫出的比,想一想,這些比能用等號連接嗎?為什么?用等號連接的兩個比的式子可以怎樣寫?

  預設

  生1:可以用等號連接,因為它們的比值相等。

  “2.4∶1.6=”和“60∶40=”可以寫作“2.4∶1.6=60∶40”。

  生2:可以用等號連接,兩個比的比值相等,說明這兩個比也是相等的。

  生3:根據(jù)比與分數(shù)的關系,“2.4∶1.6=60∶40”

  也可以寫成“=”。

《比例的意義》教案10

  教學內(nèi)容:

  比例的意義和基本性質(zhì)。

  教學要求:

  使學生理解比例的意義,會用比例的意義正確地判斷兩個比是否 成比例,使學生理解比例的基本性質(zhì)。

  教學重點:

  理解比例的意義和基本性質(zhì)。

  教學難點:

  靈活地判斷兩個比是否組成比例。

  教 具:

  投影機等。

  教學過程:

  一、復習。

  1、什么叫做比?什么叫做比值?

  2、求出下面各比值,哪些比的比值相等?

  12:16 : 4.5:2.7 10:6

  二、提示課題,引入新課。

  1、引入:如果有兩個比是相等的,那么這兩個相等的比以叫做什么?它有什么樣的性質(zhì)?這節(jié)課我們就一起來研究它。

  2、引入新課。

  三、導演達標。

  1、教學比例的意義。

 。1)引導學生觀察課本的表格后回答:

  A、第一次所行駛的路程和時間的比是什么?

  B、第二次所行駛的路程和時間的比是什么?

  C、這兩次比的比值各是什么?它們有什么關系?

  板書: 80:2=200:5 或 =

  (2)引出比例的意義。

  A、表示兩個比相等的式子叫做比例。

  B、討論:組成比例必須具備什么條件?如何判斷兩個比是不是組成比例的`?比和比例有什么區(qū)別?

  C、判斷兩個比能不能組成比例,關鍵是看兩個比的比值是否相等。

  D、做一做。(先練習,后講評)

  2、教學比例的基本性質(zhì)。

 。1)看書后回答:

  A、什么叫做比例的項?

  B、什么叫做比例的外項、內(nèi)項?

 。2)引導學生總結規(guī)律?

  先讓學生計算,兩個外項的積,再計算兩個內(nèi)項的積,最后讓學生總結出比例的基本性質(zhì),然后強調(diào),如果把比例寫成分數(shù)形式,比例的基本性質(zhì)就是等號兩端的分子和分母分別交叉相乘的積相等。

  3、練習:判斷下面的哪組比可以組成比例。

  6:9和9:12 1.4:2和7:10

  四、鞏固練習:第一、二題。(指名回答,集體訂正)

  五、總結:今天我們學習了什么?

  比例的意義和比例的基本性質(zhì)及怎樣判斷兩個比是否可以組成比例的方法。

  六、作業(yè):第二題。

《比例的意義》教案11

  教學目標

  1.使學生理解并掌握比例的意義和基本性質(zhì).

  2.認識比例的各部分的名稱.

  教學重點

  比例的意義和基本性質(zhì).

  教學難點

  應用比例的意義或基本性質(zhì)判斷兩個比能否組成比例,并能正確地組成比例.

  教學過程

  一、復習準備.

  (一)教師提問復習.

  1.什么叫做比?

  2.什么叫做比值?

  (二)求下面各比的比值.

  12∶16 4.5∶2.7 10∶6

  教師提問:上面哪些比的比值相等?

  (三)教師小結

  4.5∶2.7和10∶6這兩個比的比值相等,也就是說兩個比是相等的,因此它們可以

  用等號連接.

  教師板書:4.5∶2.7=10∶6

  二、新授教學.

  (一)比例的意義(課件演示:比例的意義)

  例1.一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米.列表如下:

  時間(時)

  2

  5

  路程(千米)

  80

  200

  1.教師提問:從上表中可以看到,這輛汽車,

  第一次所行駛的路程和時間的比是幾比幾?

  第二次所行駛的路程和時間的比是幾比幾?

  這兩個比的比值各是多少?它們有什么關系?(兩個比的比值都是40,相等)

  2.教師明確:兩個比的比值都是40,所以這兩個比相等.因此可以寫成這樣的等式

  80∶2=200∶5或 .

  3.揭示意義:像4.5∶2.7=10∶6、80∶2=200∶5這樣的等式,都是表示兩個比相等的式子,我們把它叫做比例.(板書課題:比例的'意義)

  教師提問:什么叫做比例?組成比例的關鍵是什么?

  板書:表示兩個比相等的式子叫做比例.

  關鍵:兩個比相等

  4.練習

  下面哪組中的兩個比可以組成比例?把組成的比例寫出來.

 。1)6∶10和9∶15 (2)20∶5和1∶4

 。3) 和 (4)0.6∶0.2和

  5.填空

 。1)如果兩個比的比值相等,那么這兩個比就( )比例.

  (2)一個比例,等號左邊的比和等號右邊的比一定是( )的.

  (二)比例的基本性質(zhì)(課件演示:比例的基本性質(zhì))

  1.教師以80∶2=200∶5為例說明:組成比例的四個數(shù),叫做比例的項.兩端的兩項叫做比例的外項,中間的兩項叫做比例的內(nèi)項.(板書)

  2.練習:指出下面比例的外項和內(nèi)項.

  4.5∶2.7=10∶6 6∶10=9∶15

  3.計算上面每一個比例中的外項積和內(nèi)項積,并討論它們存在什么關系?

  以80∶2=200∶5為例,指名來說明.

  外項積是:80×5=400

  內(nèi)項積是:2×200=400

  80×5=2×200

  4.學生自己任選兩三個比例,計算出它的外項積和內(nèi)項積.

  5.教師明確:在比例里,兩個外項的積等于兩個內(nèi)項的積.這叫做比例的基本性質(zhì)

  板書課題:加上“和基本性質(zhì)”,使課題完整.

  6.思考:如果把比例寫成分數(shù)形式,等號兩端的分子和分母分別交叉相乘的積有什么關系?為什么?

  教師板書:

  7.練習

  應用比例的基本性質(zhì),判斷下面哪一組中的兩個比可以組成比例.

  6∶3和8∶5 0.2∶2.5和4∶50

  三、課堂小結.

  這節(jié)課我們學習了比例的意義和基本性質(zhì),并學會了應用比例的意義和基本性質(zhì)組成比例.

  四、鞏固練習.

 。ㄒ唬┱f一說比和比例有什么區(qū)別.

 。ǘ┨羁眨

  在6∶5=30∶25這個比例中,外項是( )和( ),內(nèi)項是( )和( ).

  根據(jù)比例的基本性質(zhì)可以寫成( )×( )=( )×( ).

 。ㄈ└鶕(jù)比例的意義或者基本性質(zhì),判斷下面哪組中的兩個比可以組成比例.

  1.6∶9和9∶12 2.1.4∶2和7∶10

  3.0.5∶0.2和 4. 和7.5∶1

 。ㄋ模┫旅娴乃膫數(shù)可以組成比例嗎?把組成的比例寫出來.(能組幾個就組幾個)

  2、3、4和6

  五、課后作業(yè).

  根據(jù)3×4=2×6寫出比例.

  六、板書設計.

  省略

《比例的意義》教案12

  教學目標

  知識目標:理解比例的意義,掌握組成比例的關鍵條件。

  能力目標:能正確的判斷兩個比能否組成比例。

  情感目標:通過動手、動腦、觀察、計算、討論等方式,使學生自主獲取知識,全面參與教學活動。

  重點解比例的意義,掌握組成比例的關鍵條件。

  難點正確的判斷兩個比能否組成比例。

  教學過程教學預設個性修改。

  目標導學復習激趣目標導學自主合作匯報交流變式訓練。

  創(chuàng)境激疑

  一、創(chuàng)設情境,導入新課

  師:同學們,每周一的早上我們學校都要舉行莊嚴的升國旗儀式,那么,你們對國旗都有哪些了解呢?(生自由回答)

  師:同學們都說出了自己的想法,說明你們都很熱愛我們的國家,希望你們以后一定要好好學習,做一個有用的人,把我們的國家建設的.更加美好!五星紅旗是莊嚴而美麗的,并且它與我們數(shù)學也有著密切的聯(lián)系,這也就是我們今天所要研究的內(nèi)容:比例(板書課題:比例)

  合作探究

  二、新授(課件出示不同大小的國旗圖案)

  師:畫面上出現(xiàn)了四幅不同大小的國旗,請同學們?nèi)芜x兩面國旗來算一算它們各自長與寬的比值是多少?然后觀察結果,你能發(fā)現(xiàn)什么?

  (板演,觀察到比值相等,教師板書:兩個比相等)

  師:那我們就可以將這兩個比用等號連接。(教師板書生匯報的兩個相等的比)

  教師邊指著這組相等的比一邊說:好,像這樣表示兩個比相等的式子就叫做比例。(把定義補充完整)。這就是比例的意義(把課題板書完整)請同學們齊讀。

  請同學們再默讀一遍比例的意義,思考:想要組成比例必須要具備哪些條件?(生回答,等式;有兩個相等的比)

 。ń處熢購娬{(diào):一定是比值相等的兩個比才能組成比例。)

  師:你還能從四面國旗中找出哪些比例?

 。▽懺诰毩暠旧希缓髤R報。教師板書)

  師:我們在學習比的時候,可以把比寫成分數(shù)的形式,比如:60:40=60/40,那比例也能寫成分數(shù)的形式嗎?怎么寫?(口答)

  師:我們剛才一直在強調(diào)比和比例的聯(lián)系,那么比就是比例嗎?

  從形式上區(qū)分:比由兩個數(shù)組成;比例由四個數(shù)組成。

  從意義上區(qū)分:比表示兩個數(shù)之間的倍數(shù)關系;比例表示兩個比相等的式子。

  拓展應用下面哪些組的兩個比可以組成比例?如果能,在()打?qū)μ枴?/p>

  10:2和35:42()0.6:0.2和):4和3:():和12:8()

  總結小強3分鐘走了180米,小剛1小時走了3.6千米。小強說他們各自所走的路程和時間的比能組成比例,小剛說不能組成比例。請問:誰說的對?

  作業(yè)布置做一做。

  板書設計比例的意義

  2.4:1.6=60:40=

  2.4:1.6=60:40

  (或)=

《比例的意義》教案13

  教學內(nèi)容

  教科書第48~50頁例1、例2,課堂活動及練習十一1,2題。

  教學目標

  1.理解比例的意義,認識比例各部分的名稱。

  2.讓學生經(jīng)歷探討兩內(nèi)項之積等于兩外項之積的過程,使之更好理解并掌握比例的基本性質(zhì)。并能運用比例的意義和比例的基本性質(zhì),判斷兩個比能否組成比例,會組比例。

  3.培養(yǎng)學生自主參與的意識、主動探究的精神;培養(yǎng)學生進行初步的觀察、分析、比較、判斷、概括的能力,發(fā)展學生思維,能夠在解決問題的過程中體驗到學習數(shù)學的愉悅。

  教學重點

  理解比例的意義和基本性質(zhì)。

  教學難點

  應用比例的意義和基本性質(zhì)判斷兩個比能否組成比例,并能正確地組成比例。

  教學準備

  課件,撲克牌10張(2~10以及A),圓規(guī)一個。

  教學過程

  一、復習準備

 。1)一輛汽車4時行160 km,路程和時間的比是多少?這個比表示什么?

 。2)求下面各比的比值,你發(fā)現(xiàn)了什么?

  12∶16 34∶18 4.5∶2.7 10∶6

  教師:同學們發(fā)現(xiàn)4.5∶2.7和10∶6的結果是一樣的,說明了什么?(這兩個比相等。)這兩個比你能用等號連接起來嗎?(能。)請同學們用等號把這兩個比用等號連接起來。

  二、探究新知

  1.提出問題

  這節(jié)課我們在比的知識基礎上,進一步學習新知識。

  揭示課題--比例的'意義和基本性質(zhì)。板書:比例的意義和基本性質(zhì)

  2.探究比例的意義

  課件出示例1:兩組同學同時在操場探討竹竿長與影子長之間的規(guī)律。列表如下:

  竹竿長26

  影子長39

  教師:觀察上表,你能寫出多少個有意義的比?并求出比值。把這些比都寫出來。

  學生討論并寫出比,完成后抽幾個學生的作業(yè)在視頻展示臺上展示,教師選幾個有代表性的比在黑板上板書。

  教師:觀察這些比,哪些能用等號連接?把能用等號連接的比用等號連接起來。

  學生口答,教師板書:3∶2=9∶6,6∶2=9∶332=96,62=93

  教師:這些都是比例。你能用自己的語言說一說什么是比例嗎?

  引導學生用自己的語言歸納比例的意義。(板書:比例的意義)

  教師:2∶9和3∶6能組成比例嗎?你是怎么知道的?

  指導學生說出判斷兩個比能不能組成比例,要看他們的比值是否相等。再判斷2∶5和80∶200能否組成比例?并說明理由。

  組織并指導學生完成書上第50頁的課堂活動。

  3.認識比例的各部分

  教師:在一個比例里,有四個數(shù),這四個數(shù)分別叫什么名字?同學們看看書就明白了。

  指導學生看書后匯報。

  教師:請同學們分別找出3∶2=9∶6和6/2=9/3的內(nèi)項和外項。

  學生找出后,隨學生的匯報教師板書:

  要求學生找出剛才自己說的幾個比例的內(nèi)項和外項,然后引導學生分析歸納出:在比例里,靠近等號的兩個數(shù)是內(nèi)項,剩下的兩個數(shù)是外項;如果寫成分數(shù)形式,那么可以用交叉的方法找出比例的內(nèi)項和外項。

  4.教學比例的基本性質(zhì)

  教師:前面我們已經(jīng)探究發(fā)現(xiàn)了比例的一個秘密,就是組成比例的兩個比的比值相等,比例還有一個秘密,你們愿意去尋找嗎?(愿意)你們?nèi)我庹乙粋比例,把它們的內(nèi)項和外項分別乘起來,又可以發(fā)現(xiàn)什么?

  學生初步發(fā)現(xiàn)兩個內(nèi)項的積等于兩個外項的積后,教師提醒學生:是不是每個比例都有這個規(guī)律,多找?guī)讉比例試一試,如果把這個比例寫成分數(shù)形式,它是不是也有這樣的規(guī)律呢?

  教師:同學們通過多個比例的探究,發(fā)現(xiàn)它們都有這個規(guī)律。你能用你自己的語言歸納這個規(guī)律嗎?

  指導學生歸納后,教師板書:在比例里,兩個內(nèi)項的積等于兩個外項的積,并且告訴學生,這就是比例的基本性質(zhì)。

  5.運用比例的基本性質(zhì)判斷兩個比是否能組成比例

  教師:用比例的基本性質(zhì),也可以判斷兩個比能不能組成比例。請同學們用比例的基本性質(zhì)判斷一下,0.4∶25能否和1.2∶75組成比例?為什么?

  學生討論后回答:因為0.475=251.2,所以0.4∶25和1.2∶75能組成比例。

  三、鞏固提高

  (1)說一說比和比例有什么區(qū)別。

  討論后指名說:比是表示兩個數(shù)相除的關系,有兩項;比例是一個等式,表示兩個比相等的關系,有四項。

 。2)在6∶5=30∶25這個比例中,外項是()和(),內(nèi)項是()和()。根據(jù)比例的基本性質(zhì)可以寫成()()=()()。

 。3)下面的四個數(shù)可以組成比例嗎?把組成的比例寫出來(能組幾個就組幾個)。2,3,4和6

  四、全課總結

  先讓學生總結本課所學內(nèi)容,談感想說收獲,教師再進行全課總結。

  五、課堂作業(yè)

 。1)指導學生完成練習十一的第1題。

  要求:第(1)小題用比的意義來判斷,第(2)小題用比例的基本性質(zhì)判斷,第(3),(4)小題學生自由選擇方法判斷。

 。2)學生獨立完成練習十一的第2題,教師訂正。

《比例的意義》教案14

  教學目標

  1.使學生理解比例的意義,掌握組成比例的條件。

  2.使學生能正確地判斷兩個比能否組成比例。

  3.認識比例的各部分名稱,掌握比例的基本性質(zhì)。

  教學重點和難點

  比例的意義和性質(zhì)的理解與應用。

  教學過程設計

  第一部分:比例的意義

  (一)復習準備

  1.求比值:

  2.請你找出比值相等的兩個比。

  1.2∶0.4 24∶8 6∶2 1.2∶0.4 24∶8

  (二)學習新課

  1.一輛汽車第一次2小時行80千米,第二次6小時行240千米,請你說出第一次行駛路程和時間的比。

  板書:80∶2

  再請你說出第二次行駛路程和時間的比。

  板書:240∶6

  師:現(xiàn)在你分別求出兩個比的比值。(學生口述,師板書:80∶2=40,240∶6=40)

  師:你們觀察一下兩個比的比值怎么樣?這兩個比之間有沒有關系?(學生互說)

  得出:第一個比的比值是40,第二個比的比值也是40。因為比值相等,所以比就相等。(老師板書:兩個比相等,可以用等號把兩個比連起來。)

  教師把80∶2和240∶6中間用等號連起來,然后邊指著邊說:“像這樣的式子在數(shù)學上是什么概念呢?這就是我們要學的新內(nèi)容:比例的意義!(老師板書課題)

  師:至于什么叫比例以及比例的各部分名稱、組成比例的條件,請你結合思考題看書自學。(告訴學生頁數(shù),從第幾行看到第幾行。)

  思考題:

  1.什么叫比例?

  2.比例的各部分名稱?

  3.組成比例的重要條件?

  采取自學→兩人討論→集體討論。

  師再次強調(diào)組成比例的條件:

  A.必須是兩個比。

  B.兩個比的比值必須相等。

  C.必須是一個式子。

  最后得出:表示兩個比相等的式子叫比例。(老師將板書完整化)兩個比表面上看不同,其實質(zhì)是相同的,也就是比值相同。那么判斷兩個比能不能組成比例式,關鍵是看比值是否相等,只要比值相等就可以組成比例。

  師:上面那些比符合比例的意義嗎?能否組成比例?(學生說,老師連線或讓學生連線。)

  比例還有其它書寫格式嗎?請同學們看,老師怎樣寫。

  (三)鞏固反饋

  1.判斷下面兩個比能否組成比例?

  (1)1∶3和3∶9( )

  (2)60∶30和160∶80( )

  (4)0.2∶0.4和1.6∶4( )

  并組成比例。(學生先寫再說)

  3.隨意寫比例,互相查看。(至少寫2個)

  第二部分:比例的性質(zhì)

  (一)講授比例的性質(zhì)

  讓學生觀察:在比例里有幾個數(shù)?這幾個數(shù)叫什么?這幾個數(shù)有沒有區(qū)別?

  學生發(fā)言,老師小結:比例是由兩個比組成的,組成比例的四個數(shù)叫比例的項(老師邊指邊說),靠近等號的(中間的兩項)兩項叫內(nèi)項,兩端的兩項叫外項。如:

  請你指出黑板上比例中的內(nèi)外項。

  現(xiàn)在請你做一件工作:先算出兩個外項的積,再算出兩個內(nèi)項的積。算完以后你發(fā)現(xiàn)什么規(guī)律?學生說算式,老師板書:

  通過以上幾道題,使學生看到,在比例里兩個外項的積等于兩個內(nèi)項的積。這個規(guī)律我們把它叫做比例的性質(zhì)。(老師把課題補充完整。)

  師:這個規(guī)律是在什么前提下成立的呢?必須是在比例里,才能兩個外項積等于兩個內(nèi)項的積。

  師:你們說說什么叫比例的性質(zhì)?這是這節(jié)課要掌握的第二個內(nèi)容。

  師:比例寫成分數(shù)形式時,比例的性質(zhì)如何理解呢?

  80×6=2×240 1.2×8=24×0.4

  即等號兩端的分子、分母分別交叉相乘,積相等,用字母這樣表示:

  (二)課堂練習

  (放幻燈片)

  (1)用比例性質(zhì)驗證你所寫的比例是否正確?

  (2)用2,8,5,20四個數(shù)組成比例。

  (3)填適當?shù)臄?shù)。

  3∶18=5∶( )

  為什么填30?有幾個答案?

  4.8∶0.6=( )∶2

  為什么只能填16?

  12∶( )=( )∶5

  有幾個答案?

  (4)在比例中兩個外項的積是80,那么這個比例中的內(nèi)項積一定是幾?為什么?

  (5)在比例中兩個內(nèi)項分別是45和2,那么這個比例中的兩個外項積應該是幾?為什么?

  (三)課堂總結

  (學生小結這節(jié)課所學內(nèi)容。)

  1.質(zhì)疑:(學生、老師質(zhì)疑)(幻燈片)

 、俦硎緝蓚相等的式子叫比例。對嗎?

  2.思考題:

  (1)根據(jù)30×3=45×2寫比例式。

  (2)求x:

  12∶30=8∶x

  能不能應用今天所學的內(nèi)容解決?怎么解決?比例的性質(zhì)還可以應用在什么問題上?

  課堂教學設計說明

  本教案是在學生學過比的意義和性質(zhì)的基礎上設計的.,它包括比例的意義和組成比例的各部分名稱,比例的基本性質(zhì)及應用比例的基本性質(zhì)解比例問題。本教案分為兩部分,先教授比例的意義,再教授比例的性質(zhì)。

  第一部分,首先通過復習求比值,找出比值相等的比,為教學比例的意義做好鋪墊工作,然后再通過例題,用汽車兩次行駛路程和時間的比,得出兩個比的比值相等,從而概括出比例的意義,再利用比例意義判斷兩個比能否組成比例,老師安排了讓學生寫出比值相等的比,再組成比例,還安排了四個數(shù)組比例,目的在于加深對比例意義的認識和理解。

  第二部分,教學比例的性質(zhì)。首先認識比例的各部分名稱,認識內(nèi)項和外項,然后引導學生計算出在比例中兩個外項積和兩個內(nèi)項積,從而發(fā)現(xiàn)其中的規(guī)律,下面通過把比例寫成分數(shù)形式,讓學生形象地看到兩個外項積和兩個內(nèi)項積就是將比例中等號兩端的分子和分母分別交叉相乘,積相等,最后得出比例的性質(zhì)。讓學生應用比例的性質(zhì)驗證自己寫的比例成立不成立,使學生明白,驗證比例式是否成立,除了求比值的方法,也可以用求兩個外項積和兩個內(nèi)項積是否相等的方法。課上安排應用比例性質(zhì)進行填空練習,進一步加深學生對比例性質(zhì)的認識與掌握。

  另外,在學生沒有提出問題的情況下,老師出了兩道題,目的是鞏固對比例意義的認識與理解,最后老師出的思考題,為解比例做鋪墊工作。

  在整個教學過程中,老師要重視學生的全面參與,通過學生動手、動腦、觀察、計算、自學與討論等活動,使學生學會比例的意義和性質(zhì)。老師可根據(jù)本班學生的實際情況可做些調(diào)整,這一教學過程的設計,是符合學生的認知規(guī)律的,按照這個程序教學是會收到較好的教學效果的。

  板書設計

《比例的意義》教案15

  一、教學目標

  知識與技能目標:在具體情境中,理解比例的意義和基本性質(zhì),會應用比例的意義和基本性質(zhì)正確判斷兩個比能否組成比例。

  過程與方法目標:在探索比例的意義和基本性質(zhì)的過程中發(fā)展推理能力。

  態(tài)度價值觀目標:通過自主學習,經(jīng)歷探究的過程,體驗成功的快樂。

  二、教學重點難點

  重點: 理解比例的意義和基本性質(zhì)。

  難點:判斷兩個比是否成比例。

  三、教學過程設計

  (一)創(chuàng)設情境,提出問題

  1. 復習導入:

  (1)什么叫做比?

  兩個數(shù)相除又叫做兩個數(shù)的比。

  (2)什么叫做比值?

  比的前項除以比的后項所得商,叫做比值。

  (3)求下面各比的比值:

  12:16= 4、5:2、7= 10:6=

  談話:今天我們要學的知識也和比有著密切的關系。

  2、創(chuàng)設情境,提出問題。

  談話:同學們,你們知道青島都有哪些產(chǎn)品非常有名?(學生根據(jù)自己的了解回答)青島啤酒享譽世界各地,這節(jié)課,我們將一起去探索啤酒生產(chǎn)中的數(shù)學

  出示課件:這是一輛貨車正在運輸啤酒的主要生產(chǎn)原料大麥芽。

  這是它兩天的運輸情況:

  一輛貨車運輸大麥芽情況

  第一天 第二天

  運輸次數(shù) 2 4

  運輸量(噸) 16 32

  根據(jù)這個表格,讓學生提出有關比的數(shù)學問題。同桌倆人,一個提問題,一個將問題的答案寫在本上,看哪對同桌合作得最好,提出的問題最多。

  談話:誰來交流?跟大家說一下你的問題是什么?

  學生可能出現(xiàn)以下的問題:

  貨車第一天的運輸量與運輸次數(shù)的比是多少? (16 : 2)

  貨車第二天的運輸量與運輸次數(shù)的比是多少?(32 :4)

  貨車第二天的運輸量與第一天運輸量的比是多少?(32 :16)

 。◣煾鶕(jù)學生的回答,將答案一一貼或?qū)懹诤诎澹?/p>

  2 :16; 4 :32; 16 :2; 32 :4;

  16 :32; 2 :4; 32 :16; 4 :2。

  1、認識比例及各部分名稱。

  談話:學習數(shù)學,我們不僅要善于提問,還要善于觀察,F(xiàn)在就請你觀察這兩個比(16 :2;32 :4)看能發(fā)現(xiàn)什么?(學生會發(fā)現(xiàn)比值相等)

  思考:這個比值所表示的實際意義是什么?(每次的運輸量)

  既然它們的比值相等,那我們可以用什么符號將兩個比連接起來?

  學生用等號連接,并請學生把這個式子讀一下。

  試一試:剩下的這些比中,哪兩個也能用等于號連接?在你的練習本上寫寫看。(學生獨立完成)

  介紹:像這樣表示兩個比相等的式子,數(shù)學上就把它叫做比例。我們知道,比有前項、后項,比例的各部分也有自己的名字。組成比例的四個數(shù)叫做比例的項,像16、4位于兩端的兩項叫做比例的外項,2、32位于中間的兩項叫做比例的內(nèi)項。比例,也可以寫成分數(shù)形式。

  學生先把2 :16=4 :32這個比例寫成分數(shù)形式,再同桌倆交流它的內(nèi)項外項分別是誰。

  自學提示:同學們表現(xiàn)得都特別棒,現(xiàn)在請你看課本自主練習第1題,能否根據(jù)剛才所學知識解決。(學生獨立完成)

  2、比和比例有什么區(qū)別?

  比

  4︰6

  比例

  2︰3=4︰6

  3.判斷下面兩個比能否組成比例?

  6∶9 和 9∶12

  總結方法:判斷兩個比能不能組成比例,要看它們的比值是否相等。

  4.談話引入:剛才,你們是根據(jù)比例的意義先求出比值再判斷兩個比能否組成比例。我不是這樣想的,可能很快就判斷好了,想知道其中的秘密嗎?其實秘密就藏在比例的兩個內(nèi)項和兩個外項之中,它們兩者之間可是存在著一種奇妙的關系,你想揭穿這個秘密嗎?

  那就請你以16:2=32:4為例,通過看一看,想一想,算一算等方法,試試能不能發(fā)現(xiàn)這個關系!

  5、學生先獨立思考,再小組交流,探究規(guī)律。

  出示研究方案:

 、儆^察比例的兩個內(nèi)項與兩個外項,用算一算的方法,找同學說一說,你發(fā)現(xiàn)了什么。

 、谑遣皇敲恳粋比例的兩個外項與兩個內(nèi)項都具有這種規(guī)律,請你再舉出這樣的例子來。

 、弁ㄟ^以上研究,你發(fā)現(xiàn)了什么?

  6、全班交流。

  (1)哪個小組愿意將你們的發(fā)現(xiàn)與大家分享?

  (2)還有其他發(fā)現(xiàn)嗎?

  (3)你們組所發(fā)現(xiàn)的是不是個偶然現(xiàn)象呢?咱們最好是怎么辦?

  7、驗證發(fā)現(xiàn),共享成功。

  師:對,舉例驗證,這可是一種非常好的數(shù)學方法。那現(xiàn)在,咱們可以利用黑板上的比例,也可以自己組一個新的比例,驗證看看,是不是所有的比例都是兩個外項的積等于兩個內(nèi)項的積。(學生獨立驗證)

  8、利用一個比例通過課件形象的展示兩個外項的積等于兩個內(nèi)項的積。

  9、小結:不錯,看來同學們很會觀察,很會思考,很會驗證,自己發(fā)現(xiàn)了比例的一條規(guī)律。也就是,在比例里,兩個外項的積等于兩個內(nèi)項的.積。數(shù)學上我們把這條規(guī)律,叫做比例的基本性質(zhì)。這也是我們在小學階段,在繼分數(shù)、比的基本性質(zhì)之后學習的第三個基本性質(zhì)。運用它,我們可以解決許多數(shù)學問題。

  10、比例的基本性質(zhì)的應用:

  應用比例的基本性質(zhì),判斷下面兩個比能不能組成比例.

  6∶3 和 8∶5

  方法:a、先假設這兩個比能組成比例

  b、說出寫出的比例的內(nèi)項和外項分別是幾,再分別算出外項和內(nèi)項的積。

  c、根據(jù)比例的基本性質(zhì)判斷組成的比例是否正確。

  (二)自主練習,拓展提升

  1、判斷下面每組中兩個比能否組成比例?

  1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

  讓學生根據(jù)比例的意義進行判斷,教師結合回答板書:

  1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

  2、連線:自主練習第3題。

  3、填空:自主練習第6題。

  4、自主練習第10題:

  2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

  5、下面的四個數(shù)可以組成比例嗎?把組成的比例寫出來(能寫幾個寫幾個)。

  2、3、4 和 6

  因為 2 × 6 = 3 × 4 所以這四個數(shù)可以組成比例

  2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

  2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

  練習時,給學生充足的時間讓學生獨立完成,然后交流溝通。

  (三)回顧總結

  在這節(jié)課中你又有什么新的收獲?

【《比例的意義》教案】相關文章:

《比例的意義》教學實錄_《比例的意義》優(yōu)秀教案比例的意義優(yōu)質(zhì)教案12-06

《比例的意義》教案09-30

《比例的意義》教案12-02

【熱】《比例的意義》教案12-22

【熱門】《比例的意義》教案12-23

《比例的意義》教案【熱門】12-24

【精】《比例的意義》教案12-22

《比例的意義》教案【精】12-22

《比例的意義》教案【熱】12-22

《比例的意義》教案【推薦】12-22