圓錐的體積教案
作為一名專為他人授業(yè)解惑的人民教師,通常需要準備好一份教案,編寫教案有利于我們科學、合理地支配課堂時間。教案應該怎么寫才好呢?下面是小編整理的圓錐的體積教案,僅供參考,歡迎大家閱讀。
圓錐的體積教案1
教學目標
1、使學生理解求圓錐體積的計算公式.
2、會運用公式計算圓錐的體積.
教學重點
圓錐體體積計算公式的推導過程.
教學難點
正確理解圓錐體積計算公式.
教學步驟
一、鋪墊孕伏
1、提問:
。1)圓柱的體積公式是什么?
。2)投影出示圓錐體的圖形,學生指圖說出圓錐的底面、側面和高.
2、導入:同學們,前面我們已經(jīng)認識了圓錐,掌握了它的特征,那么圓錐的體積怎樣計算呢?這節(jié)課我們就來研究這個問題.(板書:圓錐的體積)
二、探究新知
。ㄒ唬┲笇骄繄A錐體積的計算公式.
1、教師談話:
下面我們利用實驗的方法來探究圓錐體積的計算方法.老師給每組同學都準備了兩個圓錐體容器,兩個圓柱體容器和一些沙土.實驗時,先往圓柱體(或圓錐體)容器里裝滿沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里.倒的時候要注意,把兩個容器比一比、量一量,看它們之間有什么關系,并想一想,通過實驗你發(fā)現(xiàn)了什么?
2、學生分組實驗
3、學生匯報實驗結果(課件演示:圓錐體的.體積1、2、3、4、5) 下載1 下載2 下載3 下載4 下載5
、賵A柱和圓錐的底面積相等,高不相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了一次,又倒了一些,才裝滿.
②圓柱和圓錐的底面積不相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了兩次,又倒了一些,才裝滿.
、蹐A柱和圓錐的底面積相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿.
……
4、引導學生發(fā)現(xiàn):
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的 .
板書:
5、推導圓錐的體積公式:用字母表示圓錐的體積公式.板書:
6、思考:要求圓錐的體積,必須知道哪兩個條件?
7、反饋練習
圓錐的底面積是5,高是3,體積是( )
圓錐的底面積是10,高是9,體積是( )
。ǘ┙虒W例1
1、例1 一個圓錐形的零件,底面積是19平方厘米,高是12厘米.這個零件的體積是多少?
學生獨立計算,集體訂正.
板書:
答:這個零件的體積是76立方厘米.
2、反饋練習:一個圓錐的底面積是25平方分米,高是9分米,她它的體積是多少?
3、思考:求圓錐的體積,還可能出現(xiàn)哪些情況?(圓錐的底面積不直接告訴)
。1)已知圓錐的底面半徑和高,求體積.
。2)已知圓錐的底面直徑和高,求體積.
。3)已知圓錐的底面周長和高,求體積.
4、反饋練習:一個圓錐的底面直徑是20厘米,高是8厘米,它的體積體積是多少?
。ㄈ┙虒W例2
1、例2 在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米.每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)
思考:這道題已知什么?求什么?
要求小麥的重量,必須先求什么?
要求小麥的體積應怎么辦?
這道題應先求什么?再求什么?最后求什么?
2、學生獨立解答,集體訂正.
板書:(1)麥堆底面積:
。3.14×4
=12.56(平方米)
。2)麥堆的體積:
12.56×1.2
。15.072(立方米)
。3)小麥的重量:
735×15.072
。11077.92
≈11078(千克)
答:這堆小麥大約重11078千克.
3、教學如何測量麥堆的底面直徑和高.
。1)啟發(fā)學生根據(jù)自己的生活經(jīng)驗來討論、談想法.
。2)教師補充介紹.
a.測量麥堆的底面直徑可以用繩子在麥堆底部圓周圍圈一圈,量得麥堆的周長,再算直徑.也可用兩根竹竿平行地放在麥堆的兩側,量得兩根竹竿的距離,就是麥堆的直徑.
b.測量麥堆的高,可用兩根竹竿在麥堆旁邊組成兩個直角后量得.
三、全課小結
通過本節(jié)的學習,你學到了什么知識?(從兩個方面談:圓錐體體積公式的推導方法和公式的應用)
四、隨堂練習
1、求下面各圓錐的體積.
。1)底面面積是7.8平方米,高是1.8米.
。2)底面半徑是4厘米,高是21厘米.
。3)底面直徑是6分米,高是6分米.
2、計算并填表
3、判斷對錯,并說明理由.
。1)圓柱的體積相當于圓錐體積的3倍.( )
。2)一個圓柱體木料,把它加工成最大的圓錐體,削去的部分的體積和圓錐的體積比是2 :1.( )
。3)一個圓柱和一個圓錐等底等高,體積相差21立方厘米,圓錐的體積是7立方厘米.( )
五、布置作業(yè)
一堆煤成圓錐形,底面半徑是1.5米,高是1.2米.這堆煤的體積有多少立方米?如果每立方米煤約重1.4噸,這堆煤約有多少噸?
六、板書設計
數(shù)學教案-圓錐的體積
圓錐的體積教案2
教學目標
1、知識目標:使學生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積。、
2、能力目標:培養(yǎng)學生初步的空間觀念,動手操作能力和邏輯思維能力。
3、情感目標:向學生滲透知識間可以相互轉化的辯證唯物主義思想,讓學生學習將新知識轉化為原有知識的學習方法、
教學重難點
教學重點:圓錐的體積計算。
教學難點:圓錐的體積計算公式的推導。
教學工具
ppt課件。
教學過程
一、導入新課
1、出示鉛錘
師:同學們,我們剛認識了圓錐,在學習“圓錐的認識”時認識了這個物體—鉛錘。鉛錘的外形是圓錐形的,這個鉛錘所占空間的大小叫做這個鉛錘的體積。
問:你們有沒有辦法來測量這個鉛錘的體積?
生:排水法
師:同學們回答很積極,想到了之前學過的排水法,那咱們對這個方法進行一下評價(學生想到了,并不是所有的圓錐都可以用排水法來測量體積。比如一些龐大的圓錐形物體)
2、PPT出示圓錐形麥堆和圓錐形的高大的建筑物
像這種比較大的圓錐形的物體就不適合用排水法測量體積,所以我們需要找到一個解決此類問題的普遍的方法。
出示課題圓錐的體積
二、探究新知
1、回憶
師:我們學過那些形狀的物體的體積的計算方法
生:長方體正方體圓柱體(學生邊說,師邊PPT出示圖片)
師:我們在推導圓柱體體積的計算方法的時候是將圓柱體轉化長方體或者正方體,轉化前后體積不變,你覺得圓錐體和哪種形狀的物體有關系呢?
生:圓柱體
師:為什么?
生:圓錐體和圓柱體都有圓形的底面
2、猜測
師:既然大家都認為圓錐體和圓柱體由一定的關系,你能大膽猜測一下,圓錐體和圓柱體的體積之間有怎樣的關系么?
。▽W生猜測,找學生說說猜測的.結果)
3、驗證
師:有了猜測我們就通過實驗來驗證咱們的猜測(利用學具進行驗證,一邊實驗,一邊填寫實驗記錄單)
。ㄕ覍W生讀一讀表格中需要填寫的內(nèi)容,并提問,比較圓柱和圓錐的時候,是比較的什么?為學生的實驗操作做一個引領。操作過程6—8分鐘)
4、實驗后討論,并分組匯報實驗結果
。ㄔ趯嶒炛形以O置了兩次不同的實驗,第一次是等底等高的圓柱和圓錐,第二次是等底不等高的圓柱和圓錐,以便對比得出結論,并不是所有的圓柱和圓錐都符合3倍關系,是有前提條件的)
5、結論
通過操作發(fā)現(xiàn):圓錐的體積是同它等底等高的圓柱體積的1/3
板書:圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
三、運用知識
1、PPT出示填空和判斷
師:我們學會了求圓錐的體積的計算方法,現(xiàn)在我們利用所學知識來解決生活中的實際問題。
2、PPT出示例題3
。▽W生計算,計算過程中巡視學生解題情況,挑選兩種不同的解題方法展示)
四、拓展
PPT出示拓展題
五、總結,談收獲
通過本節(jié)課的學習,你有哪些收獲?
圓錐的體積教案3
教學內(nèi)容:
教材第11~17頁圓錐的認識和體積計算、例1。
教學要求:
l.使學生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。
2.使學生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。
3.培養(yǎng)學生初步的空間觀念和發(fā)展學生的思維能力。
教具準備:
長方體、正方體、圓柱體等,根據(jù)教材第167頁自制的圓錐,演示測高、等底、等高的教具,演示得出圓錐體積等于等底等高圓柱體積的 的教具。
教學重點:
掌握圓錐的特征。
教學難點:
理解和掌握圓錐體積的計算公式。
教學過程:
一、鋪墊孕伏:
1. 說出圓柱的體積計算公式。
2. 我們已經(jīng)學過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產(chǎn)中,我們還常常看到下面一些物體(出示教材第16頁插圖)。這些物體的'形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學習圓錐和圓錐的體積。(板書課題)
二、自主探究:
1.認識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?
2.根據(jù)教材第16頁插圖,和學生舉的例子通過幻燈片或其他方法抽象出立體圖。
3.利用學生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。
(1) 圓錐的底面是個圓,圓錐的側面是一個曲面。
(2) 認識圓錐的頂點,從圓錐的頂點到底面圓心的距離是圓錐的高。(在圖上表示出這條高)提問:圖里畫的這條高和底面圓的所有直徑有什么關系?
4.學生練習。
口答練習三第1題。
5.教學圓錐高的測量方法。(見課本第17頁有關內(nèi)容)
6.讓學生根據(jù)上述方法測量自制圓錐的高。
7.實驗操作、推導圓錐體積計算公式。
(1)通過演示使學生知道什么叫等底等高。(具體方法可見教材第18頁上面的圖)
(2)讓學生猜想:老師手中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有怎樣的關系?
(3)實驗操作,發(fā)現(xiàn)規(guī)律。
在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關系?得出圓錐的體積是與它等底等高的圓柱體體積的 。
老師把圓柱里的黃沙倒進圓錐,問:把圓柱內(nèi)的沙往圓錐內(nèi)倒三次倒光,你又發(fā)現(xiàn)什么規(guī)律?
(4)是不是所有的圓柱和圓錐都有這樣的關系?教師可出示不等底不等高的圓錐、圓柱,讓學生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的 。
(5)啟發(fā)引導推導出計算公式并用字母表示。
圓錐的體積=等底等高的圓柱的體積13=底面積高13
用字母表示:V= 13 Sh
(6)小結:要求圓錐體積必須知道哪些條件,公式中的底面積乘以高,求的是什么?為什么要乘以 13 ?
8.教學例l
(1)出示例1
(2)審題后可讓學生根據(jù)圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
圓錐的體積教案4
教學目的:使學生系統(tǒng)掌握關于圓柱和圓錐的基礎知識,進一步了解圓柱和圓錐的關系,熟練運用所學公式計算解答實際問題;
教學準備:幻燈片、電腦制圖
教學過程:
一. 出示課題,引人復習內(nèi)容;
1.同學們,今天這節(jié)課,我們要進行圓柱體和圓錐體體積的復習;
板書課題
2.圓柱體的體積怎么求?
板書:V圓柱=Sh
3.圓錐體的體積怎么求?
板書:V圓錐=1/3 Sh
4.公式中的 s、h分別表示什么?1/3表示什么?
小結:求圓柱體和圓錐體的`體積,首先要正確應用公式。
板書:1.正確應用公式
當題目中沒有直接告訴我們底面積,只給出底面的半徑、直徑或周長時,求它們的體積必須先求出什么?
二. 基礎練習
根據(jù)已知條件求圓柱體和圓錐體的底面積(幻燈出示)
計算這些形體的體積:
(1)S底=1.5 平方米 h=5 米 求V圓柱
(2)S底=1.5 平方米 h=5 米 求V圓錐
(3)r=10分米 h=2 米 求V圓柱
(4)C=6.28米 h=6 米 求V圓錐
(1)、 (2)兩題條件相同,所求不同;
板書:2. 圓錐體積一定要乘 1/3
(3)、 (4)兩題都要先求出底面積;
板書:3. 單位名稱要統(tǒng)一
三. 實際應用練習:
我們還可應用到生活中去解決一些實際問題:(幻燈出示)
1.一根圓柱形鋼材長2米,底面周長為6.28厘米,如果1立方厘米鋼重8克,100根這樣的鋼材重多少千克?
默讀后問同學:做這道題前有沒有準備工作要做?(單位要統(tǒng)一)
2.一個圓錐形麥堆,底面直徑4米,高1.5米,按每立方米麥重700千克算,這堆麥重多少千克?
默讀后問同學:要注意麥堆是什么形狀?
請兩位同學板演,其余在本子上自練;
3.小結:在解這兩題時都用到了什么計算?
四. 提高練習:
。ɑ脽舫鍪荆┰谝恢坏酌姘霃綖30厘米的圓柱形水桶里,放入一段底面半徑為10厘米的圓錐形鋼材,水面升高了5厘米,這段鋼材高為多少?
。娔X出示圖案)觀察水面變化情況,求什么?
1.鋼材是什么形狀?求圓錐體的高用什么方法?h=3V/S,3V表示什么?
2. S可以通過哪個條件求?( r=10厘米)
3.體積是什么呢?(電腦屏幕逐步演示)
(1)當鋼材放入時水面上升,取出時水面下降,和什么有關?
(2)放入時水面為什么會上升?
(3)圓錐體占據(jù)了水桶里哪一部分水的體積?
(4)上升的水的體積等于什么?
(5)求圓錐形鋼材的體積就是求什么?
(6)求這部分水的體積可通過哪些條件求?(r=30厘米,h=5厘米)
(7)板演,同學自練;
五. 圓柱體、圓錐體之間的關系是很密切的,下面我們來研究一下:(電腦出示畫面、公式)
1.當圓柱體與圓錐體等底等高時,圓柱的體積是圓錐體積的3倍;(逆向)
2.當圓柱體與圓錐體體積相等,底面積相等時,圓錐的高是圓柱的3倍;
3.當圓柱體與圓錐體體積相等,高也相等時,圓柱的底面積是圓錐底面積的1/3,圓錐底面積是圓柱底面積的3倍。
六、總結:
這節(jié)課我們復習了什么?
圓錐的體積教案5
教學目的:
1、知識目標:使學生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積,《圓錐的體積》教案設計及反思。.
2、能力目標:培養(yǎng)學生初步的空間觀念,動手操作能力和邏輯思維能力。
3、情感目標:向學生滲透知識間可以相互轉化的辯證唯物主義思想,讓學生學習將新知識轉化為原有知識的學習方法.
教學重點:圓錐的體積計算
教學難點:圓錐的體積計算公式的推導.
教學準備:圓錐形蘿卜、繩子,每個小組一個計算器、等底等高的圓柱和圓錐容器模型、沙土水等。
教學過程:
一、復習導入。師:同學們,你們知道桌上那個白蘿卜,它是什么形體嗎?(圓柱體),現(xiàn)在,如是假設它的底面積是5平方厘米,高是4厘米,你怎樣求它的體積呢?求出體積后,問:現(xiàn)在老師想請你們幫個忙,把它削成一個最大的圓錐,你們有辦法嗎?說一說什么樣的圓錐體才算最大呢?(與原來的圓柱體蘿卜等底等高)
二、探究新知1、實踐猜想.師:好,現(xiàn)在請同學們動手削蘿卜,比比哪一組削得最漂亮?學生削完后,問:誰來猜猜,現(xiàn)在削成的圓錐體積與剛才圓柱有什么關系呢?你是怎么猜測的?生1:我猜圓錐的體積可能等于原來那個蘿卜體積的,就是5立方厘米。
生2:我猜圓錐的體積可能等于原來那個蘿卜體積的,就是10立方厘米。我是根據(jù)我們以前學過的在長方形里剪一個最大的三角形,三角形的面積是長方形的,所以我認為圓錐的體積也是圓柱體積的。
生3: 我猜圓錐的體積可能等于原來那個蘿卜體積的,就是6立方厘米,是把削去的蘿卜拼起來和圓錐體蘿卜進行比較,發(fā)現(xiàn)削去的部分的'體積大約是圓錐體積的2倍。
生4: 我猜圓錐的體積可能等于原來那個蘿卜體積的,就是8立方厘米,我是估計的。.師:那你有什么方法可以驗證你的猜想呢?
生5:我可以把削成的圓錐與削去的蘿卜都拿去稱,再比較它們的重量。.
生6:我把圓錐體蘿卜浸入盛有水的圓柱容器里,算出它的體積,再把削去部分的蘿卜也浸入盛有水的圓柱形容器里,根據(jù)水面上升的高度求出它的體積就知道了。.
生7:我可以把剛才那個圓柱體蘿卜和削成的圓錐休蘿卜分別挖成空心的然后把空圓錐蘿卜盛滿水倒入圓柱體蘿卜中,分別算出體積后進行比較。
生8:我可以用桌上的這些學具來驗證。.再讓學生比比哪種方法最合適?
2、實驗驗證。師:好,現(xiàn)在讓我們利用學具來驗證一下自己猜想,請小組合作動手實驗,比比哪組實驗最準確?
3、匯報歸納師:通過剛才同學們的認真探討,誰能說說你是怎么實驗的?生:我用圓柱裝滿沙把它倒入圓錐中,剛好倒了3杯。生:我用圓錐裝三次沙,剛好裝滿這個圓柱。師:這個實驗說明等底等高的圓錐和圓柱的體積有怎樣的關系?生:說明了圓錐的體積等于和它等底等高的圓柱體積體積的三分之一。師:請同學們思考:如果一個圓柱的體積是24立方米,那么和它等底等高的圓錐的體積是多少立方米?師:圓柱體積計算公式是V=SH,那么和它等底等高的圓錐體積應樣計算?生:圓錐的體積V等于和它等底等高的圓柱的體積的三分之一,即V=SH師:同學們,現(xiàn)在你知道剛才我們削的那個圓錐的體積應該是多少了嗎?
4、解決問題,教案《《圓錐的體積》教案設計及反思》。課件出示例1,讓學生獨立完成。5、教師小結。
三、擴展應用。(一)、基本練習。1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?2、測量圓錐體學具,求出體積,并說說高是怎么量的?3、一個圓錐的底面積直徑是20厘米,高是8厘米,它們體積是多少?(二)擴展練習。!、一個圓錐的體積是8立方分米,底面積是2平方分米,高是()分米?2、圓錐形的容器高12厘米,容器中盛滿水,如果水全部倒入等底的圓柱容器中,水面高是( )
四、歸納小結。師:通過這節(jié)課的學習,你學會了什么?你是怎么學會的?
五、作業(yè)。
選擇題。(1)、兩個體積相等的等底圓柱和圓錐,圓錐的高一定是圓柱的( )。(2)、把一段圓柱形的木棒削成一個最大的圓錐,削去的體積是圓錐體積的( )。供選答案:(1)3倍(2)(3)(4)2倍
教學反思:
這節(jié)課,體現(xiàn)了以下幾個特點:
一、在“動”中獲新知!皠印笔呛⒆拥奶煨,每位孩子都充滿了“動”的欲望。由于幾何知識比較抽象,學生理解和掌握幾何圖形的概念、性質、求積公式、形成空間觀念,都必須有大量具體的、形象的感性材料的積累。所以教材在編排這一知識塊的時候,就已安排了很多的實踐性練習。教學時,教者能充分利用這一特點,通過擺、剪、折、量、畫、分割、拼合等操作活動,使學生獲得鮮明、生動、形象的感性認識,在此基礎上,抽象概括出圓錐的體積計算方法,形成正確的空間觀念。
二、在“動”中求發(fā)展。在教學圓錐的體積時,教者先讓學生觀察并討論推導圓錐體積公式的實驗方法,當學生由于受圓柱體積公式推導方法的影響,思維受阻時,教者向學生提議:用桌上學具來驗證。同時推薦一些實驗用品:水或沙、尺等。讓學生在實驗中選擇并設置疑問:圓錐體積與圓柱體積的關系。通過實際操作,學生不僅得出圓錐體積的計算公式。獲得了知識的結果,而且經(jīng)歷了知識面發(fā)展、發(fā)生的過程,同時加強并鞏固口頭和書面表達能力,發(fā)展解決數(shù)學問題的能力,增進對數(shù)學的理解力。
三、在“動”中學會與他人合作。學習是學生主體的主動建構過程,其本質是讓學生認識客觀世界,把書本中的知識結構轉化為自己的認知結構。這個過程是學生主體活動的過程,必須由學生親身參與,學生在動手中運用感官參與學習,自覺主動地去操作、去學習,在濃厚的動手實踐中不僅經(jīng)歷了知識的形成過程,而且也學會了如何與他人合作才能取得成功。
圓錐的體積教案6
教學目標:
1、通過動手操作實驗,推導出圓錐體體積的計算公式。
2、理解并掌握體積公式,能運用公式求圓錐的體積,并會解決簡單的實際問題。
3、通過學生動腦、動手,培養(yǎng)學生的觀察、分析的綜合能力。
教具準備:等底等高的圓柱體和圓錐體5套,大小不同的圓柱體和圓錐體5套、水槽5個,以及多媒體輔助教學課件。
教學過程設計:
一、復習舊知,做好鋪墊。
1、認識圓柱(課件演示),并說出怎樣計算圓柱的體積?(屏幕出示:圓柱體的體積=底面積×高)
2、口算下列圓柱的體積。
(1)底面積是5平方厘米,高 6 厘米,體積 = ?
(2)底面半徑是 2 分米,高10分米,體積 = ?
(3)底面直徑是 6 分米,高10分米,體積 = ?
3、認識圓錐(課件演示),并說出有什么特征?
二、溝通知識、探索新知。
教師導入:同學們,我們已經(jīng)認識了圓錐,掌握了它的特征,但是,對于圓錐的學習我們不能只停留在認識上,有關圓錐的知識還有很多有待于我們?nèi)W習、去探究。這節(jié)課我們就來研究“圓錐的體積”。(板書課題)
1、探討圓錐的體積計算公式。
教師:怎樣推導圓錐的體積計算公式呢?在回答這個問題之前,請同學們先想一想,我們是怎樣知道圓柱體積計算公式的?
學生回答,教師板書:
圓柱------(轉化)------長方體
圓柱體積計算公式--------(推導)長方體體積計算公式
教師:借鑒這種方法,為了我們研究圓錐體體積的方便,每個組都準備了一個圓柱體和一個圓錐體。你們小組比比看,這兩個形體有什么相同的地方?學生操作比較后,再用課件演示。
(1)提問學生:你發(fā)現(xiàn)到什么?(圓柱和圓錐的底和高有什么關系?)
(學生得出:底面積相等,高也相等。)
教師:底面積相等,高也相等,用數(shù)學語言說就叫“等底等高”。
(板書:等底等高)
(2)為什么?既然這兩個形體是等底等高的,那么我們就跟求圓柱體體積一樣,就用“底面積×高”來求圓錐體體積行不行?
(不行,因為圓錐體的體積小)
教師:(把圓錐體套在透明的'圓柱體里)是啊,圓錐體的體積小,那你估計一下這兩個形體的體積大小有什么樣的倍數(shù)關系?(指名發(fā)言)
用水和圓柱體、圓錐體做實驗。怎樣做這個實驗由小組同學自己商量,但最后要向同學們匯報,你們組做實驗的圓柱體和圓錐體在體積大小上有什么樣的倍數(shù)關系。
(3)學生分組做實驗,并借助課件演示。
(教師深入小組中了解活動情況,對個別小組予以適當?shù)膸椭?
a、誰來匯報一下,你們組是怎樣做實驗的?
b、你們做實驗的圓柱體和圓錐體在體積大小上發(fā)現(xiàn)有什么倍數(shù)關系?
(學生發(fā)言:圓柱體的體積是圓錐體體積的3倍)
教師:同學們得出這個結論非常重要,其他組也是這樣的嗎?
學生回答后,教師用教學課件演示實驗的全過程,并啟發(fā)學生在小組內(nèi)有條理地表述圓錐體體積計算公式的推導過程。
(板書圓錐體體積計算公式)
教師:我們學過用字母表示數(shù),誰來把這個公式用字母表示一下?(指名發(fā)言,板書)
(4)學生操作:出示另外一組大小不同的圓柱體和圓錐體進行體積大小的比較,通過比較你發(fā)現(xiàn)什么?
學生回答后,教師整理歸納:不是任何一個圓錐體的體積都是任何一個圓柱體體積的 。(教師拿起一個小圓錐、一個大圓柱)如果老師在這個大圓錐體里裝滿了水,往這個小圓柱體里倒,需要倒三次才能倒?jié)M嗎?(不需要)
為什么你們做實驗的圓錐體里裝滿了水往圓柱體里倒,要倒三次才能倒?jié)M呢?(因為是等底等高的圓柱體和圓錐體。)
(教師給體積公式與“等底等高”四個字上連線。)
進一步完善體積計算公式:
圓錐的體積=等底等高的圓柱體體積×1/3
=底面積 × 高×1/3
V = 1/3Sh
教師:現(xiàn)在我們得到的這個結論就更完整了。(指名反復敘述公式。)
課件出示:
想一想,討論一下:?
(1)通過剛才的實驗,你發(fā)現(xiàn)了什么?
(2)要求圓錐的體積必須知道什么?
學生后討論回答。
三、 應用求體積、解決問題。
1、口答。
(1)有一個圓柱的體積是27立方分米,與它等底等高的圓錐體積是多少?
(2)有一個圓錐的體積是9立方分米,與它等底等高的圓柱體積是多少?
2、出示例題,學生讀題,理解題意,自己解決問題。
例1、一個圓錐形的零件,底面積是19平方厘米,高是12厘米,這個零件的體積是多少?
a、 學生完成后,進行小組交流。
b 、 你是怎樣想的和怎樣解決問題的。(提問學生多人)
c 、 教師板書:
1/3×19×12=76(立方厘米)
答:它的體積是76立方厘米
3 、練習題。
一個圓錐體,半徑為6cm,高為18cm。體積是多少?(學生在黑板上只列式,反饋。)
我們已經(jīng)學會了求圓錐體的體積,現(xiàn)在我們來解決有關圓錐體體積的問題。
4、出示例2:要求學生自己讀題,理解題意。
在打谷場上,有一個近似于圓錐形的小麥堆,測得底面直徑是4米,高是1.2米,每立方米小麥約重735千克,這堆小麥約有多少千克?(得數(shù)保留整千克)
(1)提問:從題目中你知道了什么?
(2)學生獨立完成后教師提問,并回答學生的質疑:
3.14×(4÷2)2×1.2× 1/3 表示什么?為什么要先求圓錐的體積?得數(shù)保留整千克數(shù)是什么意思?….
5、比較:例1和例2有什么不同的地方?
(1)例1直接告訴了我們底面積,而例2沒有直接告訴,要求我們先求出底面積,再求出圓錐體積;(2)例1 是直接求體積,例2是求出體積后再求重量。
圓錐的體積教案7
一、學習內(nèi)容:
教師提供小學數(shù)學六年級下冊14頁----17頁。
二、學生提供:
等底等高的圓柱和圓錐教學用具各一個,小水盆,一些綠豆。
三、學習目標:
1、結合具體情景和實踐活動,了解圓錐的體積或容積的含義,進一步體會物體體積和容積的含義。
2、經(jīng)歷“類比猜想---驗證說明”的探索圓錐體積計算方法的過程,掌握圓錐體積的計算方法,能正確計算圓錐的體積,并解決一些簡單的實際問題。
四、重點難點:
重點:圓錐的體積計算。
難點圓錐的體積公式推導。
關鍵:圓錐的體積是與它等底等高的圓柱體積的三分之一。
五、學習準備:
等底等高的圓柱和圓錐教學用具各一個,一個三角形和一個長方形。
看看你們能不能發(fā)現(xiàn)這兩個圖形之間隱藏的關系?你有什么發(fā)現(xiàn)?
長方形的長等于三角形的底,長方形的寬等于三角形的高。
你的發(fā)現(xiàn)真了不起。這種情況在數(shù)學中叫做“等底等高”。在“等底等高”的條件時,它們的面積又有什么樣的關系呢?
三角形的面積等于長方形面積的一半或長方形面積是三角形面積的2倍。
六、布置課前預習
點撥自學
1、圓柱和圓錐有哪些相同的地方?
2、圓柱和圓錐有哪些不同的地方?
3、圓錐的體積和圓柱的體積有什么關系呢?
請小組開始討論。注意,這里的圓柱和圓錐指的就是圖上的圓柱和圓錐喲!按照預習中學生存在的問題,教師加以點撥。
七、交流解惑:
它們的底面積相等,高也相等
圓柱有無數(shù)條高,圓錐只有一條高。圓錐體積比圓柱小……
動手做實驗:把圓錐裝滿綠豆,倒入圓柱中,看倒幾次能把圓柱裝滿。
通過實驗操作,得出了正確的科學的結論:圓錐的體積等于和它等底等高的圓柱體積的三分之一。組內(nèi)交流
組際解疑
老師點撥
八、合作考試
1、一個圓錐形的零件,底面積是19平方厘米,高是12厘米,這個零件的體積是多少?(口算)
2、沈老師在大梅沙玩,將沙堆成一個圓錐形,底面半徑約3分米,高約2.7分米,求沙堆的`體積。
。ㄖ涣惺讲挥嬎悖
3、在打谷場上,有一個近似于圓錐的小麥堆,測底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?
。ㄖ涣惺讲挥嬎悖
4、如圖,求這枝大筆的體積。
。▎挝唬豪迕祝
。ㄖ涣惺讲挥嬎悖
5、將一個底面半徑是2分米,高是4分米的圓柱形木塊,削成一個最大的圓錐,那么削去的體積是多少立方分米?(口算)
九、自我總結:
通過今天的學習,我學會了,以后我會在方面更加努力的。
十、教學反思:
本節(jié)課通過交流、問答、猜想等形式,調動學生學習的積極性,激發(fā)學生強烈的探究欲望,學生迫切希望通過實驗來證實自己的猜想,所以做起實驗來就興趣極高,在實驗過程中通過學生的親身體驗知識的探究的過程,加深學生對所學知識的理解,學生學習的積極性被調動起來了,學生學得輕松、愉快。充分讓學生體會到了等底等高的圓錐的體積是圓柱的三分之一。
圓錐的體積教案8
教學內(nèi)容
教科書第39~40頁例1,課堂活動及練習九第1題,第2題。
1.在操作和探究中理解并掌握圓錐的體積計算公式。
2.引導學生探究、發(fā)現(xiàn),培養(yǎng)學生的觀察、歸納等能力。
3.在實驗中,培養(yǎng)學生的數(shù)學興趣,發(fā)展學生的空間觀念。
一、圓錐體積的計算公式的推導過程。
圓錐體積計算公式的理解。
小黑板、等底等高的圓柱和圓錐、圓柱形水槽、河沙或水。一、情景鋪墊,引入課題
教師出示小黑板畫面,畫面中兩個小孩正在商店里買蛋糕,蛋糕有圓柱形和圓錐形兩種。圓柱形蛋糕的標簽上寫著底面積16CM2,高20CM,單價:40元/個;圓錐形的蛋糕標簽上寫著底面積16CM2,高60CM,單價:40元/個。
屏幕上出示問題:到底選哪種蛋糕劃算呢?
教師:圖上的兩個小朋友在做什么?他們遇到什么困難了?他們應該選哪種蛋糕劃算呢?誰能幫他們解決這個問題?
教師抽學生回答問題。
可能會出現(xiàn)以下幾種情形:
第一種學生會認為買圓柱形的蛋糕比較劃算,理由是這種蛋糕比圓錐形蛋糕的個大。
第二種學生會認為買圓錐形的蛋糕比較劃算,理由是這種蛋糕比圓柱形蛋糕高。
第三種學生會認為不能確定,理由是不知道誰的體積大,無法比較。
教師:看來要幫助這兩個同學不是一件容易的事情,解決這個問題的關鍵在哪里?
學生明白首先要求出圓錐形蛋糕的體積。
教師:怎樣計算圓錐的體積?這節(jié)課我們一起研究圓錐體積的計算方法。
揭示課題。板書課題:圓錐的體積
二、自主探究,感悟新知
1.提出猜想,大膽質疑
教師:誰來猜猜圓錐的體積怎么算?
學生猜測:圓柱和圓錐的底面都是圓的,它們之間可能有聯(lián)系,可不可以把圓錐變成圓柱,求出圓柱的體積,從而得出圓錐的體積……
對學生的各種猜想,教師給予肯定和表揚。
2.分組合作,動手實驗
教師:圓錐的體積和圓柱的體積之間究竟有沒有關系呢?如果有關系的話,它們之間又是一種什么關系?通過什么辦法才能找到它們之間的關系呢?帶著這些問題,請同學們分組研究,通過實驗尋找答案。
教師布置任務并提出要求。
每個小組的桌上都有準備好的器材:等底等高空心的或實心的圓柱和圓錐、河沙或水、水槽等不同的器材,以及一張可供選用的實驗報告單。四人小組的成員分工合作,利用提供的器材共同想辦法解決問題,找出圓錐體積的計算方法。并可根據(jù)小組研究方法填寫實驗報告單。
學生小組合作探究,教師巡視指導,參與學生的活動。
3.教師用投影儀展示實驗報告單
圓錐的體積實驗報告單
第()小組記錄人:
名稱底面半徑最初水面高度最后水面高度水面上升高度體積
圓柱
圓錐
結論
反饋信息。各小組交流實驗方法和結果。
教師:你們采用了哪些方法研究等底等高的圓柱和圓錐之間的關系?通過實驗,你們發(fā)現(xiàn)了什么?
方案一:用空心的圓錐裝滿水,再把水倒在與這個圓錐等底等高的空心圓柱形容器中,倒了三次,剛好裝滿圓柱形容器,因為圓柱的體積=底面積×高,所以圓錐的體積=13×圓柱的體積。
方案二:方法與一小組的方法基本一樣,只不過裝的是河沙。我們的`結論和一小組一樣,圓錐的體積也是這個等底等高圓柱體積的三分之一。
方案三:我們組與前兩小組的方法不一樣。我們是用兩個同樣大的水槽裝同樣多的水,在水面的位置分別作好標記,然后把這兩個實心的圓柱和圓錐分別放入兩個水槽中,在升高后的水面分別作好標記,算出兩個水槽水面上升的高度,發(fā)現(xiàn)放圓柱形水槽的水面上升的高度是放圓錐形水槽水面高度的三倍。因為兩個水槽底面一樣大也就是底面積相等,由圓柱的體積計算公式算出兩個水槽中水的體積,發(fā)現(xiàn)圓錐的體積是圓柱的體積的三分之一。因此我們組得出的結論是:圓錐的體積是與它等底等高圓柱體積的三分之一。
教師:三個小組采用的實驗方法不一樣,得出的結論都一樣。老師為你們的探索精神感到驕傲。
教師把學生們的實驗過程用小黑板演示一遍,讓學生再經(jīng)歷一次圓錐體積的探究過程。
4.公式推導
教師:圓柱的體積怎樣計算?圓錐的體積又怎樣計算?
教師引導學生理解只要求出與這個圓錐等底等高的圓柱的體積,再乘以三分之一,就得到圓錐的體積。
板書:圓柱的體積=底面積×高
V=S×H
↓〖4↓〖6↓
圓錐的體積=13×底面積×高
V=13×S×H
教師:圓柱的體積用字母V表示,圓錐的體積也用字母V表示。怎樣用字母表示圓錐的體積公式?
抽學生回答,教師板書:V=13SH
教師引導學生理解公式,弄清公式中的S表示什么,H表示什么。
要求學生閱讀教科書第39頁和第40頁例1前的內(nèi)容。勾畫出你認為重要的語句,并說說理由。
5.拓展
教師:是不是底和高不相等的圓錐體積也是圓柱體積的三分之一呢?我們來做個實驗。
教師利用學生的實驗器材進行演示。
用兩個等底不等高的圓柱和圓錐裝水;再用兩個等高不等底的圓柱和圓錐裝水,兩次結果都沒得到圓錐體積是圓柱體積的三分之一,進一步讓學生體會等底等高的含義。
6.運用所學知識解決問題
教學例1。
一個鉛錘高6CM,底面半徑4CM。這個鉛錘的體積是多少立方厘米?
學生讀題,找出題中的條件和問題。
引導學生弄清鉛錘的形狀是圓錐形。
學生獨立解答。抽學生上臺展示解答情況并說出思考過程。
三、拓展應用,鞏固新知
1.教科書第42頁第1題
學生獨立解答,集體訂正。
2.填一填
。1)圓柱的體積字母表達式是(),圓錐的體積字母表達式是()。
。2)等底等高的圓柱的體積是圓錐體積的()倍。
抽生回答,熟悉圓錐的體積計算公式。
3.把下列表格補充完整
形狀底面積S(M2)高H(M)體積V(M3)
圓錐159
圓柱160.6
學生在解答時,教師巡視指導。
4.教科書第42頁練習九第2題
分組解答,抽生板算。教師帶領學生集體訂正。
5.應用公式解決實際問題
教師:現(xiàn)在我們再來幫助這兩個同學解決他們的難題。
要求學生獨立解答新課前買蛋糕的問題。
抽學生說出計算的結果。明白兩個蛋糕的體積一樣大,因此買兩種形狀的蛋糕都可以。
教師引導學生明白生活中的許多現(xiàn)象中都藏著數(shù)學問題,只要留心觀察就能得出結論。這節(jié)課的學習中,你都有哪些收獲?有關圓錐體積的知識還有哪些不清楚的?
圓錐的體積教案9
學情分析
美國教育心理學家奧蘇伯爾說:如果我不得不把教育心理學還原為一條原理的話,影響學習的最重要的原因是學生已經(jīng)知道了什么,我們應當根據(jù)學生原有的知識狀況進行教學。本節(jié)課是學生在認識了圓錐特征的基礎上進行學習的。圓錐高的概念仍是本節(jié)課學習的一個重要知識儲備,因而有必要在復習階段利用直觀教具通過切、摸等活動,幫助學生理解透徹。學生分組操作時,肯定能借助倒水(或沙子)的實驗,親身感受等底等高的圓柱與圓錐體積間的3倍關系。但是他們不易發(fā)現(xiàn)隱藏在實驗中的等底等高的這一條件,這是實驗過程中的一個盲點。為凸現(xiàn)這一條件,可借助體積關系不是3倍的實驗器材,引導學生經(jīng)歷去粗取精、去偽存真、由表及里、層層逼近的過程,進行深度信息加工。
教學過程
一、復習舊知,鋪墊孕伏
1.(電腦出示一個透明的圓錐)仔細觀察,圓錐有哪些主要特征呢?
2.復習高的概念。
。1)什么叫圓錐的`高?
。2)請一位同學上來指出用橡皮泥制作的圓錐體模型的高。(提供刀片、橡皮泥模型等,幫助學生進行操作)
評析:
圓錐特征的復習簡明扼要。圓錐高的復習頗具新意,通過動手操作,從而使抽象的高具體化、形象化。
二、創(chuàng)設情境,引發(fā)猜想
1. 電腦呈現(xiàn)出動畫情境(伴圖配音)。
夏天,森林里悶熱極了,小動物們都熱得喘不過氣來。一只小白兔去動物超市購物,在冷飲專柜熊伯伯那兒買了一個圓柱形的雪糕。這一切都被躲在一旁的狐貍看見了,它也去熊伯伯的專柜里買了一個圓錐形的雪糕。小白兔剛張開嘴,滿頭大汗的狐貍拿著一個圓錐形的雪糕一溜煙跑了過來。(圖中圓柱形和圓錐形的雪糕是等底等高的。)
2. 引導學生圍繞問題展開討論。
問題一:狐貍貪婪地問:小白兔,用我手中的雪糕跟你換一個,怎么樣?(如果這時小白兔和狐貍換了雪糕,你覺得小白兔有沒有上當?)
問題二:(動畫演示)狐貍手上又多了一個同樣大小的圓錐形雪糕。(小白兔這時和狐貍換雪糕,你覺得公平嗎?)
問題三:如果你是森林中的小白兔,狐貍手中的圓錐形雪糕有幾個時,你才肯與它交換?(把你的想法與小組同學交流一下,再向全班同學匯報)
過渡:小白兔究竟跟狐貍怎樣交換才公平合理呢?學習了圓錐的體積后,就會弄明白這個問題。
評析:
數(shù)學課程要關注學生的生活經(jīng)驗和已有的知識體驗,教師在引入新知時,創(chuàng)設了一個有趣的童話情境,使枯燥的數(shù)學問題變?yōu)榛钌纳瞵F(xiàn)實,讓數(shù)學課堂充滿生命活力。學生在判斷公平與不公平中蘊涵了對等底等高圓柱和圓錐體積關系的猜想,他們在這一情境中敢猜想、要猜想、樂猜想,在猜想中交流,在交流中感悟,自然地提出了一個富有挑戰(zhàn)性的數(shù)學問題,從而引發(fā)了學生進一步探究的強烈欲望。
三、自主探索,操作實驗
下面,請同學們利用老師提供的實驗材料分組操作,自己發(fā)現(xiàn)屏幕上的圓柱與圓錐體積間的關系,解決電腦博士給我們提出的問題。
出示思考題:
。1)通過實驗,你們發(fā)現(xiàn)圓柱的體積和圓錐體積之間有什么關系?
。2)你們的小組是怎樣進行實驗的?
1. 小組實驗。
圓錐的體積教案10
教學目標
1、知識與技能目標:使學生理解和掌握圓錐體積的計算公式,會運用公式計算圓錐的體積并解決簡單的實際問題。
2、過程與方法:在推導公式過程中,通過小組合作、動手實驗的方法,培養(yǎng)學生分析、推理的能力及抽象概括能力。
3、態(tài)度、情感、價值觀:在探究公式的過程中,向學生滲透“事物之間是相互聯(lián)系”的,并通過活動,使學生形成良好的合作探究意識。
教學重難點
教學重點:掌握圓錐體積的計算公式。
教學難點:圓錐體積公式的推導過程。
教學過程
一、復習舊知,情景導入
1、怎樣計算圓柱的體積?
2、一個圓柱的底面積是60平方分米,高
是15分米,它的體積是多少立方分米?
3、說一說圓錐有哪些特征?
。1)頂部:
(2)底面:
。3)側面:
。4)高:
4、我們學習了圓柱的體積,還認識了圓錐體。
同學們看今年又是一個豐收年,農(nóng)民伯伯可高興了,你能幫他們計算收了多少糧食嗎?也就是求圓錐的體積。圓錐的體積怎樣計算呢?它又是怎樣推導出來了呢?這節(jié)課我們就來研究這個問題。(板書課題:圓錐的體積)
二、新課
1、引導學生借助圓柱,探討圓錐的體積公式。
、、猜:圓錐的體積怎樣計算呢?大膽猜一下。
②、圓錐的體積公式是怎樣推導的呢?你有什么想法?小組內(nèi)討論。
2、下面我們就用實驗的方法來推導圓椎的體積公式。
老師提供了實驗用具,(每組有1個圓柱和一個圓錐實驗杯,一瓶礦泉水)
。1)引導學生觀察用來實驗的圓錐、圓柱的特點:圓柱和圓錐都是等底等高(師板書:等底等高)
。2)學生實驗:
你想怎么做實驗?小組內(nèi)議一議,老師指導倒一下水。請同學們以小組為單位進行實驗,在實驗中,注意填好實驗報告表。(大屏幕出示實驗報告表)
A:你們小組是怎樣進行實驗的?
B:通過實驗,你們發(fā)現(xiàn)了所給的圓錐、圓柱在體積上有什么關系?
C:根據(jù)這個關系怎樣求出圓錐的體積?學生匯報,完成計算公式的推導。
3、同學們一定有不少的收獲和發(fā)現(xiàn),下面我們來交流一下。
要求:小組內(nèi)先交流一下,選三四名同學到前面來匯報。哪個小組同學匯報?哪個小組同學補充?(學生實驗并講解,教師糾正:實驗總是不十分準確,有可能差點。)
一名學生匯報,師板書。
生:我們把圓錐裝滿水,倒入這個圓柱體當中,正好倒了3次倒?jié)M,得出圓錐的體積等于這個圓柱的體積的1/3,因為圓柱的體積v=sh,所以圓錐的體積v =1/3sh
(教師板書)圓錐的體積= 1/3 ×底面積×高
等底等高V=1/3Sh(圓柱的體積怎樣求?圓錐的體積怎樣求?)
4、反饋。同學們經(jīng)過實驗,發(fā)現(xiàn)了用來實驗的圓錐的體積等于圓柱的體積的1/3,老師也想做實驗:出示一個非常大的圓柱,一個很小的圓錐,這個圓柱的.體積是圓錐體積的3倍嗎?(為什么?)
我們已經(jīng)推導出了圓錐的體積公式V、S、h表示什么?利用這一關系推導出圓錐的體積:V錐=1/3 Sh)
圓柱的體積是與它等底等高圓錐體積的3倍。
圓錐的體積是與它等底等高圓柱體積的1/3 。
三、鞏固應用
1、如果小麥堆的底面半徑為2米,高是1.5米。你能計算出小麥堆的體積嗎?
(一名學生板演并匯報)學生講解。
答:這個小麥堆的體積是6.28立方厘米。注意:計算公式上有無漏洞、計算上的指導(約分)單位名稱上的指導(立方)。
2、想一想。議一議。說一說:
。1)已知圓錐的底面半徑r和高h,如何求體積V?
(2)已知圓錐的底面直徑d和高h,如何求體積V?
(3)已知圓錐的底面周長C和高h,如何求體積V?
4、考考你:
有一根底面直徑是6厘米,長是15厘米的圓柱形鋼材,要把它削成與它等底等高的圓錐形零件。要削去鋼材多少立方厘米?
四、課堂小結
這節(jié)課你有什么收獲?
板書:圓錐的體積
圓錐的體積=1/3 ×底面積×高
圓錐的體積教案11
圓錐的體積教學目的:使同學初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,發(fā)展同學的空間觀念。
學具準備:等底等高的圓柱和圓錐8組,比圓柱體積多的沙土
教學過程:
一、復習
1、圓錐有什么特征?
使同學進一步熟悉圓錐的特征:底面,側面,高和頂點。
2、圓柱體積的計算公式是什么?
指名同學回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉化方法在數(shù)學學習中的應用。
二、導人新課
我們已經(jīng)學過圓柱體積的計算公式,那么圓錐的體積是不是和圓柱體積有關呢?今天我們就來學習圓錐體積的計算。
板書課題:圓錐的體積
三、新課
1、教學圓錐體積的計算公式。
師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?
指名同學敘述圓柱體積計算公式的推導過程,使同學明確求圓柱的體積是通過切拼生長方體來求得的。
師:那么圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?
先讓同學討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。
教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么一起的地方?”
然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”
同學分組實驗。
匯報實驗結果。先在圓錐里裝滿沙土,然后倒入圓柱。正好3次可以倒?jié)M。
多指名說
接著,教師課件邊演示邊敘述:現(xiàn)在圓錐和圓柱里都是空的。請大家注意觀察,看看能夠倒幾次正好把圓柱裝滿?
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的.圓柱的體積的。
多找?guī)酌瑢W說。
板書:圓錐的體積=1/3 × 圓柱體積
師:圓柱的體積等于什么?
生:等于“底面積×高”。
師:那么,圓錐的體積可以怎樣表示呢?
引導同學想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。
板書:圓錐的體積= 1/3 ×底面積×高
師:用字母應該怎樣表示?
然后板書字母公式:V=1/3 SH
師:在這個公式里你覺得哪里最應該注意?
2、鞏固練習
(1)已知圓柱和圓錐等底等高。圓柱的體積是45立方厘米,圓錐的體積是( )立方厘米。已知圓柱和圓錐等底等高。圓錐的體積是20立方厘米,圓柱的體積是( )立方厘米。
(2)求下面圓錐的體積。
已知底面面積是9.6平方米,高是2米。
底面半徑是4厘米,高是3.5厘米。
底面直徑是4厘米,高是6厘米。
在列式時注意什么?( ) 在計算時,我們怎樣計算比較簡便?(能約分的要先約分)
。3)判斷:
(l)圓錐體積是圓柱體積的1/3( )
。2)圓柱體的體積大于與它等底等高的圓錐體的體積。( )
。3)假如圓柱圓錐等底等高,圓柱體積是圓錐的3倍,圓錐體積是圓柱體積的2/3。( )
。4)圓錐的底面積是3平方厘米,體積是6立方厘米。( )
圓錐的體積教案12
1、學生通過自己的實驗,非常順利地得到等底等高的圓柱和圓錐體積之間的關系,推導出來圓錐的體積計算公式。原因之處有:(1)猜想:發(fā)揮學生的空間想象,使學生初步建立圓錐與圓柱體積之間的關系,教師預設學生可能粗略地知道有“三分之一”這一關系,“那么三分之一這一關系怎樣推導呢”引起以下怎樣推導圓錐的體積這一過程。
。2)在推導過程中,帶著思考題(思考題實際就是學生實驗的過程),讓學生帶有目標進行實驗,讓學生更有目的性,也非常方便,有操作性。
。3)學具準備充分,各小組選擇水、沙子,增強趣味性,主動性,積極性高。
。4)公式推導完之后的一個反例子(出示一個非常大的圓柱和一個非常小的圓錐),讓學生明確并不是所有的圓錐的體積都是圓柱體積的三分之一,從而強調了等底等高。
2、練習題由淺入深,判斷題主要是要加深學生對概念、公式的運用和理解,第2題是書上的一組題,為提高效率只列式不計算,這三道題分別是告訴底面積和高、底面半徑和高、底面直徑和高,把幾種類型都呈現(xiàn)出來。最后一題是動手實踐題,一要考察學生的公式運用情況,二要考察學生的解決實際問題的能力及策略,雖然沒做幾道題,但我覺得:解決問題比什么都重要。
3、本來想用不等底、不等高的圓柱和圓錐參與實驗,考慮到可能會得出錯誤結論而影響體積公式的推導,所以把這一環(huán)節(jié)省去。設計了一組大的等底等高的`圓錐和圓柱,讓學生明確不管大小,只要等底等高就有3倍這樣的關系。
4、時間分配上不到位,例題的處理中,考慮到本節(jié)的重點是理解公式并運用公式,所以沒花多的時間,由于數(shù)字教大,部分學生沒做完。
圓錐的體積教案13
教學內(nèi)容:
練習四第4~12題和第23頁思考題
教學目標:
1.使學生進步理解、掌握圓錐的體積計算方法,能根據(jù)不同的條件計算出圓錐的體積。
2.提高學生解決生活中實際問題的能力。
3.養(yǎng)成良好的學習習慣。
教學重點:
進步掌握圓錐體積的計算方法。
教學難點:
圓柱和圓錐體積之間的聯(lián)系與區(qū)別。
教學過程:
一、復習舊知
1.復習體積計算。
(1)提問:圓錐的體積怎樣計算?
(2)口答下列各圓錐的體積。
、俚酌娣e3平方分米,高2分米。
②底面積4平方厘米,高4.5厘米。
2.引入新課。
今天這節(jié)課,我們練習圓錐體積的計算,通過練習,還要能應用圓錐體積計算的方法解決一些簡單的實際問題。
二、教學新課
組織練習。
1.做練習四第4題。
學生獨立計算。
2.做練習四第5題。
把等底等高的圓柱體積和圓錐體積相互轉化,從已知的圓柱體積得出相應的圓錐體積,從已知的圓錐體積得出相應的圓柱體積,繼續(xù)加強對等底等高圓柱和圓錐體積關系的理解。
3.做練習四第6題。
出示第6題的`圖。
引導分析:根據(jù)圖示的各個立體圖形的底面直徑與高,尋找與圓錐體積相等的。圓柱,可以從圓錐體積是等底等高圓柱體積的1/3,推理出體積相等的圓柱與圓錐,如果底面積相等,圓錐的高是圓柱的3倍圓柱的高是圓錐的1/3;如果高相等,圓錐的底面積是圓柱的3倍圓柱的底面積是圓錐的1/3。還要注意到,大圓的直徑是小圓的3倍小圓直徑是大圓的1/3,大圓的面積則是小圓的9倍小圓的面積是大圓的1/9。
4.做練習四第7題。
。1)提問:圓錐體積最大時與圓柱的關系是什么?(等底等高)
接著讓學生獨立練習。
。2)讓學生自主地提出其他問題,進一步的掌握圓錐和圓柱的關系。
5.做練習四第8題。
聯(lián)系實際,解決問題。
6.做練習四第9題。
讓學生動手操作,理解三角形繞它的兩條高旋轉一周形成兩個大小不同的圓錐。在此基礎上讓學生獨立計算。
7.做練習四第12題。
出示圓錐形模型,提問:你有什么辦法算山它的體積嗎,需要測量哪些數(shù)據(jù)?怎樣測量直徑和高。請同學們回去測量你用第115頁圖制作的圓錐,求出它的體積來。
三、課堂小結
這節(jié)課練習了圓錐的體積計算和應用:計算體積需要知道底面積和高。如果沒有告訴底面積,我們要先求半徑算出底面積,再計算體積。應用圓錐體積計算方法,有時候還可以計算出圓錐形物休的重量。
四、布置作業(yè)
1.練習四第10.11題。
2.學有余力學生完成思考題。
圓錐的體積教案14
教學內(nèi)容:第25~26頁,例2、例3及練習四的第3~8題。
教學目的:
1、通過分小組倒水實驗,使學生自主探索出圓錐體積和圓柱體積之間的關系,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,解決實際生活中有關圓錐體積計算的簡單問題。
2、借助已有的生活和學習經(jīng)驗,在小組活動過程中,培養(yǎng)學生的動手操作能力和自主探索能力。
3、通過小組活動,實驗操作,巧妙設置探索障礙,激發(fā)學生的自主探索意識,發(fā)展學生的空間觀念。
教學重點:掌握圓錐體積的計算公式。
教學難點:正確探索出圓錐體積和圓柱體積之間的關系。
教學準備:圓錐與等底等高的圓柱,圓錐與不等底等高的圓柱。
教學過程:
一、復習
1、圓錐有什么特征?(使學生進一步熟悉圓錐的特征:底面、側面、高和頂點)
2、圓柱體積的計算公式是什么?
指名學生回答,并板書公式:“圓柱的體積=底面積×高”。
二、新課
1、教學圓錐體積的.計算公式。
(1)回憶圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的.
(2)能不能也通過已學過的圖形來求呢?圓錐的體積可能和什么圖形的體積有關?圓錐的體積該怎樣求呢?(指出:我們可以通過實驗的方法,得到計算圓錐體積的公式)
(3)拿出等底等高的圓柱和圓錐各一個,通過演示,使學生發(fā)現(xiàn)“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”
。4)先在圓錐里裝滿水,然后倒入圓柱。讓學生注意觀察,倒幾次正好把圓柱裝滿?
。ń處熥寣W生注意,記錄幾次,使學生清楚地看到倒3次正好把圓柱裝滿。)
。5)這說明了什么?(這說明圓錐的體積是和它等底等高的圓柱的體積的 )還可以怎么說?
板書:圓錐的體積=1/3×圓柱的體積=1/3×底面積×高,字母公式:V=1/3Sh
拿不等底等高的圓柱與圓錐進行實驗。為什么倒3次不能剛好倒,和剛才不一樣呢?
強調:“等底等高”。
問:Sh表示什么?為什么要乘1/3?
練習:一個圓柱的體積是27立方分米,與它等底等高的圓錐體積是多少?
一個圓錐的體積是15立方厘米,與它等底等高的圓柱的體積是多少?
2、教學練習四第3題
。1)這道題已知什么?求什么?已知圓錐的底面積和高應該怎樣計算?
(2)引導學生對照圓錐體積的計算公式代入數(shù)據(jù),然后讓學生自己進行計算,做完后集體訂正。
說明:不要漏乘1/3,計算時能約分的要先約分。
3、鞏固練習:完成練習四第4題。
4、教學例3.
。1)出示例3
已知近似于圓錐形的沙堆的底面直徑和高,求這堆沙堆的的體積。
。2)要求沙堆的體積需要已知哪些條件?(由于這堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)
(3)題目的條件中不知道圓錐的底面積,應該怎么辦?(先算出沙堆的底面半徑,再利用圓的面積公式算出麥堆的底面積,然后根據(jù)圓錐的體積公式求出沙堆的體積)
。4)分析完后,指定兩名學生板演,其余學生將計算步驟寫在教科書第26頁上.做完后集體訂正。(注意學生最后得數(shù)的取舍方法是否正確)
三、鞏固練習
1、做練習四的第7題。
學生先獨立判斷這三句話是否正確,然后全般核對評講。
2、做練習四的第8題。
。1)引導學生學生思考回答以下問題:
、 這道題已知什么?求什么?
、 求圓錐的體積必須知道什么?
③ 求出這堆煤的體積后,應該怎樣計算這堆煤的重量?
。2)讓學生做在練習本上,教師巡視,做完后集體訂正。
3、做練習四的第6題。
。1)指名學生先后回答下面問題:
① 圓柱的側面積等于多少?
、 圓柱的表面積的含義是什么?怎樣計算?
、 圓柱體積的計算公式是什么?
、 圓錐的體積公式是什么?
。2)學生把計算結果填寫在教科書第28頁的表格中,做完后集體訂正。
四、總結
這節(jié)課學習了哪些內(nèi)容?你是如何準確地記住圓錐的體積公式的?
第七課時教學反思
課件演示
俗話說“眼見為實”,所以相對于課件演示而言,教師在全班演示會更直觀,結論也更具信服性。
俗話又說“紙上得來終覺淺,絕知此事要躬行”,所以相對于看教師演示與自己親自動手實驗,親身經(jīng)歷探究印象會更深刻。
課堂如果以4——6人小組為單位進行實驗,全班至少得有9套以上教具?晌倚,F(xiàn)有教具數(shù)量不夠。如果要求學生課前自制教具,他們暫時無法制作出與圓柱等底等高高的圓錐。所以只好改為教師演示,學生觀察。
僅用一次實驗就得出結論是不嚴謹?shù)模哉n堂上必須讓學生歷經(jīng)多次不同實驗后才能得到正確結論。根據(jù)學,F(xiàn)有教具,今天我準備了兩套不同大小的等底等高圓柱、圓錐作為器材。在實驗中,我不僅讓學生清晰地看到將圓錐內(nèi)的水倒3次可以注滿與它等底等高的圓柱,同時,還讓他們看到圓柱內(nèi)的水再反倒回等底等高的圓錐時要倒3次。不僅自己示范演示,也讓學生參與演示實驗。最后,我還用不等底等高的圓柱與圓錐做實驗,強調實驗結果只有在“等底等高”的條件下才能成立。因為實驗環(huán)節(jié)落實較好,全班作業(yè)正確率高。
圓錐的體積教案15
教學內(nèi)容:教科書第52頁練習十二的第69題。
教學目的:通過練習,使學生進一步熟悉圓錐的體積計算。
教學過程:
一、復習
1.圓錐的體積公式是什么?
2.填空。
。1)一個圓錐的體積是與它等底等高的圓柱體積的
(2)圓柱的體積相當于和它等底等高的圓錐體積的( )倍。
。3)把一個圓柱削成一個最大的圓錐,削去部分的體積相當于圓柱的 ,相當 于圓錐的( )倍。
二、課堂練習
1.做練習十二的第6題。
教師出示一個圓錐形物體,讓學生想一想怎樣測量才能計算出它的體積:
讓學生分組討論一下,然后各自讓一名學生說說討論的結果,最后歸納出幾種行之有效的'測量方法。例如,要求一個圓錐物體的體積,可以先用軟尺量出底面圓的周長,再求出底面的半徑,進而求出底面積,然后用書上介紹的方法,用直尺和三角板
測量出圓錐的高,這樣就可以求出圓錐的體積。
2.做練習十二的第7題。
讀題后,教師可以先后提問:
這道題已知什么?求什么?
要求這堆沙的重量,應該先求什么?怎樣求?
指名學生回答后,讓學生做在練習本上,做完后集體訂正。
3.做練習十二的第8題。
讀題后,教師可提出以下問題:
這道題要求的是什么?
要求這段鋼材重多少千克,應該先求什么?怎樣求?
能直接利用題目中的數(shù)值進行計算嗎?為什么?
題目中的單位不統(tǒng)一,應該怎樣統(tǒng)一?
分別指名學生回答后,要使學生明白這里要先將2米改寫成200厘米,再利用圓柱的體積計算公式算出鋼材的體積是多少立方厘米,然后再求出它的重量。最后計算出的結果還應把克改寫成千克。
4.做練習十二的第9題。
讀題后,教師提問:這道題要求糧倉裝小麥多少噸,應該先求什么?
要使學生明白,應該先求2.5米高的小麥的體積,而不是求糧倉的體積。
讓學生獨立做在練習本上,做完后集體訂正。
三、選做題
讓學有余力的學生做練習十二的第10*、11*、12*題。
1.練習十二的第10*題。
教師:這道題要求圓錐的體積.但是題目中沒有告訴底面積,而只是已知底面周長和高。請大家想一想,應該怎樣求出底面積?
引導學生利用C=2r可以得到r= 。再利用SR,就可以求得S=( )。再利用圓錐的體積公式就可以求出其體積。
2.練習十二的第11*題。
這是一道有關圓柱、圓錐體積的比例應用題。
可以用列方程來解答。利用題目中圓錐和圓柱的體積之比,可以建立一個比例式。
設圓柱的高為x厘米。
=
X=9。6
。ㄗ⒁猓河捎趫A錐和圓柱的底面積S都相等,所以計算中可以先把S約去。)
3.練習十二的第12題。
這道題是拆分組合圖形,引導學生仔細分析圖形,不難看出它是由等底的圓柱和圓錐組合而成的:從圖中可以看出,圓柱和圓錐的底面直徑都是16厘米,而圓柱的高是4厘米,圓錐的高是17厘米。然后再根據(jù)圓的面積公式及圓柱和圓錐的體積公式,就可以求出這個組合圖形的體積了。
【圓錐的體積教案】相關文章:
《圓錐的體積》教案03-18
《圓錐的體積》教案15篇03-24
圓錐的體積教案15篇02-24
《圓錐》教案01-23
體積和體積單位教案02-04
《圓錐的認識》教案03-02
圓柱的體積教案11-18