- 相關(guān)推薦
七年級數(shù)學(xué)下冊教案(通用15篇)
作為一名辛苦耕耘的教育工作者,就有可能用到教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展?靵韰⒖冀贪甘窃趺磳懙陌!以下是小編為大家整理的七年級數(shù)學(xué)下冊教案,歡迎閱讀,希望大家能夠喜歡。
七年級數(shù)學(xué)下冊教案 1
教學(xué)目標(biāo)
在了解同底數(shù)冪乘法意義的基礎(chǔ)上掌握法則,會進(jìn)行同底數(shù)冪的乘法基本運算。
在推導(dǎo)法則的過程中,培養(yǎng)觀察、概括與抽象的能力。
通過對具體事例的觀察和分析,歸納、總結(jié)出同底數(shù)冪乘法的法則,培養(yǎng)學(xué)生歸納、總結(jié),以及從特殊到一般的抽象概括等思維能力。
讓學(xué)生通過參與探索過程,培養(yǎng)合作、探索問題的能力,以及質(zhì)疑、獨立思考的習(xí)慣。
重點難點
重點
同底數(shù)冪相乘的法則的推理過程及運用
難點
同底數(shù)冪相乘的運算法則的推理過程
教學(xué)過程
一、溫故知新
1.表示什么意義?(是乘方運算,表示10個2相乘;也可以用來表示運算的結(jié)果)
2.下列四個式子①,②,③④中,運算結(jié)果是的有哪些?你能說明理由嗎?(學(xué)生通過討論,明確兩個冪只有當(dāng)?shù)讛?shù)相同時才可以乘起來,同時初步感受計算的方法)
3.光的傳播速度是每秒米,若一年以秒計算,那么光走一年的路程是多少米呢?
學(xué)生列出式子。這個式子怎樣運算呢?解決這個問題的關(guān)鍵是弄清楚兩個同底數(shù)冪相乘的一般方法,下面我們就來探索同底數(shù)冪的乘法法則。
二、新課講解
探究新知
你能計算出嗎?
學(xué)生解答,教師板書
那么等于多少呢?更一般的,等于多少呢?
學(xué)生回答,教師板書
你發(fā)現(xiàn)運算的方法了嗎?
師生共同概括歸納出同底數(shù)冪乘法的.法則:
同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。
用公式表示是:(、n都是正整數(shù))
動腦筋
當(dāng)3個或三個以上的同底數(shù)冪相乘時,怎樣用公式表示運算的結(jié)果呢?
學(xué)生思考并討論解答,最后教師總結(jié):(,n,p都是正整數(shù))
三、典例剖析
例1計算:(1);(2)
分析:直接運用公式計算,教師板書計算過程,強調(diào)初學(xué)時要注意弄清楚計算的步驟。
例2計算:(1);(2)
讓學(xué)生獨立完成。這題意在進(jìn)一步訓(xùn)練運用法則進(jìn)行計算,注意觀察學(xué)生是否會用法則進(jìn)行計算,點評時要強調(diào)對法則的運用。
例3計算:(1);(2)
學(xué)生解答并討論,教師注意拓展學(xué)生對法則的運用,培養(yǎng)符號演算的能力,指出公式中的底數(shù)可以是具體的數(shù),也可以是字母或式子表示的數(shù),提高學(xué)生的運算能力。
四、課堂練習(xí)
基礎(chǔ)訓(xùn)練:
1.計算:
。1);(2);(3);(4)
2.計算:
。1);(2);(3);(4)
。▽W(xué)生解答各題,教師組織學(xué)生互相批改,對學(xué)生出錯比較多的地方做講解和變式訓(xùn)練)
提高訓(xùn)練
3.計算;(2)
4.制作拉面需將長條形面團(tuán)摔勻拉伸后對折,并不斷重復(fù)若干次這組動作.隨著不斷地對折,面條根數(shù)不斷增加.若一碗面約有64根面條,則面團(tuán)需要對折多少次?若一個拉面店一天能賣出2048碗拉面,用底數(shù)為2的冪表示拉面的總根數(shù)。
。ㄓ靡蕴嵘龑W(xué)生運算的靈活性,提高學(xué)習(xí)興趣。)
五、小結(jié)
師生互相交流總結(jié)本節(jié)課上應(yīng)該掌握的同底數(shù)冪的乘法的特征,教師對課堂上學(xué)生掌握不夠牢固的知識進(jìn)行辨析、強調(diào)與補充,學(xué)生也可以談一談個人的學(xué)習(xí)感受。(如:對法則的理解,解決了什么問題,體會從特殊到一般探索規(guī)律的數(shù)學(xué)思想等等)
六、布置作業(yè)
教材P40第1題,P41第12題
七年級數(shù)學(xué)下冊教案 2
教學(xué)目標(biāo):
1、通過現(xiàn)實情景感受利用有序數(shù)對表示位置的廣泛性,能利用有序數(shù)對來表示位置。
2、讓學(xué)生感受到可以用數(shù)量表示圖形位置,幾何問題可以轉(zhuǎn)化為代數(shù)問題,形成數(shù)形結(jié)合的意識。
教學(xué)重點:
理解有序數(shù)對的概念,用有序數(shù)對來表示位置。
教學(xué)難點:
理解有序數(shù)對是“有序的”并用它解決實際問題, 課時安排:
1課時
教學(xué)過程:
一、創(chuàng)設(shè)問題情境,引入新課
展示書P105畫面并提出問題,在建國50周年的慶典活動中,天安門廣場上出現(xiàn)了壯觀的背景圖案,你知道它是怎么組成的嗎?
原來,他們舉起不同顏色的花束(如第10排第25列舉紅花,第28排第30列舉黃花)整個方陣就組成了絢麗的'背景圖章。類似用“第幾排第幾列”來確定同學(xué)的位置,我們在日常生活中經(jīng)常用的方法。
二、師生共同參于教學(xué)活動
。1)影院對觀眾席所有的座位都按“幾排幾號”編號,以便確定每個座位在影院中的位置觀眾根據(jù)入場券上的“排數(shù)”和“號數(shù)”準(zhǔn)確入座。
師:只給一個數(shù)據(jù)如“第5號”你能確定某個同學(xué)的位置嗎?為什么?要確定必須怎樣?
生:不能,要確定還必須知道“排數(shù)”。
。2)教師書寫平面圖通知,由學(xué)生分組討論。
今天以下座位的同學(xué)放學(xué)后參加數(shù)學(xué)問題討論:(1,5),(2,4),(4,2),(3,3),(5,6)。
師:你們能明白它的意思嗎?
學(xué)生通過交流合作后得到共識:規(guī)定了兩個數(shù)所表示的含義后就可以表示座位的位置。
師:請同學(xué)們思考以下問題:
、僭鯓哟_定你自己的座位的位置?
、谂艛(shù)和列數(shù)先后須序?qū)ξ恢糜杏绊憜幔?/p>
生:通過討論,交流后得到以下共識:
、倏捎门艛(shù)和列數(shù)兩個不同的數(shù)來確定位置。
、谂艛(shù)和列數(shù)的先后須序?qū)ξ恢糜杏绊憽?/p>
。3)讓學(xué)生的問題都是通過像“9排8號”,第2列第4排,這樣含有兩個數(shù)的詞來表示一個確定的位置,其中兩個數(shù)各自表示不同的含義。例如前面的表示“排數(shù)”后面的表示“列數(shù)”。我們把這種有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對,記作(a,b)。
(4)在生活中還有用有序數(shù)對表示一個位置的例子嗎?
學(xué)生分組討論,交流,教師深入小組參與活動,傾聽學(xué)生的交流,并對學(xué)生提供的生活素材給予肯定和鼓勵。
例如:人們常用經(jīng)緯度來表示,地球上的地點
三、鞏固練習(xí)
讓學(xué)生完成p46的練習(xí)。
四、布置作業(yè)
1、課本習(xí)題6,1,1。
2、“怪獸吃豆豆”是一種計算機游戲,圖中標(biāo)志表示“怪獸”按圖中箭頭先后經(jīng)過的幾個位置,如果用(1,2)表示“怪獸”按圖中箭頭所指路線經(jīng)過的第3個位置,那么你能用同樣的方式表示出圖中“怪獸”經(jīng)過的其他幾個位置嗎?
五、教后反思
師:談?wù)劚竟?jié)課,你有哪些收獲?
由同學(xué)交流解決問題,教師設(shè)疑為以后的學(xué)習(xí)奠定基礎(chǔ)。
七年級數(shù)學(xué)下冊教案 3
教學(xué)目標(biāo)
1、會列出二元一次方程組解簡單應(yīng)用題,并能檢驗結(jié)果的合理性。
2、知道二元一次方程組是反映現(xiàn)實世界量之間相等關(guān)系的一種有效的數(shù)學(xué)模型。
3、引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),滲透將來未知轉(zhuǎn)達(dá)化為已知的辯證思想。
教學(xué)重點
1、列二元一次方程組解簡單問題。
2、徹底理解題意
教學(xué)難點
找等量關(guān)系列二元一次方程組。
教學(xué)過程
一、情境引入。
小剛與小玲一起在水果店買水果,小剛買了3千克蘋果,2千克梨,共花了18.8元。小玲買了2千克蘋果,3千克梨,共花了18.2元;丶衣飞希麄冇錾狭撕门笥研≤,小軍問蘋果、梨各多少錢1千克?他們不講,只講各自買的幾千克水果和總共的`錢,要小軍猜。聰明的同學(xué)們,小軍能猜出來嗎?
二、建立模型。
1、怎樣設(shè)未知數(shù)?
2、找本題等量關(guān)系?從哪句話中找到的?
3、列方程組。
4、解方程組。
5、檢驗寫答案。
思考:怎樣用一元一次方程求解?
比較用一元一次方程求解,用二元一次方程組求解誰更容易?
三、練習(xí)。
1、根據(jù)問題建立二元一次方程組。
。1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。
(2)80班共有64名學(xué)生,其中男生比女生多8人,求這個班男生人數(shù),女生人數(shù)。
(3)已知關(guān)于求x、的方程,是二元一次方程。求a、b的值。
2、P38練習(xí)第1題。
四、小結(jié)。
小組討論:列二元一次方程組解應(yīng)用題有哪些基本步驟?
五、作業(yè)。
P42。習(xí)題2.3A組第1題。
后記:
2.3二元一次方程組的應(yīng)用(2)
七年級數(shù)學(xué)下冊教案 4
教學(xué)目標(biāo)
1、會列二元一次方程組解簡單的應(yīng)用題并能檢驗結(jié)果的合理性。
2、提高分析問題、解決問題的能力。
3、體會數(shù)學(xué)的應(yīng)用價值。
教學(xué)重點
根據(jù)實際問題列二元一次方程組。
教學(xué)難點
1、找實際問題中的相等關(guān)系。
2、徹底理解題意。
教學(xué)過程
一、引入。
本節(jié)課我們繼續(xù)學(xué)習(xí)用二元一次方程組解決簡單實際問題。
二、新課。
例1:小琴去縣城,要經(jīng)過外祖母家,頭一天下午從她家走到個祖母家里,第二天上午,從外外祖母家出發(fā)勻速前進(jìn),走了2小時、5小時后,離她自己家分別為13千米、25千米。你能算出她的速度嗎?還能算出她家與外祖母家相距多遠(yuǎn)嗎?
探究:
1、你能畫線段表示本題的`數(shù)量關(guān)系嗎?
2、填空:(用含S、V的代數(shù)式表示)
設(shè)小琴速度是V千米/時,她家與外祖母家相距S千米,第二天她走2小時趟的路程是______千米。此時她離家距離是______千米;她走5小時走的路程是______千米,此時她離家的距離是________千米。
3、列方程組。
4、解方程組。
5、檢驗寫出答案。
討論:本題是否還有其它解法?
三、練習(xí)。
1、建立方程模型。
。1)兩在相距280千米,一般順流航行需14小時,逆流航行需20小時,求船在靜水中速度,水流的速度。
。2)420個零件由甲、乙兩人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,還需3天完成。問:甲、乙每天各做多少個零件?
2、P38練習(xí)第2題。
3、小組合作編應(yīng)用題:兩個寫一方程組,另兩人根據(jù)方程組編應(yīng)用題。
四、小結(jié)。
本節(jié)課你有何收獲?
五、作業(yè)。
七年級數(shù)學(xué)下冊教案 5
【學(xué)習(xí)目標(biāo)】
1.經(jīng)歷探索具體情境中兩個變量之間關(guān)系的過程,獲得探索變量之間關(guān)系的體驗,進(jìn)一步發(fā)展符號感。
2.在具體情境中理解什么是變量、自變量、因變量,并能舉出反映變量之間關(guān)系的例子。
3.能從表格中獲得變量之間關(guān)系的信息,能用表格表示變量之間的關(guān)系,并根據(jù)表格中的資料嘗試對變化趨勢進(jìn)行初步的預(yù)測。
【學(xué)習(xí)方法】自主探究與小組合作交流相結(jié)合。
【學(xué)習(xí)重難點】重點:能從表格的數(shù)據(jù)中分清什么是變量,自變量、因變量以及因變量隨自變量的變化情況。
難點:對表格所表達(dá)的兩個變量關(guān)系的理解。
【學(xué)習(xí)過程】
模塊一預(yù)習(xí)反饋
一、學(xué)習(xí)準(zhǔn)備
我們生活在一個變化的世界中,很多東西都在悄悄地發(fā)生變化。
你能從生活中舉出一些發(fā)生變化的例子嗎?
教材精讀
請同學(xué)們觀察思考,逐一回答下面的問題:
根據(jù)上表回答下列問題:
(1)支撐物高度為70厘米時,小車下滑時間是多少?
(2)如果用h表示支撐物高度,t表示小車下滑時間,隨著h逐漸變大,t的變化趨勢是什么?
(3)h每增加10厘米,t的變化情況相同嗎?
(4)估計當(dāng)h=110厘米時,t的值是多少,你是怎樣估計的?
(5)隨著支撐物高度h的變化,還有哪些量發(fā)生變化?哪些量始終不發(fā)生變化?
在小車下滑的過程中:
支撐物的高度h和小車下滑的時間t都在變化,它們都是。其中小車下滑的時間t隨支撐物的高度h的變化而變化。支撐物的高度h是,小車下滑的時間t是。
在這一變化過程中,小車下滑的距離(木板的長度)一直變化。像這種在變化過程中的量叫做。
我國從1949年到1999年的人口統(tǒng)計數(shù)據(jù)如下(精確到0.01億):
(1)如果用x表示時間,y表示我國人口總數(shù),那么隨著x的變化,y的變化趨勢是什么?
(2)X和y哪個是自變量?哪個是因變量?
(3)從1949年起,時間每向后推移10年,我國人口是怎樣的變化?
(4)你能根據(jù)此表格預(yù)測20xx年時我國人口將會是多少?
在人口統(tǒng)計數(shù)據(jù)中:
時間和人口數(shù)都在變化,它們都是。其中人口數(shù)隨時間的變化而變化。時間是,人口數(shù)是。
歸納:借助表格,我們可以表示因變量隨自變量的變化而變化的'情況
模塊二合作探究
研究表明,當(dāng)每公頃鉀肥和磷肥的施用量一定時,土豆的產(chǎn)量與氮肥的施用量有如下關(guān)系:
(1)上表反映了哪兩個變量之間的關(guān)系?哪個是自變量?哪個是因變量?
(2)當(dāng)?shù)实氖┯昧渴?01千克/公頃時,土豆的產(chǎn)量是多少?如果不施氮肥呢?
(3)據(jù)表格中的數(shù)據(jù),你認(rèn)為氮肥的施用量是多少時比較適宜?說說你的理由。
(4)粗略說一說氮肥的施用量對土豆產(chǎn)量的影響。
模塊三形成提升
某電影院地面的一部分是扇形,座位按下列方式設(shè)置:
(1)上表反映了哪兩個變量之間的關(guān)系?哪個是自變量?哪個是因變量?
(2)第5排、第6排各有多少個座位?
(3)第n排有多少個座位?請說明你的理由。
模塊四小結(jié)反思
一、本課知識
1.變量、自變量、因變量:在某一變化過程中不斷變化的量,叫做如果一個變量y隨另一個變量x的變化而變化,則把x叫做,y叫做。即先發(fā)生變化的量叫做,后發(fā)生變化或者隨自變量的變化而變化的量叫做。
2.常量:略
二、我的困惑
七年級數(shù)學(xué)下冊教案 6
一、教學(xué)目標(biāo)
1、知識與技能
(1)、借助數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕對值,會利用絕對值比較兩個負(fù)數(shù)的大小。
(2)、通過應(yīng)用絕對值解決實際問題,體會絕對值的意義和作用。
2、過程與方法目標(biāo):
(1)、通過運用“||”來表示一個數(shù)的絕對值,培養(yǎng)學(xué)生的數(shù)感和符號感,達(dá)到發(fā)展學(xué)生抽象思維的目的
(2)、通過探索求一個數(shù)絕對值的方法和兩個負(fù)數(shù)比較大小方法的過程,讓學(xué)生學(xué)會通過觀察,發(fā)現(xiàn)規(guī)律、總結(jié)方法,發(fā)展學(xué)生的實踐能力,培養(yǎng)創(chuàng)新意識;
(3)、通過對“做一做”“議一議”“試一試”的交流和討論,培養(yǎng)學(xué)生有條理地用語言表達(dá)解決問題的方法;通過用絕對值或數(shù)軸對兩個負(fù)數(shù)大小的比較,讓學(xué)生學(xué)會嘗試評價兩種不同方法之間的差異。
3、情感態(tài)度與價值觀:
借助數(shù)軸解決數(shù)學(xué)問題,有意識地形成“腦中有圖,心中有數(shù)”的數(shù)形結(jié)合思想。通過“做一做“議一議”“試一試”問題的思考及回答,培養(yǎng)學(xué)生積極參與數(shù)學(xué)活動,并在數(shù)學(xué)活動中體驗成功,鍛煉學(xué)生克服困難的意志,建立自信心,發(fā)展學(xué)生清晰地闡述自己觀點的能力以及培養(yǎng)學(xué)生合作探索、合作交流、合作學(xué)習(xí)的新型學(xué)習(xí)方式。
二、教學(xué)重點和難點
理解絕對值的概念;求一個數(shù)的絕對值;比較兩個負(fù)數(shù)的大小。
三、教學(xué)過程:
1、教師檢查組長學(xué)案學(xué)習(xí)情況,組長檢查組員學(xué)案學(xué)習(xí)情況。(約5分鐘)
2、在組長的組織下進(jìn)行討論、交流。(約5分鐘)
3、小組分任務(wù)展示。(約25分鐘)
4、達(dá)標(biāo)檢測。(約5分鐘)
5、總結(jié)(約5分鐘)
四、小組對學(xué)案進(jìn)行分任務(wù)展示
(一)溫故知新:
前面我們已經(jīng)學(xué)習(xí)了數(shù)軸和數(shù)軸的三要素,請同學(xué)們回想一下什么叫數(shù)軸數(shù)軸的三要素什么
(二)小組合作交流,探究新知
1、觀察下圖,回答問題:(五組完成)
大象距原點多遠(yuǎn)兩只小狗分別距原點多遠(yuǎn)
歸納:在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做這個數(shù)的。一個數(shù)a的絕對值記作,4的絕對值記作,它表示在上與的距離,所以|4|=。
2、做一做:
(1)求下列各數(shù)的絕對值:(四組完成)-1.5,0,-7,2
(2)求下列各組數(shù)的絕對值:(一組完成)
(1)4,-4;
(2)0.8,-0.8;
從上面的結(jié)果你發(fā)現(xiàn)了什么
3、議一議:(八組完成)
(1)|+2|=,1=,|+8.2|=;5
(2)|-3|=,|-0.2|=,|-8|=
(3)|0|=;
你能從中發(fā)現(xiàn)什么規(guī)律
小結(jié):正數(shù)的絕對值是它,負(fù)數(shù)的絕對值是它的,0的絕對值是。
4、試一試:(二組完成)
若字母a表示一個有理數(shù),你知道a的絕對值等于什么嗎
(通過上題例子,學(xué)生歸納總結(jié)出一個數(shù)的絕對值與這個數(shù)的關(guān)系。)
5:做一做:(三組完成)
1、(1)在數(shù)軸上表示下列各數(shù),并比較它們的大。-3,-1
(2)求出(1)中各數(shù)的絕對值,并比較它們的大小
(3)你發(fā)現(xiàn)了什么
2、比較下列每組數(shù)的大小。
(1)-1和–5;(五組完成)(2)
(3)-8和-3(七組完成)
5和-2.7(六組完成)6五、達(dá)標(biāo)檢測:
1:填空:
絕對值是10的數(shù)有()
|+15|=()|–4|=()
|0|=()|4|=()
2:判斷
(1)、絕對值最小的'數(shù)是0。()
(2)、一個數(shù)的絕對值一定是正數(shù)。()
(3)、一個數(shù)的絕對值不可能是負(fù)數(shù)。()
(4)、互為相反數(shù)的兩個數(shù),它們的絕對值一定相等。()
(5)、一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離原點越近。()
六、總結(jié):
1、絕對值:在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。
2、絕對值的性質(zhì):正數(shù)的絕對值是它本身;
負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0。
因為正數(shù)可用a>0表示,負(fù)數(shù)可用a<0表示,所以上述三條可表述成:a="">0,那么|a|=a(2)如果a<0,那么|a|=-a(3)如果a=0,那么|a|=0
3、會利用絕對值比較兩個負(fù)數(shù)的大。簝蓚負(fù)數(shù)比較大小,絕對值大的反而小。
七、布置作業(yè)
P50頁,知識技能第1,2題。
七年級數(shù)學(xué)下冊教案 7
教學(xué)目標(biāo)
1、會從實際問題中抽象出數(shù)學(xué)模型,會用一元一次不等式解決實際問題;
2、通過觀察、實踐、討論等活動,經(jīng)歷從實際中抽象出數(shù)學(xué)模型的過程,積累利用一元一次不等式解決實際問題的經(jīng)驗,滲透分類討論思想,感知方程與不等式的內(nèi)在聯(lián)系;
3、在積極參與數(shù)學(xué)學(xué)習(xí)活動的過程中,初步認(rèn)識一元一次不等式的應(yīng)用價值,形成實事求是的態(tài)度和獨立思考的習(xí)慣。
教學(xué)重點:
尋找實際問題中的不等關(guān)系,建立數(shù)學(xué)模型。
教學(xué)難點:
弄清列不等式解決實際問題的思想方法,用去括號法解一元一次不等式。
教學(xué)過程(師生活動)
提出問題某學(xué)校計劃購實若干臺電腦,現(xiàn)從兩家商店了解到同一型號的電腦每臺報價均為6000元,并且多買都有一定的優(yōu)惠。甲商場的優(yōu)惠條件是:第一臺按原報價收款,其余每臺優(yōu)惠25%;乙商場的優(yōu)惠條件是:每臺優(yōu)惠20%。如果你是校長,你該怎么考慮,如何選擇?
探究新知1、分組活動。先獨立思考,理解題意。再組內(nèi)交流,發(fā)表自己的觀點。最后小組匯報,派代表論述理由。
2、在學(xué)生充分發(fā)表意見的基礎(chǔ)上,師生共同歸納出以下三種采購方案:
。1)什么情況下,到甲商場購買更優(yōu)惠?
(2)什么情況下,到乙商場購買更優(yōu)惠?
(3)什么情況下,兩個商場收費相同?
3、我們先來考慮方案:
設(shè)購買x臺電腦,如果到甲商場購買更優(yōu)惠。
問題1:如何列不等式?
問題2:如何解這個不等式?
在學(xué)生充分討論的基礎(chǔ)上,教師歸納并板書如下:解:設(shè)購買x臺電腦,如果到甲商場購買更優(yōu)惠,則6000+6000(1-25%)(x-1)<6000(1-20%)x
去括號,得
去括號,得:6000+4500x-45004<4800x
移項且合并,得:-300x<1500
不等式兩邊同除以-300,得
答:購買5臺以上電腦時,甲商場更優(yōu)惠。
4、讓學(xué)生自己完成方案(2)與方案(3),并匯報完成情況。
教師最后作適當(dāng)點評。
解決問題甲、乙兩個商場以同樣的.價格出售同樣的商品,同時又各自推出不同的優(yōu)惠措施。甲商場的優(yōu)惠措施是:累計購買100元商品后,再買的商品按原價的90%收費;乙商場則是:累計購買50元商品后,再買的商品按原價的95%收費。顧客選擇哪個商店購物能獲得更多的優(yōu)惠?
問題1:這個問題比較復(fù)雜。你該從何入手考慮它呢?
問題2:由于甲商場優(yōu)惠措施的起點為購物100元,乙商場優(yōu)惠措施的起點為購物50元,起點數(shù)額不同,因此必須分別考慮。你認(rèn)為應(yīng)分哪幾種情況考慮?
分組活動。先獨立思考,再組內(nèi)交流,然后各組匯報討論結(jié)果。
最后教師總結(jié)分析:
1、如果累計購物不超過50元,則在兩家商場購物花費是一樣的;
2、如果累計購物超過50元但不超過100元,則在乙商場購物花費小。
3、如果累計購物超過100元,又有三種情況:
。1)什么情況下,在甲商場購物花費?
。2)什么情況下,在乙商場購物花費?
。3)什么情況下,在兩家商場購物花費相同?
上述問題,在討論、交流的基礎(chǔ)上,由學(xué)生自己解決,教師可適當(dāng)點評。
總結(jié)歸納:
通過體驗買電腦、選商場購物,感受實際生活中存在的不等關(guān)系,用不等式來表示這樣的關(guān)系可為解決問題帶來方便。由實際問題中的不等關(guān)系列出不等式,就把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,再通過解不等式可得到實際問題的答案。
布置作業(yè):
教科書第126頁習(xí)題9.2第1題(1)(2)第3題1、2。
七年級數(shù)學(xué)下冊教案 8
復(fù)習(xí)目標(biāo):
1.復(fù)習(xí)基本概念形成知識體系;
2.會利用圖形的分割法求圖形的面積。
復(fù)習(xí)過程:
一、板書課題,出示目標(biāo):
同學(xué)們,今天,我們一起來復(fù)習(xí)第六章,本節(jié)課的學(xué)習(xí)目標(biāo)是:
二、指導(dǎo)檢測:
復(fù)習(xí)目標(biāo)達(dá)到,從認(rèn)真做檢測題開始,下面,請看檢測要求:
檢測指導(dǎo)
1.認(rèn)真審題,細(xì)心計算;
2.把字寫端正,步驟寫完整;
3.在十五分鐘內(nèi)完成。
預(yù)祝大家出色完成任務(wù)!
三、學(xué)生檢測,教師巡視
A:P58“知識結(jié)構(gòu)圖”,完成P604、5
B:學(xué)生檢測,教師巡視,搜集學(xué)生出現(xiàn)的錯誤,進(jìn)行第二次備課。
四、板演、更正答案:
A:分別讓2名學(xué)生上堂板演,有錯誤,鼓勵其他同學(xué)更正。
B:對改(下面,比誰能在2分鐘內(nèi)對改完,不出錯)
五、討論:
1.獨立更正:
2.小組討論:(自己不能獨立更正的題,小組解疑)
3.可能出現(xiàn)錯誤,需要集體討論:(會了的小組幫助不會的小組解疑,若沒有不同答案的'且正確的,肯定答案,不討論。如果有不同意見的,讓同學(xué)討論。)
可能出現(xiàn)錯誤需討論的有:
評:第4題
(1)坐標(biāo)對嗎?(估計問題不大)
(2)他路上經(jīng)過的地方對嗎?(估計問題不大)
(3)圖形對嗎?(估計問題不大)
第5題
(1)紅色圖形平移的對嗎?為什么?
引導(dǎo)學(xué)生說出:可以有兩種平移的方法:第一種方法:先向上平移6個單位,再向右平移3個單位;第二種方法:先向右平移3個單位,再向上平移6個單位。
(2)略
歸納總結(jié):同學(xué)們,通過本節(jié)課的學(xué)習(xí),你有哪些收獲?引導(dǎo)學(xué)生說一說解類似題時該注意哪些問題?
六、課堂作業(yè)
必做題:P606、8
思考題:P6110
七年級數(shù)學(xué)下冊教案 9
【教材分析】
這部分內(nèi)容是在學(xué)生學(xué)習(xí)了比例的意義基礎(chǔ)上進(jìn)行教學(xué)的,是對比例的意義的深化和發(fā)展,是后面學(xué)習(xí)解比例知識的基礎(chǔ)。它起著承前啟后的作用,是小學(xué)階段學(xué)習(xí)比例初步知識的一項重要內(nèi)容。
【教學(xué)目標(biāo)】
1、了解比例各部分的名稱,探索并掌握比例的基本性質(zhì),會根據(jù)比例的基本性質(zhì)正確判斷兩個比能否組成比例,能根據(jù)乘法等式寫出正確的比例。
2、通過觀察、猜測、舉例驗證、歸納等數(shù)學(xué)活動,經(jīng)歷探究比例基本性質(zhì)的過程,滲透有序思考,感受變與不變的思想,體驗比例基本性質(zhì)的應(yīng)用價值。
3、引導(dǎo)學(xué)生自主參與知識探究過程,培養(yǎng)學(xué)生初步的觀察、分析、比較、判斷、概括的能力,發(fā)展學(xué)生的思維。
【教學(xué)重點】探索并掌握比例的基本性質(zhì)。
【教學(xué)難點】根據(jù)乘法等式寫出正確的比例。
【設(shè)計理念】
數(shù)學(xué)課程標(biāo)準(zhǔn)指出:數(shù)學(xué)課堂教學(xué)要從學(xué)生已有的知識經(jīng)驗出發(fā),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí)、合作交流的情境,讓學(xué)生經(jīng)歷觀察、操作、歸納、類比、猜想、反思等數(shù)學(xué)活動,獲得基本的數(shù)學(xué)知識與技能,進(jìn)一步激發(fā)學(xué)生的興趣,發(fā)展學(xué)生的思維能力。本節(jié)課的教學(xué)緊緊圍繞這一理念,先讓學(xué)生學(xué)習(xí)比例的各部分名稱,再探究比例的基本性質(zhì),最后通過簡煉的分層練習(xí),深化比例的基本性質(zhì),體驗比例基本性質(zhì)的應(yīng)用價值,滲透假設(shè)、驗證、優(yōu)化等解決問題的策略和方法,感受“一一對應(yīng)”和“變與不變”的思想。
【教學(xué)預(yù)設(shè)】
一、認(rèn)識比例各部分的名稱
1、呈現(xiàn):4:5和8:10
(1)認(rèn)識嗎?叫什么?
(2)正確嗎?為什么?(4:5=0.8,8:10=0.8,所以4:5=8:10)
(3)求比值,判斷兩個比能否組成比例。
2、介紹比例各部分的名稱
4:5=8:10中,組成比例的四個數(shù)“4、5、8、10”叫做這個比例的項。兩端的兩項“4和10”叫做比例的外項。中間的兩項“5和8”叫做比例的內(nèi)項。
3、你能說出下面比例的內(nèi)項和外項各是多少嗎?
(1)1.4:=:5(2)=
【設(shè)計意圖:簡潔的情境,簡單的問答,準(zhǔn)確定位教學(xué)的起點,溝通比例各部分的名稱,嫁接新知探究的支點。】
二、探究比例的基本性質(zhì)
1、猜數(shù)
(1)老師這里也有一個比例“12∶□=□∶2”,不過它的兩個內(nèi)項看不清了,想一想,這兩個內(nèi)項可能是哪兩個數(shù)?(如1和24,2和12,……)
(2)追問:正確嗎?為什么?(求比值判斷)
(3)還有不同答案嗎?
(4)你能舉出項不是整數(shù)的例子嗎?
(5)這樣的例子舉得完嗎?
2、猜想
仔細(xì)觀察這組等式,你有什么發(fā)現(xiàn)?(兩個外項的積等于兩個內(nèi)項的.積;兩個內(nèi)項的位置可以交換……)
3、驗證
(1)是不是所有的比例都有這樣的規(guī)律呢,有什么好辦法?(舉例驗證)
(2)你覺得應(yīng)該怎樣舉例呢?
示范:①任意寫一個簡單的比;②求出比值;③根據(jù)比值寫出另一個比的一項,求出另一項;④組成比例;⑤算出外項的積和內(nèi)項的積。
(3)合作要求
1)前后4個同學(xué)為一個小組;
2)每個同學(xué)寫出一個比例,小組內(nèi)交換驗證。
3)通過舉例驗證,你們能得出什么結(jié)論?
4、歸納
(1)老師這里也有一個比例3:5=4:6,為什么兩個外項的積不等于兩個內(nèi)項的積?
(2)其實我們的發(fā)現(xiàn)與數(shù)學(xué)家不謀而合,他們也發(fā)現(xiàn)在“比例中,兩個外項的積等于兩個內(nèi)項的積”,并且給它起了個名字,叫做比例的基本性質(zhì)。(板書:比例的基本性質(zhì))
5、完善
(1)如果用字母表示比例的四個項,即a:b=c:d,那么,比例的基本性質(zhì)可以表示成什么?(ad=bc或bc=ad)
(2)老師這里也有一個比例0:3=0:4,可以嗎?3:0=4:0呢?
(3)比例中兩個比的后項都不能為0。
6、如果比例寫成分?jǐn)?shù)形式=,這怎么相乘?(交叉相乘)
【設(shè)計意圖:不完整的比例激發(fā)學(xué)生根據(jù)比例的意義猜數(shù)的興趣,教師舉例示范,為學(xué)生小組合作舉例驗證比例的基本性質(zhì)搭建支點,意在讓學(xué)生經(jīng)歷“猜數(shù)——猜想——驗證——歸納——完善”的知識探究過程,激發(fā)學(xué)生的探究欲望,讓學(xué)會學(xué)習(xí)的方法,提高學(xué)習(xí)能力!
三、鞏固練習(xí),應(yīng)用比例的基本性質(zhì)
1、判斷下面哪組中的兩個比可以組成比例。
示范:6:3和8:5(1)1.2:和:5
(2):和:(3)和
〖學(xué)法指導(dǎo):假設(shè)兩個比能組成比例,根據(jù)比例的基本性質(zhì),分別算出兩個外項和兩個內(nèi)項的積,再肯定兩個比能否組成比例!
(1)先讓學(xué)生嘗試判斷,再交流,明確思考方法。
(2)還可以用什么方法來判斷?用求比值的方法判斷1.2:和:5能否組成比例可以嗎?
(3)這兩種方法,你更喜歡哪種?為什么?
2、在比例中,兩個外項的積等于兩個內(nèi)項的積,如果知道兩個外項的積和兩個內(nèi)項的積,你會寫比例嗎?
六(3)班智聰同學(xué)根據(jù)“2×9=3×6”寫出了比例,猜猜他可能是怎么寫得?請在練習(xí)本上寫一寫。
追問:你為什么寫得那么塊?有什么竅門嗎?
補問:根據(jù)這個乘法等式,一共可以寫多少個比例?
3、如果a×2=b×4,則a:b=():();
如果a:b=4:2,則a=4,b=2。這種說法對嗎?為什么?
那么a、b還可能是多少?你發(fā)現(xiàn)了什么?
4、猜猜我是誰?
6:()=5:4
延伸:如果把“()”改為“x”就是我們下節(jié)課要學(xué)習(xí)的知識:解比例。
【設(shè)計意圖:通過分層練習(xí),鞏固對比例基本性質(zhì)的掌握,體驗比例基本性質(zhì)的應(yīng)用價值,促進(jìn)所有學(xué)生都能在動靜結(jié)合的練習(xí)過程中獲得發(fā)展,不同學(xué)生獲得不同程度的發(fā)展。同時滲透假設(shè)、驗證、有序思考的解題策略和方法,體驗解決問題方法的多樣性和優(yōu)化策略,感受“一一對應(yīng)”和“變與不變”的數(shù)學(xué)思想!
四、分享收獲暢談感想
這節(jié)課,我們學(xué)習(xí)了什么?我們是怎樣探究比例的基本性質(zhì)的?
五、板書設(shè)計
七年級數(shù)學(xué)下冊教案 10
教學(xué)目的
1、通過對多個實際問題的分析,使學(xué)生體會到一元一次方程作為實際問題的數(shù)學(xué)模型的作用。
2、使學(xué)生會列一元一次方程解決一些簡單的應(yīng)用題。
3、會判斷一個數(shù)是不是某個方程的解。
重點、難點
1、重點:會列一元一次方程解決一些簡單的應(yīng)用題。
2、難點:弄清題意,找出“相等關(guān)系”。
教學(xué)過程
一、復(fù)習(xí)提問
小學(xué)里已經(jīng)學(xué)過列方程解簡單的應(yīng)用題,讓我們回顧一下,如何列方程解應(yīng)用題?
例如:一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?
解:設(shè)小紅能買到工本筆記本,那么根據(jù)題意,得
1.2x=6
因為1.2×5=6,所以小紅能買到5本筆記本。
二、新授:
我們再來看下面一個例子:
問題1:某校初中一年級328名師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛?
問:你能解決這個問題嗎?有哪些方法?
(讓學(xué)生思考后,回答,教師再作講評)
算術(shù)法:(328-64)&pide;44=264&pide;44=6(輛)
列方程解應(yīng)用題:
設(shè)需要租用x輛客車,那么這些客車共可乘44x人,加上乘坐校車的64人,就是全體師生328人,可得。
44x+64=328(1)
解這個方程,就能得到所求的結(jié)果。
問:你會解這個方程嗎?試試看?
(學(xué)生可能利用逆運算求解,教師加以肯定,同時指出本章里我們將要學(xué)習(xí)解方程的另一種方法。)
問題2:在課外活動中,張老師發(fā)現(xiàn)同學(xué)們的.年齡大多是13歲,就問同學(xué):“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”
小敏同學(xué)很快說出了答案!叭辍薄K沁@樣算的:
1年后,老師46歲,同學(xué)們的年齡是14歲,不是老師的三分之一。
2年后,老師47歲,同學(xué)們的年齡是15歲,也不是老師的三分之一。
3年后,老師48歲,同學(xué)們的年齡是16歲,恰好是老師的三分之一。
你能否用方程的方法來解呢?
通過分析,列出方程:13+x=(45+x)(2)
問:你會解這個方程嗎?你能否從小敏同學(xué)的解法中得到啟發(fā)?
這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學(xué)的方法啟發(fā)了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數(shù)能使兩邊的值相等,這個數(shù)就是這個方程的解。
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,
七年級數(shù)學(xué)下冊教案 11
知識與技能:
掌握本章基本概念與運算,能用本章知識解決實際問題。
過程與方法:
通過梳理本章知識點,挖掘知識點間的聯(lián)系,并應(yīng)用于實際解題中。
情感態(tài)度:
領(lǐng)悟分類討論思想,學(xué)會類比學(xué)習(xí)的方法。
教學(xué)重點:
本章知識梳理及掌握基本知識點。
教學(xué)難點:
應(yīng)用本章知識解決實際與綜合問題。
一、知識框圖,整體把握
教學(xué)說明:
1、通過構(gòu)建框圖,幫助學(xué)生回憶本節(jié)所有基本概念和基本方法。
2、幫助學(xué)生找出知識間聯(lián)系,如平方與開平方,平方根與立方根,有理數(shù)與實數(shù)等等。
二、釋疑解惑,加深理解
1、利用平方根的概念解題
在利用平方根的概念解題時,主要涉及平方根的性質(zhì):正數(shù)有兩個平方根,且它們互為相反數(shù);以及平方根的'非負(fù)性:被開方數(shù)為非負(fù)數(shù),算術(shù)平方根也為非負(fù)數(shù)。
例1已知某數(shù)的平方根是a+3及2a—12,求這個數(shù)。
分析:由題意可知,a+3與2a—12互為相反數(shù),則它們的和為0。解:根據(jù)題意可得,a+3+2a—12=0
解得a=3
∴a+3=6,2a—12=—6
∴這個數(shù)是36
教學(xué)說明:負(fù)數(shù)沒有平方根,非負(fù)數(shù)才有平方根,它們互為相反數(shù),而0是其中的一個特例。
2、比較實數(shù)的大小
除常用的法則比較實數(shù)大小外,有時要根據(jù)題目特點選擇特別方法。
七年級數(shù)學(xué)下冊教案 12
教學(xué)目標(biāo):
1、知識與技能
。1)通過實例,感受引入負(fù)數(shù)的必要性和合理性,能應(yīng)用正負(fù)數(shù)表示生活中具有相反意義的量。
。2)理解有理數(shù)的意義,體會有理數(shù)應(yīng)用的廣泛性。
2、過程與方法
通過實例的引入,認(rèn)識到負(fù)數(shù)的產(chǎn)生是來源于生產(chǎn)和生活,會用正、負(fù)數(shù)表示具有相反意義的量,能按要求對有理數(shù)進(jìn)行分類。
重點、難點:
1、重點:正數(shù)、負(fù)數(shù)有意義,有理數(shù)的意義,能正確對有理數(shù)進(jìn)行分類。
2、難點:對負(fù)數(shù)的理解以及正確地對有理數(shù)進(jìn)行分類。
教學(xué)過程:
一、創(chuàng)設(shè)情景,導(dǎo)入新課
大家知道,數(shù)學(xué)與數(shù)是分不開的,現(xiàn)在我們一起來回憶一下,小學(xué)里已經(jīng)學(xué)過哪些類型的數(shù)?
學(xué)生答后,教師指出:小學(xué)里學(xué)過的數(shù)可以分為三類:自然數(shù)(正整數(shù))、分?jǐn)?shù)和零(小數(shù)包括在分?jǐn)?shù)之中),它們都是由于實際需要而產(chǎn)生的
為了表示一個人、兩只手、……,我們用到整數(shù)1,2,……
為了表示“沒有人”、“沒有羊”、……,我們要用到0。
但在實際生活中,還有許多量不能用上述所說的自然數(shù)、零或分?jǐn)?shù)、小數(shù)表示。
二、合作交流,解讀探究
1、某市某一天的溫度是零上5℃,最低溫度是零下5℃。要表示這兩個溫度,如果只用小學(xué)學(xué)過的數(shù),都記作5℃,就不能把它們區(qū)別清楚。它們是具有相反意義的兩個量。
現(xiàn)實生活中,像這樣的相反意義的量還有很多……例如,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155米,“高于”和“低于”其意義是相反的!斑\進(jìn)”和“運出”,其意義是相反的。
同學(xué)們能舉例子嗎?
學(xué)生回答后,教師提出:怎樣區(qū)別相反意義的量才好呢?
待學(xué)生思考后,請學(xué)生回答、評議、補充。
教師小結(jié):同學(xué)們成了發(fā)明家。甲同學(xué)說,用不同顏色來區(qū)分,比如,紅色5℃表示零下5℃,黑色5℃表示零上5℃;乙同學(xué)說,在數(shù)字前面加不同符號來區(qū)分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其實,中國古代數(shù)學(xué)家就曾經(jīng)采用不同的顏色來區(qū)分,古時叫做“正算黑,負(fù)算赤”。如今這種方法在記賬的時候還使用。所謂“赤字”,就是這樣來的。
現(xiàn)在,數(shù)學(xué)中采用符號來區(qū)分,規(guī)定零上5℃記作+5℃(讀作正5℃)或5℃,把零下5℃記作—5℃(讀作負(fù)5℃)。這樣,只要在小學(xué)里學(xué)過的數(shù)前面加上“+”或“—”號,就把兩個相反意義的量簡明地表示出來了。
讓學(xué)生用同樣的方法表示出前面例子中具有相反意義的量:
高于海平面8848米,記作+8848米;低于海平面155米,記作—155米;
教師講解:什么叫做正數(shù)?什么叫做負(fù)數(shù)?強調(diào),數(shù)0既不是正數(shù),也不是負(fù)數(shù),它是正、負(fù)數(shù)的界限,表示“基準(zhǔn)”的數(shù),零不是表示“沒有”,它表示一個實際存在的數(shù)量。并指出,正數(shù),負(fù)數(shù)的“+”“—”的符號是表示性質(zhì)相反的'量,符號寫在數(shù)字前面,這種符號叫做性質(zhì)符號。
2、給出新的整數(shù)、分?jǐn)?shù)概念
引進(jìn)負(fù)數(shù)后,數(shù)的范圍擴大了。過去我們說整數(shù)只包括自然數(shù)和零,引進(jìn)負(fù)數(shù)后,我們把自然數(shù)叫做正整數(shù),自然數(shù)前加上負(fù)號的數(shù)叫做負(fù)整數(shù),因而整數(shù)包括正整數(shù)(自然數(shù))、負(fù)整數(shù)和零,同樣分?jǐn)?shù)包括正分?jǐn)?shù)、負(fù)分?jǐn)?shù)。
3、給出有理數(shù)概念
整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù)。
4、有理數(shù)的分類
為了便于研究某些問題,常常需要將有理數(shù)進(jìn)行分類,需要不同,分類的方法也常常不同根據(jù)有理數(shù)的定義可將有理數(shù)分成兩類:整數(shù)和分?jǐn)?shù)。有理數(shù)還有沒有其他的分類方法?
待學(xué)生思考后,請學(xué)生回答、評議、補充。
教師小結(jié):按有理數(shù)的符號分為三類:正有理數(shù)、負(fù)有理數(shù)和零。在有理數(shù)范圍內(nèi),正數(shù)和零統(tǒng)稱為非負(fù)數(shù)。向?qū)W生強調(diào):分類可以根據(jù)不同需要,用不同的分類標(biāo)準(zhǔn),但必須對討論對象不重不漏地分類。
三、總結(jié)反思
引導(dǎo)學(xué)生回答如下問題:本節(jié)課學(xué)習(xí)了哪些基本內(nèi)容?學(xué)習(xí)了什么數(shù)學(xué)思想方法?應(yīng)注意什么問題?
由于實際生活中存在著許多具有相反意義的量,因此產(chǎn)生了正數(shù)與負(fù)數(shù)。正數(shù)是大于0的數(shù),負(fù)數(shù)就是在正數(shù)前面加上“—”號的數(shù),負(fù)數(shù)小于0。0既不是正數(shù),也不是負(fù)數(shù),0可以表示沒有,也可以表示一個實際存在的數(shù)量,如0℃。
四、課后作業(yè):課本P5習(xí)題1。1A第1、2、4題。
七年級數(shù)學(xué)下冊教案 13
教學(xué)目標(biāo)
1、經(jīng)歷觀察教具模式的演示和通過畫圖等操作,交流歸納與活動,進(jìn)一步發(fā)展空間觀念
2、了解平行線的概念、平面內(nèi)兩條直線的相交和平行的兩種位置關(guān)系,知道平行公理以及平行公理的推論、
3、會用符號語方表示平行公理推論,會用三角尺和直尺過已知直線外一點畫這條直線的平行線、
重點:
探索和掌握平行公理及其推論、
難點:
對平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì)、
教學(xué)過程
一、創(chuàng)設(shè)問題情境
1、復(fù)習(xí)提問:兩條直線相交有幾個交點?相交的兩條直線有什么特殊的'位置關(guān)系?
學(xué)生回答后,教師把教具中木條b與c重合在一起,轉(zhuǎn)動木條a確認(rèn)學(xué)生的回答、教師接著問:在平面內(nèi),兩條直線除了相交外,還有別的位置關(guān)系嗎?
2、教師演示教具。
順時針轉(zhuǎn)動木條b兩圈,讓學(xué)生思考:把a、b想像成兩端可以無限延伸的兩條直線,順時針轉(zhuǎn)動b時,直線b與直線a的交點位置將發(fā)生什么變化?在這個過程中,有沒有直線b與c木相交的位置?
3、教師組織學(xué)生交流并形成共識。
轉(zhuǎn)動b時,直線b與c的交點從在直線a上A點向左邊距離A點很遠(yuǎn)的點逐步接近A點,并垂合于A點,然后交點變?yōu)樵贏點的右邊,逐步遠(yuǎn)離A點、繼續(xù)轉(zhuǎn)動下去,b與a的交點就會從A點的左邊又轉(zhuǎn)動A點的左邊……可以想象一定存在一個直線b的位置,它與直線a左右兩旁都沒有交點、
二、平行線定義表示法
1、結(jié)合演示的結(jié)論,師生用數(shù)學(xué)語言描述平行定義:同一平面內(nèi),存在一條直線a與直線b不相交的位置,這時直線a與b互相平行、換言之,同一平面內(nèi),不相交的兩條直線叫做平行線。
直線a與b是平行線,記作“∥”,這里“∥”是平行符號。
教師應(yīng)強調(diào)平行線定義的本質(zhì)屬性,第一是同一平面內(nèi)兩條直線,第二是設(shè)有交點的兩條直線。
2、同一平面內(nèi),兩條直線的位置關(guān)系
教師引導(dǎo)學(xué)生從同一平面內(nèi),兩條直線的交點情況去確定兩條直線的位置關(guān)系。
在同一平面內(nèi),兩條直線只有兩種位置關(guān)系:相交或平行,兩者必居其一、即兩條直線不相交就是平行,或者不平行就是相交、
三、畫圖、觀察、歸納概括平行公理及平行公理推論
1、在轉(zhuǎn)動教具木條b的過程中,有幾個位置能使b與a平行?
本問題是學(xué)生直覺直線b繞直線a外一點B轉(zhuǎn)動時,有并且只有一個位置使a與b平行、
2、用直線和三角尺畫平行線。
已知:直線a,點B,點C、
(1)過點B畫直線a的平行線,能畫幾條?
。2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
3、通過觀察畫圖、歸納平行公理及推論。
。1)由學(xué)生對照垂線的第一性質(zhì)說出畫圖所得的結(jié)論、
。2)在學(xué)生充分交流后,教師板書。
平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
(3)比較平行公理和垂線的第一條性質(zhì)。
共同點:都是“有且只有一條直線”,這表明與已知直線平行或垂直的直線存在并且是唯一的。
不同點:平行公理中所過的“一點”要在已知直線外,兩垂線性質(zhì)中對“一點”沒有限制,可在直線上,也可在直線外。
4、歸納平行公理推論。
(1)學(xué)生直觀判定過B點、C點的a的平行線b、c是互相平行。
。2)從直線b、c產(chǎn)生的過程說明直線b∥直線c。
(3)學(xué)生用三角尺與直尺用平推方驗證b∥c。
。4)師生用數(shù)學(xué)語言表達(dá)這個結(jié)論,教師板書。
結(jié)果兩條直線都與第三條直線平行,那么這條直線也互相平行。
結(jié)合圖形,教師引導(dǎo)學(xué)生用符號語言表達(dá)平行公理推論:
如果b∥a,c∥a,那么b∥c。
。5)簡單應(yīng)用。
練習(xí):如果多于兩條直線,比如三條直線a、b、c與直線L都平行,那么這三條直線互相平行嗎?請說明理由。
本練習(xí)是讓學(xué)生在反復(fù)運用平行公理推論中掌握平行公理推論以及說理規(guī)范。
四、作業(yè):課本P16、7,P17、11。
七年級數(shù)學(xué)下冊教案 14
〖教學(xué)目標(biāo)〗
1、經(jīng)歷探索多項式的乘法運算法則的過程,掌握多項式與多項式相乘的法則。
2、會運用單項式與單項式,單項式與多項式,多項式與多項式相乘的法則,化簡整式。
3、會用多項式的乘法解決簡單的實際問題。
〖教學(xué)重點與難點〗
教學(xué)重點:多項式與多項式相乘的運算。
教學(xué)難點:例2包含了多種運算,過程比較復(fù)雜是本節(jié)的難點。
〖教學(xué)過程〗
一、創(chuàng)設(shè)情境,引出課題
小明找來一張鉛畫紙包數(shù)學(xué)課本,已知課本長a厘米,寬b厘米,厚c厘米,小明想將課本封面與封底的每一邊都包進(jìn)去m厘米,問如果你是小明你會在鉛畫紙上裁下一塊多大面積的長方形?
二、引出新知,探究示例
1、合作探索學(xué)習(xí):有一家廚房的平面布局如圖1
。1)請用三種不同的'方法表示廚房的總面積。
。2)這三種不同的方法表示的面積應(yīng)當(dāng)相等,你能用運算律解釋嗎?
。3)通過上面的討論,你能總結(jié)出單項式與多項式相乘的運算規(guī)律嗎?
(讓學(xué)生以同桌合作的形式進(jìn)行探索,然后表達(dá)交流)
答:(1)總面積:(a+n)(b+m);a(b+m)+n(b+m)或b(a+n)+m(a+n);ab+am+nb+nm
。2)總面積相等,由此可得到(a+n)(b+m)=a(b+m)+n(b+m)……①
=ab+am+nb+nm……②
第①步運用分配律把(b+m)看成一個數(shù),第②步再運用分配律。
。3)由(a+n)(b+m)=ab+am+nb+nm師生共同總結(jié)得出多項式與多項式相乘的法則:
。▽W(xué)生歸納,教師板書)
2、運用新知,計算例題
例1:計算
。1)(x+y)(a+2b)(2)(3x—1)(x+3)(3)(x—1)2
解:(1)(x+y)(a+2b)=x?a+x?(2b)+y?a+y?(2b)=ax+2bx+ay+2by
。2)(3x—1)(x+3)=3x2+9x—x—3=3x2+8x—3
。3)(x—1)2=(x—1)(x—1)=x2—x—x+1=x2—2x+1
教師在示范過程中引導(dǎo)學(xué)生注意這三題都按多項式相乘的法則進(jìn)行,運算過程中注意符號,防止漏乘,結(jié)果要合并同類項。
反饋練習(xí):課內(nèi)練習(xí)1
例2,先化簡,再求值:(2a—3)(3a+1)—ba(a—4),其中a=
解:(2a—3)(3a+1)—ba(a—4)=6a2+2a—9a—3—6a2+24a=17a—3
當(dāng)a=時,原式=17a—3=17×()—3=—19—3=—22
注意的幾點:(1)必須先化簡,再求值,注意符號及解題格式。
。2)當(dāng)代入的是一個負(fù)數(shù)時,添上括號。
。3)在運算過程中,把帶分?jǐn)?shù)化為假分?jǐn)?shù)來計算。
反饋練習(xí):1、計算當(dāng)y=—2時,(3y+2)(y—4)—(y—2)(y—3)的值。
2、課內(nèi)練習(xí)2、3。
三、分層訓(xùn)練,能力升級
1、填空
(1)(2x—1)(x—1)=
。2)x(x2—1)—(x+1)(x2+1)=
。3)若(x—a)(x+2)=x2—6x—16,則a=
。4)方程y(y—1)—(y—2)(y+3)=2的解為
2、某地區(qū)有一塊原長m米,寬a米的長方形林區(qū)增長了200米,加寬了15米,則現(xiàn)在這塊地的面積為平方米。
3、某人以一年期的定期儲蓄把2000元錢存入銀行,當(dāng)年的年利率為x,第二年的年利率減少10%,則第二年到期時他的本利和為多少元?
四、小結(jié)
讓學(xué)生談?wù)勍ㄟ^這節(jié)課的學(xué)習(xí),有哪些收獲與疑問?教師及時總結(jié)內(nèi)容并解答疑惑。
五、布置作業(yè)
課本的分層作業(yè)題。
七年級數(shù)學(xué)下冊教案 15
教材分析:
平行線的性質(zhì)是空間與圖形領(lǐng)域的基礎(chǔ)知識,在以后的學(xué)習(xí)中經(jīng)常要用到。這部分內(nèi)容是后續(xù)學(xué)習(xí)的基礎(chǔ),它們不但為三角形內(nèi)角和定理的證明提供了轉(zhuǎn)化的方法,而且也為今后三角形全等、三角形相似等知識的學(xué)習(xí)奠定了理論基礎(chǔ),學(xué)好這部分內(nèi)容至關(guān)重要
教學(xué)目標(biāo):
知識技能:
1、掌握平行線的三個性質(zhì)
2、會用平行線的性質(zhì)進(jìn)行有關(guān)的簡單推理和計算
3、通過對比,理解平行線的性質(zhì)和判定的'區(qū)別
過程與方法:
在探索圖形的過程中,通過觀察、操作、推理等手段,有條理地思考和表達(dá)自己的探索過程和結(jié)果,從而進(jìn)一步增強分析、概括、表達(dá)能力
情感、態(tài)度與價值觀:
讓學(xué)生在活動中體驗探索、交流、成功與提升的喜悅,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生勇于實踐,大膽猜想、推理的科學(xué)態(tài)度
教學(xué)重點:平行線的三個性質(zhì)的探索
教學(xué)難點:平行線的性質(zhì)和判定的區(qū)別以及應(yīng)用它們進(jìn)行簡單的推理
教學(xué)過程:
1、創(chuàng)設(shè)情境:
(1)、回顧直線平行的條件。(學(xué)生回答后,教師板書。)
(2)、設(shè)問:根據(jù)同位角相等可以判定兩條直線平行,反過來,如果兩條直線平行,同位角之間有什么關(guān)系呢?內(nèi)錯角、同旁內(nèi)角之間又有什么關(guān)系呢?
[設(shè)計意圖]:通過復(fù)習(xí)回憶平行線的判定來引入新課,主要目的有兩個,一是溫故而知新,促使學(xué)生實現(xiàn)知識思維的正遷移;二是有利于學(xué)生在學(xué)習(xí)過程中去比較性質(zhì)與判定的不同。同時,開門見山較直接地提出了本節(jié)課的目標(biāo),讓學(xué)生明確本節(jié)課的學(xué)習(xí)任務(wù),有利于實現(xiàn)學(xué)生對學(xué)習(xí)過程的自我監(jiān)控。
2、探究新知:
(1)、畫平行線:
教師通過多媒體演示。
學(xué)生用方格或筆記本上的橫線。
[設(shè)計意圖]:畫平行線的這個過程主要讓學(xué)生明白確定平行線性質(zhì)的前提是要兩條平行線,幫助學(xué)生區(qū)分平行線的性質(zhì)與判定。
(2)、問題1:如何得到同位角?a
學(xué)生獨立思考后回答:如可隨意畫2b
條直線與兩條平行線相交,如圖1,∠1c
和∠2是同位角。圖1
[設(shè)計意圖]:讓學(xué)生體驗得到同位角的過程,特別要讓學(xué)生明白所得的同位角是任意的而不是特殊角、特殊位置的。
問題2:你準(zhǔn)備怎樣去找∠1和∠2的關(guān)系?
學(xué)生分組合作交流,進(jìn)行探究后發(fā)表見解。
學(xué)生回答:如測量或剪下其中某一個角把它貼到另一個同位角的位置上去觀察等。
[設(shè)計意圖]:讓學(xué)生明確探究的具體環(huán)節(jié)與步驟,形成整個班級內(nèi)的合作與交流,讓部分學(xué)習(xí)有困難的學(xué)生也能探究出結(jié)論。
【七年級數(shù)學(xué)下冊教案】相關(guān)文章:
七年級數(shù)學(xué)下冊教案02-15
七年級下冊數(shù)學(xué)教案12-13
七年級數(shù)學(xué)下冊教案[錦集15篇]09-26
小學(xué)人教版數(shù)學(xué)下冊教案11-25
語文七年級下冊教案02-23
政治下冊七年級教案03-12