亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

范文資料網(wǎng)>書稿范文>總結(jié)>《高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-02-20 16:25:29 總結(jié) 我要投稿

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性結(jié)論的書面材料,它是增長才干的一種好辦法,讓我們一起認(rèn)真地寫一份總結(jié)吧?偨Y(jié)怎么寫才不會(huì)流于形式呢?下面是小編精心整理的高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  第1章空間幾何體1

  1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征1.2空間幾何體的三視圖和直觀圖

  11三視圖:

  正視圖:從前往后側(cè)視圖:從左往右俯視圖:從上往下22畫三視圖的原則:

  長對齊、高對齊、寬相等

  33直觀圖:斜二測畫法44斜二測畫法的步驟:

  (1).平行于坐標(biāo)軸的線依然平行于坐標(biāo)軸;

 。2).平行于y軸的線長度變半,平行于x,z軸的線長度不變;(3).畫法要寫好。

  5用斜二測畫法畫出長方體的步驟:(1)畫軸(2)畫底面(3)畫側(cè)棱(4)成圖

  1.3空間幾何體的表面積與體積(一)空間幾何體的表面積

  1棱柱、棱錐的表面積:各個(gè)面面積之和

  2圓柱的表面積S2rl2r23圓錐的表面積Srlr2

  4圓臺(tái)的表面積Srlr2RlR2

  5球的表面積S4R2

 。ǘ┛臻g幾何體的體積1柱體的體積VS底h2錐體的體積V13S底h

  3臺(tái)體的體積V13(S上S上S下S下)h4球體的體積V43R3

  第二章直線與平面的位置關(guān)系

  2.1空間點(diǎn)、直線、平面之間的位置關(guān)系

  2.1.1

  1平面含義:平面是無限延展的2平面的畫法及表示

 。1)平面的畫法:水平放置的平面通常畫成

  一個(gè)平行四邊形,銳角畫成450,且橫邊畫成

  DC鄰邊的2倍長(如圖)α(2)平面通常用希臘字母α、β、γ等表示,AB如平面α、平面β等,也可以用表示平面的平

  行四邊形的四個(gè)頂點(diǎn)或者相對的兩個(gè)頂點(diǎn)的大寫字母來表示,如平面

  AC、平面ABCD等。3三個(gè)公理:

 。1)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)符號表示為

  A∈L

  AB∈L=>LααLA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)

  AB(2)公理2:過不在一條直線上的三點(diǎn),有且只有一個(gè)平面。C符號表示為:A、B、C三點(diǎn)不共線=>有且只有一個(gè)平面αα,

  使A∈α、B∈α、C∈α。

  公理2作用:確定一個(gè)平面的依據(jù)。

 。3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。β符號表示為:P∈α∩β=>α∩β=L,且P∈L

  Pα公理3作用:判定兩個(gè)平面是否相交的依據(jù)L

  2.1.2空間中直線與直線之間的位置關(guān)系

  1空間的兩條直線有如下三種關(guān)系:

  相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);共面直線

  平行直線:同一平面內(nèi),沒有公共點(diǎn);

  異面直線:不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn)。2公理4:平行于同一條直線的兩條直線互相平行。符號表示為:設(shè)a、b、c是三條直線

  a∥b=>a∥cc∥b

  強(qiáng)調(diào):公理4實(shí)質(zhì)上是說平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都

  -2-

  適用。

  公理4作用:判斷空間兩條直線平行的依據(jù)。

  3等角定理:空間中如果兩個(gè)角的兩邊分別對應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)4注意點(diǎn):

 、賏"與b"所成的角的大小只由a、b的相互位置來確定,與O的選擇無關(guān),為了簡便,點(diǎn)O一般取在兩直線中的一條上;②兩條異面直線所成的角θ∈(0,);2③當(dāng)兩條異面直線所成的角是直角時(shí),我們就說這兩條異面直線互相垂直,記作a⊥b;

 、軆蓷l直線互相垂直,有共面垂直與異面垂直兩種情形;

 、萦(jì)算中,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。

  2.1.32.1.4空間中直線與平面、平面與平面之間的位置關(guān)系1、直線與平面有三種位置關(guān)系:

 。1)直線在平面內(nèi)有無數(shù)個(gè)公共點(diǎn)

 。2)直線與平面相交有且只有一個(gè)公共點(diǎn)(3)直線在平面平行沒有公共點(diǎn)

  指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來表示

  aαa∩α=Aa∥α

  2.2.直線、平面平行的'判定及其性質(zhì)

  2.2.1直線與平面平行的判定

  1、直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。簡記為:線線平行,則線面平行。符號表示:

  aα

  bβ=>a∥αa∥b

  2.2.2平面與平面平行的判定

  1、兩個(gè)平面平行的判定定理:一個(gè)平面內(nèi)的兩條交直線與另一個(gè)平面平行,則這兩個(gè)平面平行。

  符號表示:

  aβbβa∩b=Pβ∥αa∥αb∥α2、判斷兩平面平行的方法有三種:(1)用定義;(2)判定定理;

 。3)垂直于同一條直線的兩個(gè)平面平行。

  2.2.32.2.4直線與平面、平面與平面平行的性質(zhì)

  1、定理:一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。簡記為:線面平行則線線平行。符號表示:

  a∥α

  aβa∥b

  -3-

  α∩β=b

  作用:利用該定理可解決直線間的平行問題。

  2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。符號表示:

  α∥β

  α∩γ=aa∥bβ∩γ=b

  作用:可以由平面與平面平行得出直線與直線平行

  2.3直線、平面垂直的判定及其性質(zhì)

  2.3.1直線與平面垂直的判定1、定義

  如果直線L與平面α內(nèi)的任意一條直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。如圖,直線與平面垂直時(shí),它們唯一公共點(diǎn)P叫做垂足。

  Lpα

  2、判定定理:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。

  注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;

  b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。

  2.3.2平面與平面垂直的判定

  1、二面角的概念:表示從空間一直線出發(fā)的兩個(gè)半平面所組成的圖

  形A

  梭lβ

  Bα

  2、二面角的記法:二面角α-l-β或α-AB-β

  3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直。

  2.3.32.3.4直線與平面、平面與平面垂直的性質(zhì)

  1、定理:垂直于同一個(gè)平面的兩條直線平行。

  2性質(zhì)定理:兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直。

  本章知識(shí)結(jié)構(gòu)框圖

  -4-

  直線與直線的位置關(guān)系

  直線與平面的位置關(guān)系平面與平面的位置第三章直線與方程

  3.1直線的傾斜角和斜率

  3.1傾斜角和斜率

  1、直線的傾斜角的概念:當(dāng)直線l與x軸相交時(shí),取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí),規(guī)定α=0°.2、傾斜角α的取值范圍:0°≤α<180°.

  當(dāng)直線l與x軸垂直時(shí),α=90°.

  3、直線的斜率:

  一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k=tanα

 、女(dāng)直線l與x軸平行或重合時(shí),α=0°,k=tan0°=0;⑵當(dāng)直線l與x軸垂直時(shí),α=90°,k不存在.由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在.4、直線的斜率公式:

  給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1≠x2,用兩點(diǎn)的坐標(biāo)來表示直線P1P2的斜率:

  平面(公理1、公理2、公理3、公理4)空間直線、平面的位置關(guān)系斜率公式:

  3.1.2兩條直線的平行與垂直

  1、兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即

  2、直線的截距式方程:已知直線l與x軸的交點(diǎn)為A(a,0),與y軸的交點(diǎn)為B(0,b),其中a0,b0

  注意:上面的等價(jià)是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結(jié)論并不成立.即如果k1=k2,那么一定有L1∥L2

  2、兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負(fù)倒數(shù);反之,如果它們的斜率互為負(fù)倒數(shù),那么它們互相垂直,即

  3.2.1直線的點(diǎn)斜式方程

  1、直線的點(diǎn)斜式方程:直線l經(jīng)過點(diǎn)P0(x0,y0),且斜率為k

  yy0k(xx0)

  2、、直線的斜截式方程:已知直線l的斜率為k,且與y軸的交點(diǎn)為

  (0,b)

  ykxb

  3.2.2直線的兩點(diǎn)式方程

  1、直線的兩點(diǎn)式方程:已知兩點(diǎn)P1(x1,x2),P2(x2,y2)其中

  (x1x2,y1y2)

  yy1xx1

  y2y1x(x1x2,y1y2)

  2x13.2.3直線的一般式方程

  1、直線的一般式方程:關(guān)于x,y的二元一次方程AxByC0(A,B不同時(shí)為0)

  2、各種直線方程之間的互化。

  3.3直線的交點(diǎn)坐標(biāo)與距離公式

  3.3.1兩直線的交點(diǎn)坐標(biāo)

  1、給出例題:兩直線交點(diǎn)坐標(biāo)

  L1:3x+4y-2=0

  L1:2x+y+2=0

  解:解方程組3x4y202x2y20

  得x=-2,y=2

  所以L1與L2的交點(diǎn)坐標(biāo)為M(-2,2)

  3.3.2兩點(diǎn)間距離兩點(diǎn)間的距離公式

  P1P2x2x22y2y12

  3.3.3點(diǎn)到直線的距離公式1.點(diǎn)到直線距離公式:

  點(diǎn)P(xAx0By0C0,y0)到直線l:AxByC0的距離為:dA2B2

  2、兩平行線間的距離公式:

  已知兩條平行線直線l1和l2的一般式方程為l1:

  AxByC10,

  l2:AxByC20,則l1與lC22的距離為dC1

  A2B2

  第四章

  圓與方程

  4.1.1圓的標(biāo)準(zhǔn)方程

  1、圓的標(biāo)準(zhǔn)方程:(xa)2(yb)2r2

  圓心為A(a,b),半徑為r的圓的方程

  2、點(diǎn)M(x220,y0)與圓(xa)(yb)r2的關(guān)系的判斷方法:

 。1)(x0a)2(y0b)2>r2,點(diǎn)在圓外

 。2)(x220a)(y0b)=r2,點(diǎn)在圓上(3)(x0a)2(y0b)2點(diǎn):

 。1)當(dāng)lr1r2時(shí),圓C1與圓C2相離;(2)當(dāng)lr1r2時(shí),圓C1與圓C2外切;

 。3)當(dāng)|r1r2|lr1r2時(shí),圓C1與圓C2相交;

 。4)當(dāng)l|r1r2|時(shí),圓C1與圓C2內(nèi)切;(5)當(dāng)l|r1r2|時(shí),圓C1與圓C2內(nèi)含;

  4.2.3直線與圓的方程的應(yīng)用

  1、利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;2、過程與方法

  用坐標(biāo)法解決幾何問題的步驟:

  第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;

  第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論.4.3.1空間直角坐標(biāo)系

  RMOQyPM"x

  1、點(diǎn)M對應(yīng)著唯一確定的有序?qū)崝?shù)組(x,y,z),x、y、z分別是P、Q、R在x、y、z軸上的坐標(biāo)

  2、有序?qū)崝?shù)組(x,y,z),對應(yīng)著空間直角坐標(biāo)系中的一點(diǎn)

  3、空間中任意點(diǎn)M的坐標(biāo)都可以用有序?qū)崝?shù)組(x,y,z)來表示,該數(shù)組叫做點(diǎn)M在此空間直角坐標(biāo)系中的坐標(biāo),記M(x,y,z),x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),z叫做點(diǎn)M的豎坐標(biāo)。4.3.2空間兩點(diǎn)間的距離公式

  1、空間中任意一點(diǎn)P1(x1,y1,z1)到點(diǎn)P2(x2,y2,z2)之間的距離公式

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  在中國古代把數(shù)學(xué)叫算術(shù),又稱算學(xué),最后才改為數(shù)學(xué)。

  1.任意角

 。1)角的分類:

  ①按旋轉(zhuǎn)方向不同分為正角、負(fù)角、零角。

 、诎唇K邊位置不同分為象限角和軸線角。

 。2)終邊相同的角:

  終邊與角相同的角可寫成+k360(kZ)。

  (3)弧度制:

 、1弧度的角:把長度等于半徑長的弧所對的圓心角叫做1弧度的角。

 、谝(guī)定:正角的弧度數(shù)為正數(shù),負(fù)角的弧度數(shù)為負(fù)數(shù),零角的弧度數(shù)為零||=,l是以角作為圓心角時(shí)所對圓弧的長,r為半徑。

 、塾没《茸鰡挝粊矶攘拷堑闹贫冉凶龌《戎。比值與所取的r的大小無關(guān),僅與角的大小有關(guān)。

 、芑《扰c角度的換算:360弧度;180弧度。

 、莼¢L公式:l=||r,扇形面積公式:S扇形=lr=||r2.

  2.任意角的三角函數(shù)

 。1)任意角的三角函數(shù)定義:

  設(shè)是一個(gè)任意角,角的終邊與單位圓交于點(diǎn)P(x,y),那么角的正弦、余弦、正切分別是:sin =y,cos =x,tan =,它們都是以角為自變量,以單位圓上點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù)。

 。2)三角函數(shù)在各象限內(nèi)的符號口訣是:一全正、二正弦、三正切、四余弦。

  3.三角函數(shù)線

  設(shè)角的`頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸非負(fù)半軸重合,終邊與單位圓相交于點(diǎn)P,過P作PM垂直于x軸于M。由三角函數(shù)的定義知,點(diǎn)P的坐標(biāo)為(cos_,sin_),即P(cos_,sin_),其中cos =OM,sin =MP,單位圓與x軸的正半軸交于點(diǎn)A,單位圓在A點(diǎn)的切線與的終邊或其反向延長線相交于點(diǎn)T,則tan =AT。我們把有向線段OM、MP、AT叫做的余弦線、正弦線、正切線。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。

  主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的'問題,這是第一個(gè)板塊。

  第二:平面向量和三角函數(shù)。

  重點(diǎn)考察三個(gè)方面:

  一個(gè)是劃減與求值。

  第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。

  第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì)。

  第三,正弦定理和余弦定理來解三角形。難度比較小。

  第三:數(shù)列。

  數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

  第四:空間向量和立體幾何。

  在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

  第五:概率和統(tǒng)計(jì)。

  這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面:

  第一……等可能的概率。

  第二………事件。

  第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。

  第六:解析幾何。

  這是我們比較頭疼的問題,是整個(gè)試卷里難度比較大,計(jì)算量的題,當(dāng)然這一類題,我總結(jié)下面五類?嫉念}型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容?忌鷳(yīng)該掌握它的通法,第二類我們所講的動(dòng)點(diǎn)問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經(jīng)考過的一點(diǎn),第五類重點(diǎn)問題,這類題時(shí)往往覺得有思路,但是沒有答案,當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的原因,往往有這個(gè)原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。

  第七:押軸題。

  考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  【不等關(guān)系及不等式】

  一、不等關(guān)系及不等式知識(shí)點(diǎn)

  1.不等式的定義

  在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號、、連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.

  2.比較兩個(gè)實(shí)數(shù)的大小

  兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba

  3.不等式的'性質(zhì)

  (1)對稱性:ab

  (2)傳遞性:ab,ba

  (3)可加性:aa+cb+c,ab,ca+c

  (4)可乘性:ab,cacb0,c0bd;

  (5)可乘方:a0bn(nN,n

  (6)可開方:a0

  (nN,n2).

  注意:

  一個(gè)技巧

  作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

  一種方法

  待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  一、集合、簡易邏輯(14課時(shí),8個(gè))1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件.

  二、函數(shù)(30課時(shí),12個(gè))1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運(yùn)算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例.

  三、數(shù)列(12課時(shí),5個(gè))1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式.

  四、三角函數(shù)(46課時(shí)17個(gè))1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4,單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.

  五、平面向量(12課時(shí),8個(gè))1.向量2.向量的加法與減法3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移.

  六、不等式(22課時(shí),5個(gè))1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.

  七、直線和圓的方程(22課時(shí),12個(gè))1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程.

  八、圓錐曲線(18課時(shí),7個(gè))1橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡單幾何性質(zhì).九、(B)直線、平面、簡單何體(36課時(shí),28個(gè))1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5,直線和平面垂直的判與性質(zhì);6.三垂線定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.

  十、排列、組合、二項(xiàng)式定理(18課時(shí),8個(gè))1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理.2.排列;3.排列數(shù)公式’4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個(gè)性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開式的性質(zhì).

  十一、概率(12課時(shí),5個(gè))1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨(dú)立事件同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn).選修Ⅱ(24個(gè))

  十二、概率與統(tǒng)計(jì)(14課時(shí),6個(gè))1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸.

  十三、極限(12課時(shí),6個(gè))1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性.

  十四、導(dǎo)數(shù)(18課時(shí),8個(gè))1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見函數(shù)的導(dǎo)數(shù);4.兩個(gè)函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8函數(shù)的最大值和最小值.

  十五、復(fù)數(shù)(4課時(shí),4個(gè))1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法答案補(bǔ)充高中數(shù)學(xué)有130個(gè)知識(shí)點(diǎn),從前一份試卷要考查90個(gè)知識(shí)點(diǎn),覆蓋率達(dá)70%左右,而且把這一項(xiàng)作為衡量試卷成功與否的標(biāo)準(zhǔn)之一.這一傳統(tǒng)近年被打破,取而代之的是關(guān)注思維,突出能力,重視思想方法和思維能力的考查.現(xiàn)在的我們學(xué)數(shù)學(xué)比前人幸福啊!!相信對你的學(xué)習(xí)會(huì)有幫助的,祝你成功!答案補(bǔ)充一試全國高中數(shù)學(xué)聯(lián)賽的一試競賽大綱,完全按照全日制中學(xué)《數(shù)學(xué)教學(xué)大綱》中所規(guī)定的教學(xué)要求和內(nèi)容,即高考所規(guī)定的知識(shí)范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數(shù)學(xué)競賽大綱所確定的所有內(nèi)容。補(bǔ)充要求:面積和面積方法。幾個(gè)重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個(gè)重要的極值:到三角形三頂點(diǎn)距離之和最小的點(diǎn)--費(fèi)馬點(diǎn)。到三角形三頂點(diǎn)距離的平方和最小的點(diǎn),重心。三角形內(nèi)到三邊距離之積最大的點(diǎn),重心。幾何不等式。簡單的'等周問題。了解下述定理:在周長一定的n邊形的集合中,正n邊形的面積最大。在周長一定的簡單閉曲線的集合中,圓的面積最大。在面積一定的n邊形的集合中,正n邊形的周長最小。在面積一定的簡單閉曲線的集合中,圓的周長最小。幾何中的運(yùn)動(dòng):反射、平移、旋轉(zhuǎn)。復(fù)數(shù)方法、向量方法。平面凸集、凸包及應(yīng)用。答案補(bǔ)充第二數(shù)學(xué)歸納法。遞歸,一階、二階遞歸,特征方程法。函數(shù)迭代,求n次迭代,簡單的函數(shù)方程。n個(gè)變元的平均不等式,柯西不等式,排序不等式及應(yīng)用。復(fù)數(shù)的指數(shù)形式,歐拉公式,棣莫佛定理,單位根,單位根的應(yīng)用。圓排列,有重復(fù)的排列與組合,簡單的組合恒等式。一元n次方程(多項(xiàng)式)根的個(gè)數(shù),根與系數(shù)的關(guān)系,實(shí)系數(shù)方程虛根成對定理。簡單的初等數(shù)論問題,除初中大綱中所包括的內(nèi)容外,還應(yīng)包括無窮遞降法,同余,歐幾里得除法,非負(fù)最小完全剩余類,高斯函數(shù),費(fèi)馬小定理,歐拉函數(shù),孫子定理,格點(diǎn)及其性質(zhì)。3、立體幾何多面角,多面角的性質(zhì)。三面角、直三面角的基本性質(zhì)。正多面體,歐拉定理。體積證法。截面,會(huì)作截面、表面展開圖。4、平面解析幾何直線的法線式,直線的極坐標(biāo)方程,直線束及其應(yīng)用。二元一次不等式表示的區(qū)域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  考點(diǎn)一:求導(dǎo)公式。

  例1.f(x)是f(x)13x2x1的導(dǎo)函數(shù),則f(1)的值是3

  考點(diǎn)二:導(dǎo)數(shù)的幾何意義。

  例2.已知函數(shù)yf(x)的圖象在點(diǎn)M(1,f(1))處的切線方程是y

  1x2,則f(1)f(1)2

  ,3)處的切線方程是例3.曲線yx32x24x2在點(diǎn)(1

  點(diǎn)評:以上兩小題均是對導(dǎo)數(shù)的幾何意義的考查。

  考點(diǎn)三:導(dǎo)數(shù)的幾何意義的應(yīng)用。

  例4.已知曲線C:yx33x22x,直線l:ykx,且直線l與曲線C相切于點(diǎn)x0,y0x00,求直線l的'方程及切點(diǎn)坐標(biāo)。

  點(diǎn)評:本小題考查導(dǎo)數(shù)幾何意義的應(yīng)用。解決此類問題時(shí)應(yīng)注意“切點(diǎn)既在曲線上又在切線上”這個(gè)條件的應(yīng)用。函數(shù)在某點(diǎn)可導(dǎo)是相應(yīng)曲線上過該點(diǎn)存在切線的充分條件,而不是必要條件。

  考點(diǎn)四:函數(shù)的單調(diào)性。

  例5.已知fxax3_1在R上是減函數(shù),求a的取值范圍。32

  點(diǎn)評:本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用。對于高次函數(shù)單調(diào)性問題,要有求導(dǎo)意識(shí)。

  考點(diǎn)五:函數(shù)的極值。

  例6.設(shè)函數(shù)f(x)2x33ax23bx8c在x1及x2時(shí)取得極值。

  (1)求a、b的值;

  (2)若對于任意的x[0,3],都有f(x)c2成立,求c的取值范圍。

  點(diǎn)評:本題考查利用導(dǎo)數(shù)求函數(shù)的極值。求可導(dǎo)函數(shù)fx的極值步驟:

 、偾髮(dǎo)數(shù)f'x;

  ②求f'x0的根;③將f'x0的根在數(shù)軸上標(biāo)出,得出單調(diào)區(qū)間,由f'x在各區(qū)間上取值的正負(fù)可確定并求出函數(shù)fx的極值。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

 。1)總體和樣本:

 、僭诮y(tǒng)計(jì)學(xué)中,把研究對象的全體叫做總體.

 、诎衙總(gè)研究對象叫做個(gè)體.

 、郯芽傮w中個(gè)體的總數(shù)叫做總體容量.

 、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,_研究,我們稱它為樣本.其中個(gè)體的個(gè)數(shù)稱為樣本容量.

 。2)簡單隨機(jī)抽樣,也叫純隨機(jī)抽樣。

  就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。

 。3)簡單隨機(jī)抽樣常用的方法:

 、俪楹灧

 、陔S機(jī)數(shù)表法

 、塾(jì)算機(jī)模擬法

  在簡單隨機(jī)抽樣的`樣本容量設(shè)計(jì)中,主要考慮:

 、倏傮w變異情況;

  ②允許誤差范圍;

 、鄹怕时WC程度。

 。4)抽簽法:

 、俳o調(diào)查對象群體中的每一個(gè)對象編號;

 、跍(zhǔn)備抽簽的工具,實(shí)施抽簽;

 、蹖颖局械拿恳粋(gè)個(gè)體進(jìn)行測量或調(diào)查

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  隨機(jī)抽樣

  (1)總體和樣本

 、僭诮y(tǒng)計(jì)學(xué)中,把研究對象的全體叫做總體.②把每個(gè)研究對象叫做個(gè)體.③把總體中個(gè)體的總數(shù)叫做總體容量.

  ④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,x研究,我們稱它為樣本.其中個(gè)體的個(gè)數(shù)稱為樣本容量.

  (2)簡單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無一定的.關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。

  (3)簡單隨機(jī)抽樣常用的方法:

 、俪楹灧á陔S機(jī)數(shù)表法③計(jì)算機(jī)模擬法③使用統(tǒng)計(jì)軟件直接抽取。

  在簡單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。

  (4)抽簽法:

 、俳o調(diào)查對象群體中的每一個(gè)對象編號;②準(zhǔn)備抽簽的工具,實(shí)施抽簽;

 、蹖颖局械拿恳粋(gè)個(gè)體進(jìn)行測量或調(diào)查

  (4)隨機(jī)抽樣分類

  分層抽樣

  系統(tǒng)抽樣

  整群抽樣

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡單隨機(jī)抽樣。

  簡單隨機(jī)抽樣的特點(diǎn):

  (1)用簡單隨機(jī)抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為;在整個(gè)抽樣過程中各個(gè)個(gè)體被抽到的概率為

  (2)簡單隨機(jī)抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等;

  (3)簡單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ).

  (4)簡單隨機(jī)抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽取;它是一種等概率抽樣

  簡單抽樣常用方法:

  (1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(號碼可從1到N),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數(shù)不多時(shí)優(yōu)點(diǎn):抽簽法簡便易行,當(dāng)總體的個(gè)體數(shù)不太多時(shí)適宜采用抽簽法.(2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個(gè)體編號;第二步,選定開始的數(shù)字;第三步,獲取樣本號碼概率:

  相關(guān)高中數(shù)學(xué)知識(shí)點(diǎn):系統(tǒng)抽樣

  系統(tǒng)抽樣的概念:

  當(dāng)整體中個(gè)體數(shù)較多時(shí),將整體均分為幾個(gè)部分,然后按一定的規(guī)則,從每一個(gè)部分抽取1個(gè)個(gè)體而得到所需要的樣本的方法叫系統(tǒng)抽樣。

  系統(tǒng)抽樣的`步驟:

  (1)采用隨機(jī)方式將總體中的個(gè)體編號;

  (2)將整個(gè)編號進(jìn)行均勻分段在確定相鄰間隔k后,若不能均勻分段,即

  =k不是整數(shù)時(shí),可采用隨機(jī)方法從總體中剔除一些個(gè)體,使總體中剩余的個(gè)體數(shù)N′滿足是整數(shù);

  (3)在第一段中采用簡單隨機(jī)抽樣方法確定第一個(gè)被抽得的個(gè)體編號l;

  (4)依次將l加上ik,i=1,2,…,(n-1),得到其余被抽取的個(gè)體的編號,從而得到整個(gè)樣本。

  相關(guān)高中數(shù)學(xué)知識(shí)點(diǎn):分層抽樣

  分層抽樣:

  當(dāng)已知總體由差異明顯的幾部分組成時(shí),常將總體分成幾部分,然后按照各部分所占的比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,其所分成的各個(gè)部分叫做層。

  利用分層抽樣抽取樣本,每一層按照它在總體中所占的比例進(jìn)行抽取。

  不放回抽樣和放回抽樣:

  在抽樣中,如果每次抽出個(gè)體后不再將它放回總體,稱這樣的抽樣為不放回抽樣;如果每次抽出個(gè)體后再將它放回總體,稱這樣的抽樣為放回抽樣.

  隨機(jī)抽樣、系統(tǒng)抽樣、分層抽樣都是不放回抽樣

  分層抽樣的特點(diǎn):

  (1)分層抽樣適用于差異明顯的幾部分組成的情況;

  (2)在每一層進(jìn)行抽樣時(shí),在采用簡單隨機(jī)抽樣或系統(tǒng)抽樣;

  (3)分層抽樣充分利用已掌握的信息,使樣具有良好的代表性;

  (4)分層抽樣也是等概率抽樣,而且在每層抽樣時(shí),可以根據(jù)具體情況采用不同的抽樣方法,因此應(yīng)用較為廣泛。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  1、直線的傾斜角的概念:當(dāng)直線l與x軸相交時(shí),取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí),規(guī)定α=0°.

  2、傾斜角α的取值范圍:0°≤α<180°.

  當(dāng)直線l與x軸垂直時(shí),α=90°.

  3、直線的斜率:

  一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k=tanα

 、女(dāng)直線l與x軸平行或重合時(shí),α=0°,k=tan0°=0;

 、飘(dāng)直線l與x軸垂直時(shí),α=90°,k不存在.

  由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在.

  4、直線的斜率公式:

  給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1≠x2,用兩點(diǎn)的坐標(biāo)來表示直線P1P2的斜率:

  斜率公式:

  3.1.2兩條直線的平行與垂直

  1、兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即

  注意:上面的等價(jià)是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結(jié)論并不成立.即如果k1=k2,那么一定有L1∥L2

  2、兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負(fù)倒數(shù);反之,如果它們的斜率互為負(fù)倒數(shù),那么它們互相垂直,即

  3.2.1直線的點(diǎn)斜式方程

  1、直線的點(diǎn)斜式方程:直線經(jīng)過點(diǎn)且斜率為

  2、、直線的斜截式方程:已知直線的斜率為

  3.2.2直線的兩點(diǎn)式方程

  1、直線的兩點(diǎn)式方程:已知兩點(diǎn)

  2、直線的截距式方程:已知直線

  3.2.3直線的`一般式方程

  1、直線的一般式方程:關(guān)于x、y的二元一次方程

  (A,B不同時(shí)為0)

  2、各種直線方程之間的互化。

  3.3直線的交點(diǎn)坐標(biāo)與距離公式

  3.3.1兩直線的交點(diǎn)坐標(biāo)

  1、給出例題:兩直線交點(diǎn)坐標(biāo)

  L1:3x+4y-2=0

  L1:2x+y+2=0

  解:解方程組

  得x=-2,y=2

  所以L1與L2的交點(diǎn)坐標(biāo)為M(-2,2)

  3.3.2兩點(diǎn)間距離

  兩點(diǎn)間的距離公式

  3.3.3點(diǎn)到直線的距離公式

  1.點(diǎn)到直線距離公式:

  2、兩平行線間的距離公式:

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  一、映射與函數(shù):

  (1)映射的概念:

  (2)一一映射:

  (3)函數(shù)的概念:

  二、函數(shù)的三要素:

  相同函數(shù)的判斷方法:

 、賹(yīng)法則;

  ②定義域(兩點(diǎn)必須同時(shí)具備)

  (1)函數(shù)解析式的求法:

 、俣x法(拼湊):

  ②換元法:

 、鄞ㄏ禂(shù)法:

 、苜x值法:

  (2)函數(shù)定義域的求法:

 、俸瑓栴}的定義域要分類討論;

  ②對于實(shí)際問題,在求出函數(shù)解析式后;必須求出其定義域,此時(shí)的定義域要根據(jù)實(shí)際意義來確定。

  (3)函數(shù)值域的求法:

  ①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉(zhuǎn)化為型如:的形式;

 、谀媲蠓(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;

  ④換元法:通過變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;

 、萑怯薪绶:轉(zhuǎn)化為只含正弦、余弦的.函數(shù),運(yùn)用三角函數(shù)有界性來求值域;

 、藁静坏仁椒:轉(zhuǎn)化成型如:,利用平均值不等式公式來求值域;

 、邌握{(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。

 、鄶(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來求值域。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。

  面積公式

  若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:

  S=ab/2。

  且由等腰直角三角形性質(zhì)可知:底邊c上的高h(yuǎn)=c/2,則三角面積可表示為:

  S=ch/2=c2/4。

  等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。

  反正弦函數(shù)的導(dǎo)數(shù):正弦函數(shù)y=sinx在[-π/2,π/2]上的`反函數(shù),叫做反正弦函數(shù)。記作arcsinx,表示一個(gè)正弦值為x的角,該角的范圍在[-π/2,π/2]區(qū)間內(nèi)。定義域[-1,1],值域[-π/2,π/2]。

  反函數(shù)求導(dǎo)方法

  若F(X),G(X)互為反函數(shù),則:F'(X)_'(X)=1

  E.G.:y=arcsin_siny

  y'_'=1(arcsinx)'_siny)'=1

  y'=1/(siny)'=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-x^2)

  其余依此類推

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  一、不等式的性質(zhì)

  1、兩個(gè)實(shí)數(shù)a與b之間的大小關(guān)系

  (1)a-b>0a>b;

  (2)a-b=0a=b;

  (3)a-b<0a<b.

  (4)ab>1a>b;若a、bR,則

  (5)ab=1a=b;

  (6)ab<1a<b.

  2、不等式的性質(zhì)

  (1)a>bb<a(對稱性)

  (2)a>bb>ca>c(傳遞性)

  (3)a>ba+c>b+c(加法單調(diào)性)

  a>bc>0ac>bc

  (4)(乘法單調(diào)性)

  a>bc<0ac<bc

  (5)a+b>ca>c-b(移項(xiàng)法則)

  (6)a>bc>da+c>b+d(同向不等式可加)

  (7)a>bc<da-c>b-d(異向不等式可減)

  (8)a>b>0c>d>0ac>bd(同向正數(shù)不等式可乘)

  (9)a>b>00<c<dac>bd(異向正數(shù)不等式可除)

  (10)a>b>0nNan>bn(正數(shù)不等式可乘方)

  (11)a>b>0nNna>nb(正數(shù)不等式可開方)

  (12)a>b>01a<1b(正數(shù)不等式兩邊取倒數(shù))

  3、絕對值不等式的性質(zhì)

  (1)|a|≥a;|a|=a(a≥0),-a(a<0).

  (2)如果a>0,那么

  |x|<ax2<a2-a<x<a;|x|>ax2>a2x>a或x<-a.

  (3)|ab|=|a||b|.

  (4)|ab|=|a||b|(b≠0).

  (5)|a|-|b|≤|a±b|≤|a|+|b|.

  (6)|a1+a2++an|≤|a1|+|a2|++|an|.

  二、不等式的證明

  1、不等式證明的依據(jù)

  (1)實(shí)數(shù)的性質(zhì):a、b同號ab>0;a、b異號ab<0a-b>0a>b;a-b<0a<b;a-b=0a=b

  (2)不等式的性質(zhì)(略)

  (3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時(shí)取“=”號)

 、踑b2≥ab(a、bR,當(dāng)且僅當(dāng)a=b時(shí)取“=”號)

  2、不等式的證明方法

  (1)比較法:要證明a>b(a<b),只要證明a-b>0(a-b<0),這種證明不等式的方法叫做比較法。用比較法證明不等式的步驟是:作差變形判斷符號.

  (2)綜合法:從已知條件出發(fā),依據(jù)不等式的.性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.

  (3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法.

  證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  一、導(dǎo)數(shù)的應(yīng)用

  1.用導(dǎo)數(shù)研究函數(shù)的最值

  確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來檢驗(yàn)下學(xué)習(xí)成果。

  2.生活中常見的函數(shù)優(yōu)化問題

  1)費(fèi)用、成本最省問題

  2)利潤、收益最大問題

  3)面積、體積最(大)問題

  二、推理與證明

  1.歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,破解的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對象的相似特征,由其中一類對象的特征得出另一類對象的特征,破解的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類對象之間的關(guān)系,通過兩類對象已知的相似特征得出所需要的相似特征。

  2.類比推理:由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理,簡而言之,類比推理是由特殊到特殊的推理。

  三、不等式

  對于含有參數(shù)的一元二次不等式解的討論

  1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。

  2)不等式對應(yīng)方程的根:如果一元二次不等式對應(yīng)的方程的根能夠通過因式分解的方法求出來,則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對應(yīng)的方程根不能通過因式分解的方法求出來,則根據(jù)方程的判別式進(jìn)行分類討論。通過不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的.解題思路需要再做題的過程中總結(jié)出來。

  拓展閱讀

  說明:以下內(nèi)容為本文主關(guān)鍵詞的百科內(nèi)容,一詞可能多意,僅作為參考閱讀內(nèi)容,下載的文檔不包含此內(nèi)容。每個(gè)關(guān)鍵詞后面會(huì)隨機(jī)推薦一個(gè)搜索引擎工具,方便用戶從多個(gè)垂直領(lǐng)域了解更多與本文相似的內(nèi)容。

  1、數(shù)學(xué):數(shù)學(xué),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學(xué)科。數(shù)學(xué)是人類對事物的抽象結(jié)構(gòu)與模式進(jìn)行嚴(yán)格描述的一種通用手段,可以應(yīng)用于現(xiàn)實(shí)世界的任何問題,所有的數(shù)學(xué)對象本質(zhì)上都是人為定義的。從這個(gè)意義上,數(shù)學(xué)屬于形式科學(xué),而不是自然科學(xué)。不同的數(shù)學(xué)家和哲學(xué)家對數(shù)學(xué)的確切范圍和定義有一系列的看法。在人類歷史發(fā)展和社會(huì)生活中,數(shù)學(xué)發(fā)揮著不可替代的作用,同時(shí)也是學(xué)習(xí)和研究現(xiàn)代科學(xué)技術(shù)必不可少的基本工具。數(shù)學(xué)史數(shù)理邏輯與數(shù)學(xué)基礎(chǔ)a:演繹邏輯學(xué)(也稱符號邏輯學(xué)),b:證明論(也稱元數(shù)學(xué)),c:遞歸論,d:模型論,e:公理集合論,f:數(shù)學(xué)基礎(chǔ),g:數(shù)理邏輯與數(shù)學(xué)基礎(chǔ)其他學(xué)科。數(shù)論a:初等數(shù)論,b:解析數(shù)論,c:代數(shù)數(shù)論,d:超越數(shù)論,e:丟番圖逼近,f:數(shù)的幾何,g:概率數(shù)論,h:計(jì)算數(shù)論,i:數(shù)論其他學(xué)科。代數(shù)學(xué)a:線性代數(shù),b:群論,c:域論,d:李群,e:李代數(shù),f:Kac-Moody代數(shù),g:環(huán)論(包括交換環(huán)與交換代數(shù),...頭條搜索更多高二數(shù)學(xué)下冊知識(shí)點(diǎn)總結(jié)

  2、類比推理:類比推理亦稱“類推”。推理的一種形式。根據(jù)兩個(gè)對象在某些屬性上相同或相似,通過比較而推斷出它們在其他屬性上也相同的推理過程。它是從觀察個(gè)別現(xiàn)象開始的,因而近似歸納推理。但它又不是由特殊到一般,而是由特殊到特殊,因而又不同于歸納推理。分完全類推和不完全類推兩種形式。完全類推是兩個(gè)或兩類事物在進(jìn)行比較的方面完全相同時(shí)的類推;不完全類推是兩個(gè)或兩類事物在進(jìn)行比較的方面不完全相同時(shí)的類推。這是科學(xué)研究中常用的方法之一。它是從特殊推向特殊的推理。類比推理是根據(jù)兩個(gè)或兩類對象有部分屬性相同,從而推出它們的其他屬性也相同的推理。簡稱類推、類比。以關(guān)于兩個(gè)事物某些屬性相同的判斷為前提,推出兩個(gè)事物的其他屬性相同的結(jié)論的推理。如聲和光有不少屬性相同--直線傳播,有反射、折射和干擾等現(xiàn)象;由此推出:既然聲有波動(dòng)性質(zhì),光也有波動(dòng)性質(zhì)。這就是類比推理。類比推理具有或然性。如果前提中確認(rèn)的共同屬性很少,而且共同屬性和推出來的屬性沒有什么關(guān)系,這樣的類比推...谷歌搜索更多高二數(shù)學(xué)下冊知識(shí)點(diǎn)總結(jié)

  3、總結(jié):總結(jié)是事后對某一階段的工作或某項(xiàng)工作的完成情況,包括取得的成績、存在的問題及得到的經(jīng)驗(yàn)和教訓(xùn)加以回顧和分析,為今后的工作提供幫助和借鑒的一種書面材料。(1)自身性?偨Y(jié)都是以第一人稱,從自身出發(fā)。它是單位或個(gè)人自身實(shí)踐活動(dòng)的反映,其內(nèi)容行文來自自身實(shí)踐,其結(jié)論也為指導(dǎo)今后自身實(shí)踐。(2)指導(dǎo)性。總結(jié)以回顧思考的方式對自身以往實(shí)踐做理性認(rèn)識(shí),找出事物本質(zhì)和發(fā)展規(guī)律,取得經(jīng)驗(yàn),避免失誤,以指導(dǎo)未來工作。(3)理論性?偨Y(jié)是理論的升華,是對前一階段工作的經(jīng)驗(yàn)、教訓(xùn)的分析研究,借此上升到理論的高度,并從中提煉出有規(guī)律性的東西,從而提高認(rèn)識(shí),以正確的認(rèn)識(shí)來把握客觀事物,更好地指導(dǎo)今后的實(shí)際工作。(4)客觀性。總結(jié)是對實(shí)際工作再認(rèn)識(shí)的過程,是對前一階段工作的回顧。總結(jié)的內(nèi)容必須要完全忠于自身的客觀實(shí)踐,其材料必須以客觀事實(shí)為依據(jù),不允許東拼西湊,要真實(shí)、客觀地分析情況、總結(jié)經(jīng)驗(yàn)。(1)綜合性總結(jié)。對某一單位、某一部門工作進(jìn)行全面性總結(jié),既反...頭條搜索更多高二數(shù)學(xué)下冊知識(shí)點(diǎn)總結(jié)

  4、因式分解:把一個(gè)多項(xiàng)式在一個(gè)范圍(如實(shí)數(shù)范圍內(nèi)分解,即所有項(xiàng)均為實(shí)數(shù))化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項(xiàng)式的因式分解,也叫作把這個(gè)多項(xiàng)式分解因式。把一個(gè)多項(xiàng)式在一個(gè)范圍化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項(xiàng)式的因式分解,也叫作把這個(gè)多項(xiàng)式分解因式。因式分解是中學(xué)數(shù)學(xué)中最重要的恒等變形之一,它被廣泛地應(yīng)用于初等數(shù)學(xué)之中,在數(shù)學(xué)求根作圖、解一元二次方程方面也有很廣泛的應(yīng)用,是解決許多數(shù)學(xué)問題的有力工具。因式分解方法靈活,技巧性強(qiáng)。學(xué)習(xí)這些方法與技巧,不僅是掌握因式分解內(nèi)容所需的,而且對于培養(yǎng)解題技能、發(fā)展思維能力都有著十分獨(dú)特的作用。學(xué)習(xí)它,既可以復(fù)習(xí)整式的四則運(yùn)算,又為學(xué)習(xí)分式打好基礎(chǔ);學(xué)好它,既可以培養(yǎng)學(xué)生的觀察、思維發(fā)展性、運(yùn)算能力,又可以提高綜合分析和解決問題的能力;窘Y(jié)論:分解因式為整式乘法的逆過程。高級結(jié)論:在高等代數(shù)上,因式分解有一些重要結(jié)論,在初等代數(shù)層面上證明很困難,但是理解很容易。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  概率性質(zhì)與公式

  (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

  (2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);

  (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨(dú)立,則P(AB)=P(A)P(B);

  (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

  貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

  如果一個(gè)事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的`概率,則用貝葉斯公式.

  (5)二項(xiàng)概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個(gè)問題可以看成n重貝努力試驗(yàn)(三個(gè)條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗(yàn)結(jié)果相互獨(dú)立)時(shí),要考慮二項(xiàng)概率公式.

【高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高二數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)05-01

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-01

高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)12-13

高二知識(shí)點(diǎn)歸納總結(jié)11-21

高二語文知識(shí)點(diǎn)總結(jié)09-18

高二物理知識(shí)點(diǎn)總結(jié)02-04

高二化學(xué)知識(shí)點(diǎn)總結(jié)06-22

高二化學(xué)知識(shí)點(diǎn)總結(jié)歸納03-14

高二政治會(huì)考知識(shí)點(diǎn)總結(jié)11-06

高二物理上冊知識(shí)點(diǎn)總結(jié)12-01