亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

高一數(shù)學教案

時間:2024-03-24 14:25:14 教案大全 我要投稿
  • 相關推薦

高一數(shù)學教案

  在教學工作者開展教學活動前,通常會被要求編寫教案,借助教案可以提高教學質量,收到預期的教學效果。怎樣寫教案才更能起到其作用呢?下面是小編幫大家整理的高一數(shù)學教案,僅供參考,希望能夠幫助到大家。

高一數(shù)學教案

  高一數(shù)學教案 篇1

  學習目標 1.函數(shù)奇偶性的概念

  2.由函數(shù)圖象研究函數(shù)的奇偶性

  3.函數(shù)奇偶性的判斷

  重點:能運用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性

  難點:理解函數(shù)的奇偶性

  知識梳理:

  1.軸對稱圖形:

  2中心對稱圖形:

  【概念探究】

  1、 畫出函數(shù) ,與 的圖像;并觀察兩個函數(shù)圖像的對稱性。

  2、 求出 , 時的函數(shù)值,寫出 , 。

  結論: 。

  3、 奇函數(shù):___________________________________________________

  4、 偶函數(shù):______________________________________________________

  【概念深化】

  (1)、強調定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質。

  (2)、奇函數(shù)偶函數(shù)的定義域關于原點對稱。

  5、奇函數(shù)與偶函數(shù)圖像的對稱性:

  如果一個函數(shù)是奇函數(shù),則這個函數(shù)的圖像是以坐標原點為對稱中心的__________。反之,如果一個函數(shù)的圖像是以坐標原點為對稱中心的中心對稱圖形,則這個函數(shù)是___________。

  如果一個函數(shù)是偶函數(shù),則這個函數(shù)的圖像是以 軸為對稱軸的__________。反之,如果一個函數(shù)的圖像是關于 軸對稱,則這個函數(shù)是___________。

  6. 根據(jù)函數(shù)的奇偶性,函數(shù)可以分為____________________________________.

  題型一:判定函數(shù)的奇偶性。

  例1、判斷下列函數(shù)的奇偶性:

  (1) (2) (3)

  (4) (5)

  練習:教材第49頁,練習A第1題

  總結:根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?

  題型二:利用奇偶性求函數(shù)解析式

  例2:若f(x)是定義在R上的奇函數(shù),當x0時,f(x)=x(1-x),求當 時f(x)的解析式。

  練習:若f(x)是定義在R上的奇函數(shù),當x0時,f(x)=x|x-2|,求當x0時f(x)的解析式。

  已知定義在實數(shù)集 上的奇函數(shù) 滿足:當x0時, ,求 的表達式

  題型三:利用奇偶性作函數(shù)圖像

  例3 研究函數(shù) 的性質并作出它的圖像

  練習:教材第49練習A第3,4,5題,練習B第1,2題

  當堂檢測

  1 已知 是定義在R上的'奇函數(shù),則( D )

  A. B. C. D.

  2 如果偶函數(shù) 在區(qū)間 上是減函數(shù),且最大值為7,那么 在區(qū)間 上是( B )

  A. 增函數(shù)且最小值為-7 B. 增函數(shù)且最大值為7

  C. 減函數(shù)且最小值為-7 D. 減函數(shù)且最大值為7

  3 函數(shù) 是定義在區(qū)間 上的偶函數(shù),且 ,則下列各式一定成立的是(C )

  A. B. C. D.

  4 已知函數(shù) 為奇函數(shù),若 ,則 -1

  5 若 是偶函數(shù),則 的單調增區(qū)間是

  6 下列函數(shù)中不是偶函數(shù)的是(D )

  A B C D

  7 設f(x)是R上的偶函數(shù),切在 上單調遞減,則f(-2),f(- ),f(3)的大小關系是( A )

  A B f(- )f(-2) f(3) C f(- )

  8 奇函數(shù) 的圖像必經(jīng)過點( C )

  A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))

  9 已知函數(shù) 為偶函數(shù),其圖像與x軸有四個交點,則方程f(x)=0的所有實根之和是( A )

  A 0 B 1 C 2 D 4

  10 設f(x)是定義在R上的奇函數(shù),且x0時,f(x)= ,則f(-2)=_-5__

  11若f(x)在 上是奇函數(shù),且f(3)_f(-1)

  12.解答題

  用定義判斷函數(shù) 的奇偶性。

  13定義證明函數(shù)的奇偶性

  已知函數(shù) 在區(qū)間D上是奇函數(shù),函數(shù) 在區(qū)間D上是偶函數(shù),求證: 是奇函數(shù)

  14利用函數(shù)的奇偶性求函數(shù)的解析式:

  已知分段函數(shù) 是奇函數(shù),當 時的解析式為 ,求這個函數(shù)在區(qū)間 上的解析表達式。

  高一數(shù)學教案 篇2

  教學目標:

  1、理解對數(shù)的概念,能夠進行對數(shù)式與指數(shù)式的互化;

  2、滲透應用意識,培養(yǎng)歸納思維能力和邏輯推理能力,提高數(shù)學發(fā)現(xiàn)能力。

  教學重點:

  對數(shù)的概念

  教學過程:

  一、問題情境:

  1、(1)莊子:一尺之棰,日取其半,萬世不竭、①取5次,還有多長?②取多少次,還有0、125尺?

 。2)假設20xx年我國國民生產(chǎn)總值為a億元,如果每年平均增長8%,那么經(jīng)過多少年國民生產(chǎn)總值是20xx年的2倍?

  抽象出:1、=?,=0、125x=?2、=2x=?

  2、問題:已知底數(shù)和冪的值,如何求指數(shù)?你能看得出來嗎?

  二、學生活動:

  1、討論問題,探究求法、

  2、概括內容,總結對數(shù)概念、

  3、研究指數(shù)與對數(shù)的關系、

  三、建構數(shù)學:

  1)引導學生自己總結并給出對數(shù)的概念、

  2)介紹對數(shù)的表示方法,底數(shù)、真數(shù)的含義、

  3)指數(shù)式與對數(shù)式的關系、

  4)常用對數(shù)與自然對數(shù)、

  探究:

 、咆摂(shù)與零沒有對數(shù)、

 、,、

 、菍(shù)恒等式(教材P58練習6)

 、;②、

  ⑷兩種對數(shù):

 、俪S脤(shù):;

 、谧匀粚(shù):、

 。5)底數(shù)的取值范圍為;真數(shù)的'取值范圍為、

  四、數(shù)學運用:

  1、例題:

  例1、(教材P57例1)將下列指數(shù)式改寫成對數(shù)式:

 。1)=16;(2)=;(3)=20;(4)=0、45、

  例2、(教材P57例2)將下列對數(shù)式改寫成指數(shù)式:

 。1);(2)3=—2;(3);(4)(補充)ln10=2、303

  例3、(教材P57例3)求下列各式的值:

 、;⑵;⑶(補充)、

  2、練習:

  P58(練習)1,2,3,4,5、

  五、回顧小結:

  本節(jié)課學習了以下內容:

 、艑(shù)的定義;

⑵指數(shù)式與對數(shù)式互換;

⑶求對數(shù)式的值(利用計算器求對數(shù)值)、

  六、課外作業(yè):P63習題1,2,3,4、

  高一數(shù)學教案 篇3

  一、教材

  《直線與圓的位置關系》是高中人教版必修2第四章第二節(jié)的內容,直線和圓的位置關系是本章的重點內容之一。從知識體系上看,它既是點與圓的位置關系的延續(xù)與提高,又是學習切線的判定定理、圓與圓的位置關系的基礎。從數(shù)學思想方法層面上看它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關知識間的內在聯(lián)系,滲透了數(shù)形結合、分類討論、類比、化歸等數(shù)學思想方法,有助于提高學生的思維品質。

  二、學情

  學生初中已經(jīng)接觸過直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學習過程中掌握了點的坐標、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標法研究點與圓的位置關系的基礎;具有一定的數(shù)形結合解題思想的基礎。

  三、教學目標

  (一)知識與技能目標

  能夠準確用圖形表示出直線與圓的三種位置關系;可以利用聯(lián)立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關系。

  (二)過程與方法目標

  經(jīng)歷操作、觀察、探索、總結直線與圓的位置關系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。

  (三)情感態(tài)度價值觀目標

  激發(fā)求知欲和學習興趣,鍛煉積極探索、發(fā)現(xiàn)新知識、總結規(guī)律的能力,解題時養(yǎng)成歸納總結的良好習慣。

  四、教學重難點

  (一)重點

  用解析法研究直線與圓的位置關系。

  (二)難點

  體會用解析法解決問題的數(shù)學思想。

  五、教學方法

  根據(jù)本節(jié)課教材內容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術工具,以幾何畫板為平臺,通過圖形的動態(tài)演示,變抽象為直觀,為學生的數(shù)學探究與數(shù)學思維提供支持.在教學中采用小組合作學習的方式,這樣可以為不同認知基礎的學生提供學習機會,同時有利于發(fā)揮各層次學生的作用,教師始終堅持啟發(fā)式教學原則,設計一系列問題串,以引導學生的數(shù)學思維活動。

  六、教學過程

  (一)導入新課

  教師借助多媒體創(chuàng)設泰坦尼克號的情景,并從中抽象出數(shù)學模型:已知冰山的分布是一個半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?

  教師引導學生回顧初中已經(jīng)學習的直線與圓的位置關系,將所想到的航行路線轉化成數(shù)學簡圖,即相交、相切、相離。

  設計意圖:在已有的知識基礎上,提出新的問題,有利于保持學生知識結構的連續(xù)性,同時開闊視野,激發(fā)學生的學習興趣。

  (二)新課教學——探究新知

  教師提問如何判斷直線與圓的位置關系,學生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學所想到的`思路。在整個交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見解的分析及對該學生的鼓勵。

  判斷方法:

  (1)定義法:看直線與圓公共點個數(shù)

  即研究方程組解的個數(shù),具體做法是聯(lián)立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關系。

  (2)比較法:圓心到直線的距離d與圓的半徑r做比較,(三)合作探究——深化新知

  教師進一步拋出疑問,對比兩種方法,由學生觀察實踐發(fā)現(xiàn),兩種方法本質相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎的題目,學生解答,總結思路。

  已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關系?

  讓學生自主探索,討論交流,并闡述自己的解題思路。

  當已知了直線與圓的方程之后,圓心坐標和半徑r易得到,問題的關鍵是如何得到圓心到直線的距離d,他的本質是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學利用直線方程求兩直線交點的方法,聯(lián)立直線與圓的方程,組成方程組,通過方程組解得個數(shù)確定直線與圓的交點個數(shù),進一步確定他們的位置關系。最后明確解題步驟。

  (四)歸納總結——鞏固新知

  為了將結論由特殊推廣到一般引導學生思考:

  可由方程組的解的不同情況來判斷:

  當方程組有兩組實數(shù)解時,直線l與圓C相交;

  當方程組有一組實數(shù)解時,直線l與圓C相切;

  當方程組沒有實數(shù)解時,直線l與圓C相離。

  活動:我將抽取兩位同學在黑板上扮演,并在巡視過程中對部分學生加以指導。最后對黑板上的兩名學生的解題過程加以分析完善。通過對基礎題的練習,鞏固兩種判斷直線與圓的位置關系判斷方法,并使每一個學生獲得后續(xù)學習的信心。

  (五)小結作業(yè)

  在小結環(huán)節(jié),我會以口頭提問的方式:

  (1)這節(jié)課學習的主要內容是什么?

  (2)在數(shù)學問題的解決過程中運用了哪些數(shù)學思想?

  設計意圖:啟發(fā)式的課堂小結方式能讓學生主動回顧本節(jié)課所學的知識點。也促使學生對知識網(wǎng)絡進行主動建構。

  作業(yè):在學生回顧本堂學習內容明確兩種解題思路后,教師讓學生對比兩種解法,那種更簡捷,明確本節(jié)課主要用比較d與r的關系來解決這類問題,對用方程組解的個數(shù)的判斷方法,要求學生課外做進一步的探究,下一節(jié)課匯報。

  七、板書設計

  我的板書本著簡介、直觀、清晰的原則,這就是我的板書設計。

  高一數(shù)學教案 篇4

  教材分析:

  集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學的一個重要的基礎,一方面,許多重要的數(shù)學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數(shù)學思想,在越來越廣泛的領域種得到應用。

  課型:新授課

  教學目標:(1)通過實例,了解集合的含義,體會元素與集合的理解集合“屬于”關系;

  (2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體

  問題,感受集合語言的意義和作用;

  教學重點:集合的基本概念與表示方法;

  教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;教學過程:

  一、引入課題

  軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?

  在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合(宣布課題),即是一些研究對象的總體。

  二、新課教學

  (一)集合的有關概念

  1.集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識到這

  些東西,并且能判斷一個給定的東西是否屬于這個總體。

  2.一般地,研究對象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡

  稱集。

  3.關于集合的元素的特征

  (1)確定性:設A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。

  (2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應重復出現(xiàn)同一元素。

  (3)集合相等:構成兩個集合的元素完全一樣

  4.元素與集合的關系;

  (1)如果a是集合A的元素,就說a屬于(belong to)A,記作a∈A(2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作a?A(或a A)

  5.常用數(shù)集及其記法

  非負整數(shù)集(或自然數(shù)集),記作N

  正整數(shù)集,記作N_或N+;

  整數(shù)集,記作Z

  有理數(shù)集,記作Q

  實數(shù)集,記作R

  (二)集合的表示方法

  我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

  (1)列舉法:把集合中的元素一一列舉出來,寫在大括號內。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  思考2,引入描述法

  說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。

  (2)描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。

  具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  強調:描述法表示集合應注意集合的代表元素

  {(x,y)|y= x2+3x+2}與{y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。

  辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。

  說明:列舉法與描述法各有優(yōu)點,應該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

  三、歸納小結

  本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。課題:§1.2集合間的基本關系

  教材分析:類比實數(shù)的大小關系引入集合的包含與相等關系

  了解空集的含義

  課型:新授課

  教學目的:(1)了解集合之間的包含、相等關系的含義;

  (2)理解子集、真子集的概念;

  (3)能利用Venn圖表達集合間的關系;

  (4)了解與空集的含義。

  教學重點:子集與空集的概念;用Venn圖表達集合間的關系。教學難點:弄清元素與子集、屬于與包含之間的區(qū)別;

  教學過程:

  四、引入課題

  1、復習元素與集合的關系——屬于與不屬于的關系,填以下空白:(1)0 N;(2;(3)-1.5 R

  2、類比實數(shù)的大小關系,如5<7,2≤2,試想集合間是否有類似的“大小”關系呢?(宣

  布課題)

  五、新課教學

  A={1,2,3},B={1,2,3,4}

  集合A是集合B的部分元素構成的集合,我們說集合B包含集合A;

  如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關系,稱集合A是集合B的子集(subset)。

  記作:A?B(或B?A)

  讀作:A包含于(is contained in)B,或B包含(contains)A (一)集合與集合之間的“包含”關系;

  當集合A不包含于集合B時,記作B

  用Venn圖表示兩個集合間的“包含”關系A?B(或B?A)

  (二)集合與集合之間的“相等”關系;

  A?B且B?A,則A=B中的元素是一樣的,因此A=B

  ?A?B即A=B?? B?A?

  結論:

  任何一個集合是它本身的子集

  (三)真子集的'概念

  若集合A?B,存在元素x∈B且x?A,則稱集合A是集合B的真子集(proper subset)。

  記作:A B(或B A)

  讀作:A真包含于B(或B真包含A)

  (四)空集的概念

  (實例引入空集概念)

  不含有任何元素的集合稱為空集(empty set),記作:?規(guī)定:空集是任何集合的子集,是任何非空集合的真子集。

  (五)結論:1A?A ○2A?B,且B?C,則A?C ○

  (六)例題

  (1)寫出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。

  (2)化簡集合A={x|x-3>2},B={x|x≥5},并表示A、B的關系;

  (七)歸納小結,強化思想

  兩個集合之間的基本關系只有“包含”與“相等”兩種,可類比兩個實數(shù)間的大小關系,同時還要注意區(qū)別“屬于”與“包含”兩種關系及其表示方法;

  1已知集合A={x|a取值范圍。

  2設集合A={○四邊形},B={平行四邊形},C={矩形},

  D={正方形},試用Venn圖表示它們之間的關系。

  課題:§1.3集合的基本運算

  教學目的:(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集;

  (2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集;(3)能用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。

  課型:新授課

  教學重點:集合的交集與并集、補集的概念;

  教學難點:集合的交集與并集、補集“是什么”,“為什么”,“怎樣做”;

  教學過程:

  六、引入課題

  我們兩個實數(shù)除了可以比較大小外,還可以進行加法運算,類比實數(shù)的加法運算,兩個集合是否也可以“相加”呢?

  思考(P9思考題),引入并集概念。

  七、新課教學

  1.并集

  一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,稱為集合A與B的并集(Union)

  記作:A∪B

  Venn圖表示:讀作:“A并B”即:A∪B={x|x∈A,或x∈B}

  高一數(shù)學教案 篇5

  [教學重、難點]

  認識直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形,體會每一類三角形的特點。

  [教學準備]

  學生、老師剪下附頁2中的圖2。

  [教學過程]

  一、畫一畫,說一說

  1、學生各自借助三角板或直尺分別畫一個銳角、直角、鈍角。

  2、教師巡查練習情況。

  3、學生展示練習,說一說為什么是銳角、直角、鈍角?

  二、分一分

  1、小組活動;把附頁2中的圖2中的三角形進行分類,動手前先觀察這些三角形的特點,然后小組討論怎樣分?

  2、匯報:分類的標準和方法?梢园唇莵矸郑梢园催厑矸。

  二、按角分類:

  1、觀察第一類三角形有什么共同的特點,從而歸納出三個角都是銳角的'三角形是銳角三角形。

  2、觀察第二類三角形有什么共同的特點,從而歸納出有一個角是直角的`三角形是直角三角形

  3、觀察第三類三角形有什么共同的特點,從而歸納出有一個角是鈍角的三角形是鈍角三角形。

  三、按邊分類:

  1、觀察這類三角形的邊有什么共同的特點,引導學生發(fā)現(xiàn)每個三角形中都有兩條邊相等,這樣的三角形叫等腰三角形,并介紹各部分的名稱。

  2、引導學生發(fā)現(xiàn)有的三角形三條邊都相等,這樣的三角形是等邊三角形。討論等邊三角形是等腰三角形嗎?

  四、填一填:

  24、25頁讓學生辨認各種三角形。

  五、練一練:

  第1題:通過“猜三角形游戲”讓學生體會到看到一個銳角,不能決定是一個銳角三角形,必須三個角都是銳角才是銳角三角形。

  第2題:在點子圖上畫三角形第3題:剪一剪。

  六、完成26頁實踐活動。

  高一數(shù)學教案 篇6

  1.1 集合含義及其表示

  教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關系;掌握有關符號及術語。

  教學過程:

  一、閱讀下列語句:

  1) 全體自然數(shù)0,1,2,3,4,5,

  2) 代數(shù)式 .

  3) 拋物線 上所有的點

  4) 今年本校高一(1)(或(2))班的全體學生

  5) 本校實驗室的所有天平

  6) 本班級全體高個子同學

  7) 著名的科學家

  上述每組語句所描述的對象是否是確定的?

  二、1)集合:

  2)集合的元素:

  3)集合按元素的個數(shù)分,可分為1)__________2)_________

  三、集合中元素的三個性質:

  1)___________2)___________3)_____________

  四、元素與集合的關系:1)____________2)____________

  五、特殊數(shù)集專用記號:

  1)非負整數(shù)集(或自然數(shù)集)______2)正整數(shù)集_____3)整數(shù)集_______

  4)有理數(shù)集______5)實數(shù)集_____ 6)空集____

  六、集合的表示方法:

  1)

  2)

  3)

  七、例題講解:

  例1、 中三個元素可構成某一個三角形的三邊長,那么此三角形一定不是 ( )

  A,直角三角形 B,銳角三角形 C,鈍角三角形 D,等腰三角形

  例2、用適當?shù)姆椒ū硎鞠铝屑,然后說出它們是有限集還是無限集?

  1)地球上的四大洋構成的集合;

  2)函數(shù) 的全體 值的集合;

  3)函數(shù) 的全體自變量 的集合;

  4)方程組 解的集合;

  5)方程 解的集合;

  6)不等式 的解的集合;

  7)所有大于0且小于10的奇數(shù)組成的集合;

  8)所有正偶數(shù)組成的集合;

  例3、用符號 或 填空:

  1) ______Q ,0_____N, _____Z,0_____

  2) ______ , _____

  3)3_____ ,

  4)設 , , 則

  例4、用列舉法表示下列集合;

  1.

  2.

  3.

  4.

  例5、用描述法表示下列集合

  1.所有被3整除的數(shù)

  2.圖中陰影部分點(含邊界)的坐標的集合

  課堂練習:

  例6、設含有三個實數(shù)的集合既可以表示為 ,也可以表示為 ,則 的值等于___________

  例7、已知: ,若 中元素至多只有一個,求 的取值范圍。

  思考題:數(shù)集A滿足:若 ,則 ,證明1):若2 ,則集合中還有另外兩個元素;2)若 則集合A不可能是單元素集合。

  小結:

  作業(yè) 班級 姓名 學號

  1. 下列集合中,表示同一個集合的是 ( )

  A . M= ,N= B. M= ,N=

  C. M= ,N= D. M= ,N=

  2. M= ,X= ,Y= , , .則 ( )

  A . B. C. D.

  3. 方程組 的解集是____________________.

  4. 在(1)難解的題目,(2)方程 在實數(shù)集內的.解,(3)直角坐標平面內第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.

  5. 設集合 A= , B= ,

  C= , D= ,E= 。

  其中有限集的個數(shù)是____________.

  6. 設 ,則集合 中所有元素的和為

  7. 設x,y,z都是非零實數(shù),則用列舉法將 所有可能的值組成的集合表示為

  8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,

  若A= ,試用列舉法表示集合B=

  9. 把下列集合用另一種方法表示出來:

  (1) (2)

  (3) (4)

  10. 設a,b為整數(shù),把形如a+b 的一切數(shù)構成的集合記為M,設 ,試判斷x+y,x-y,xy是否屬于M,說明理由。

  11. 已知集合A=

  (1) 若A中只有一個元素,求a的值,并求出這個元素;

  (2) 若A中至多只有一個元素,求a的取值集合。

  12.若-3 ,求實數(shù)a的值。

  【總結】20xx年已經(jīng)到來,新的一年數(shù)學網(wǎng)會為您整理更多更好的文章,希望本文高一數(shù)學教案:集合含義及其表示能給您帶來幫助!

  高一數(shù)學教案 篇7

  一、教材分析

  1.教學內容

  本節(jié)課內容教材共分兩課時進行,這是第一課時,該課時主要學習函數(shù)的單調性的的概念,依據(jù)函數(shù)圖象判斷函數(shù)的單調性和應用定義證明函數(shù)的單調性。

  2.教材的地位和作用

  函數(shù)單調性是高中數(shù)學中相當重要的一個基礎知識點,是研究和討論初等函數(shù)有關性質的基礎。掌握本節(jié)內容不僅為今后的函數(shù)學習打下理論基礎,還有利于培養(yǎng)學生的抽象思維能力,及分析問題和解決問題的能力。

  3.教材的重點﹑難點﹑關鍵

  教學重點:函數(shù)單調性的概念和判斷某些函數(shù)單調性的方法。明確單調性是一個局部概念.

  教學難點:領會函數(shù)單調性的實質與應用,明確單調性是一個局部的概念。

  教學關鍵:從學生的學習心理和認知結構出發(fā),講清楚概念的形成過程.

  4.學情分析

  高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環(huán)節(jié)總是創(chuàng)設恰當?shù)膯栴}情境,引導學生積極思考,培養(yǎng)他們的邏輯思維能力。從學生的認知結構來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢,所以在教學中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學的優(yōu)勢;由于學生在概念的掌握上缺少系統(tǒng)性、嚴謹性,在教學中注意加強.

  二、目標分析

  (一)知識目標:

  1.知識目標:理解函數(shù)單調性的概念,掌握判斷一些簡單函數(shù)的單調性的方法;了解函數(shù)單調區(qū)間的概念,并能根據(jù)函數(shù)圖象說出函數(shù)的單調區(qū)間。

  2.能力目標:通過證明函數(shù)的單調性的學習,使學生體驗和理解從特殊到一般的數(shù)學歸納推理思維方式,培養(yǎng)學生的觀察能力,分析歸納能力,領會數(shù)學的歸納轉化的思想方法,增加學生的知識聯(lián)系,增強學生對知識的主動構建的能力。

  3.情感目標:讓學生積極參與觀察、分析、探索等課堂教學的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發(fā)求知_。領會用運動變化的觀點去觀察分析事物的方法。通過滲透數(shù)形結合的數(shù)學思想,對學生進行辨證唯物主義的思想教育。

  (二)過程與方法

  培養(yǎng)學生嚴密的邏輯思維能力以及用運動變化、數(shù)形結合、分類討論的方法去分析和處理問題,以提高學生的思維品質,通過函數(shù)的單調性的學習,掌握自變量和因變量的關系。通過多媒體手段激發(fā)學生學習興趣,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題和解題的邏輯推理能力。

  三、教法與學法

  1.教學方法

  在教學中,要注重展開探索過程,充分利用好函數(shù)圖象的直觀性、發(fā)揮多媒體教學的優(yōu)勢。本節(jié)課采用問答式教學法、探究式教學法進行教學,教師在課堂中只起著主導作用,讓學生在教師的提問中自覺的發(fā)現(xiàn)新知,探究新知,并且加入激勵性的語言以提高學生的積極性,提高學生參與知識形成的全過程。

  2.學習方法

  自我探索、自我思考總結、歸納,自我感悟,合作交流,成為本節(jié)課學生學習的主要方式。

  四、過程分析

  本節(jié)課的教學過程包括:問題情景,函數(shù)單調性的定義引入,增函數(shù)、減函數(shù)的定義,例題分析與鞏固練習,回顧總結和課外作業(yè)六個板塊。這里分別就其過程和設計意圖作一一分析。

  (一)問題情景:

  為了激發(fā)學生的學習興趣,本節(jié)課借助多媒體設計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學生交流,激發(fā)學生的學習興趣和求知_,為學習函數(shù)的單調性做好鋪墊。(祥見課件)

  新課程理念認為:情境應貫穿課堂教學的始終。本節(jié)課所創(chuàng)設的生活情境,讓學生親近數(shù)學,感受到數(shù)學就在他們的周圍,強化學生的感性認識,從而達到學生對數(shù)學的理解。讓學生在課堂的一開始就感受到數(shù)學就在我們身邊,讓學生學會用數(shù)學的眼光去關注生活。

  (二)函數(shù)單調性的定義引入

  1.幾何畫板動畫演示,請學生認真觀察,并回答問題:通過學生已學過的函數(shù)y=2x+4,的圖象的動態(tài)形式形象出x、y間的變化關系,使學生對函數(shù)單調性有感性認識。,進行比較,分析其變化趨勢。并探討、回答以下問題:

  問題1、觀察下列函數(shù)圖象,從左向右看圖象的變化趨勢?

  問題2:你能明確說出“圖象呈上升趨勢”的意思嗎?

  通過學生的交流、探討、總結,得到單調性的“通俗定義”:

  從在某一區(qū)間內當x的值增大時,函數(shù)值y也增大,到圖象在該區(qū)間內呈上升趨勢再到如何用x與f(x)來描述上升的圖象?

  通過問題逐步向抽象的定義靠攏,將圖形語言轉化為數(shù)學符號語言。幾何畫板的靈活使用,數(shù)形有機結合,引導學生從圖形語言到數(shù)學符號語言的翻譯變得輕松。

  設計意圖:通過學生熟悉的知識引入新課題,有利于激發(fā)學生的學習興趣和學習熱情,同時也可以培養(yǎng)學生觀察、猜想、歸納的思維能力和創(chuàng)新意識,增強學生自主學習、獨立思考,由學會向會學的轉化,形成良好的思維品質。通過學生已學過的一次y=2x+4,的圖象的動態(tài)形式形象地反映出x、y間的變化關系,使學生對函數(shù)單調性有感性認識。從學生的原有認知結構入手,探討單調性的概念,符合“最近發(fā)展區(qū)的理論”要求。從圖形、直觀認識入手,研究單調性的概念,其本身就是研究、學習數(shù)學的一種方法,符合新課程的理念。

  (三)增函數(shù)、減函數(shù)的定義

  在前面的基礎上,讓學生討論歸納:如何使用數(shù)學語言來準確描述函數(shù)的單調性?在學生回答的基礎上,給出增函數(shù)的概念,同時要求學生討論概念中的關鍵詞和注意點。

  定義中的“當x1x2時,都有f(x1)

  注意:(1)函數(shù)的單調性也叫函數(shù)的增減性;

  (2)注意區(qū)間上所取兩點x1,x2的任意性;

  (3)函數(shù)的單調性是對某個區(qū)間而言的,它是一個局部概念。

  讓學生自已嘗試寫出減函數(shù)概念,由兩名學生板演。提出單調區(qū)間的概念。

  設計意圖:通過給出函數(shù)單調性的嚴格定義,目的是為了讓學生更準確地把握概念,理解函數(shù)的單調性其實也叫做函數(shù)的增減性,它是對某個區(qū)間而言的,它是一個局部概念,同時明確判定函數(shù)在某個區(qū)間上的單調性的一般步驟。這樣處理,同時也是讓學生感悟、體驗學習數(shù)學感念的方法,提高其個性品質。

  (四)例題分析

  在理解概念的基礎上,讓學生總結判別函數(shù)單調性的方法:圖象法和定義法。

  2.例2.證明函數(shù)在區(qū)間(-∞,+∞)上是減函數(shù)。

  在本題的解決過程中,要求學生對照定義進行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結證明單調性問題的一般方法。

  變式一:函數(shù)f(x)=-3x+b在R上是減函數(shù)嗎?為什么?

  變式二:函數(shù)f(x)=kx+b(k<0)在R上是減函數(shù)嗎?你能用幾種方法來判斷。

  變式三:函數(shù)f(x)=kx+b(k<0)在R上是減函數(shù)嗎?你能用幾種方法來判斷。

  錯誤:實質上并沒有證明,而是使用了所要證明的結論

  例題設計意圖:在理解概念的基礎上,讓學生總結判別函數(shù)單調性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學生應用數(shù)形結合的思想方法解題的意識,進一步加深對概念的理解,同時也是依托具體問題,對單調區(qū)間這一概念的再認識;要了解函數(shù)在某一區(qū)間上是否具有單調性,從圖上進行觀察是一種常用而又粗略的.方法。嚴格地說,它需要根據(jù)單調函數(shù)的定義進行證明。例2是教材練習題改編,通過師生共同總結,得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結論,通過例2的解決是學生初步掌握運用概念進行簡單論證的基本方法,強化證題的規(guī)范性訓練,從而提高學生的推理論證能力。例3是教材例2抽象出的數(shù)學問題。目的是進一步強化解題的規(guī)范性,提高邏輯推理能力,同時讓學生學會一些常見的變形方法。

  (五)鞏固與探究

  1.教材p36練習2,3

  2.探究:二次函數(shù)的單調性有什么規(guī)律?

  (幾何畫板演示,學生探究)本問題作為機動題。時間不允許時,就為課后思考題。

  設計意圖:通過觀察圖象,對函數(shù)是否具有某種性質作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發(fā)現(xiàn)和解決問題的一種常用數(shù)學方法。

  通過課堂練習加深學生對概念的理解,進一步熟悉證明或判斷函數(shù)單調性的方法和步驟,達到鞏固,消化新知的目的。同時強化解題步驟,形成并提高解題能力。對練習的思考,讓學生學會反思、學會總結。

  (六)回顧總結

  通過師生互動,回顧本節(jié)課的概念、方法。本節(jié)課我們學習了函數(shù)單調性的知識,同學們要切記:單調性是對某個區(qū)間而言的,同時在理解定義的基礎上,要掌握證明函數(shù)單調性的方法步驟,正確進行判斷和證明。

  設計意圖:通過小結突出本節(jié)課的重點,并讓學生對所學知識的結構有一個清晰的認識,學會一些解決問題的思想與方法,體會數(shù)學的和諧美。

  (七)課外作業(yè)

  1.教材p43習題1.3A組1(單調區(qū)間),2(證明單調性);

  2.判斷并證明函數(shù)在上的單調性。

  3.數(shù)學日記:談談你本節(jié)課中的收獲或者困惑,整理你認為本節(jié)課中的最重要的知識和方法。

  設計意圖:通過作業(yè)1、2進一步鞏固本節(jié)課所學的增、減函數(shù)的概念,強化基本技能訓練和解題規(guī)范化的訓練,并且以此作為學生對本結內容各項目標落實的評價。新課標要求:不同的學生學習不同的數(shù)學,在數(shù)學上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現(xiàn)。

  (七)板書設計(見ppt)

  五、評價分析

  有效的概念教學是建立在學生已有知識結構基礎上,因此在教學設計過程中注意了:第一.教要按照學的法子來教;第二在學生已有知識結構和新概念間尋找“最近發(fā)展區(qū)”;第三.強化了重探究、重交流、重過程的課改理念。讓學生經(jīng)歷“創(chuàng)設情境——探究概念——注重反思——拓展應用——歸納總結”的活動過程,體驗了參與數(shù)學知識的發(fā)生、發(fā)展過程,培養(yǎng)“用數(shù)學”的意識和能力,成為積極主動的建構者。

  本節(jié)課圍繞教學重點,針對教學目標,以多媒體技術為依托,展現(xiàn)知識的發(fā)生和形成過程,使學生始終處于問題探索研究狀態(tài)之中,_引趣,并注重數(shù)學科學研究方法的學習,是順應新課改要求的,是研究性教學的一次有益嘗試。

  高一數(shù)學教案 篇8

  一、教學目標

  1、知識與技能

 。1)通過實物操作,增強學生的直觀感知。

 。2)能根據(jù)幾何結構特征對空間物體進行分類。

 。3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

 。4)會表示有關于幾何體以及柱、錐、臺的分類。

  2、過程與方法

  (1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。

 。2)讓學生觀察、討論、歸納、概括所學的知識。

  3、情感態(tài)度與價值觀

 。1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。

 。2)培養(yǎng)學生的空間想象能力和抽象括能力。

  二、教學重點、難點

  重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。 難點:柱、錐、臺、球的結構特征的概括。

  三、教學用具

 。1)學法:觀察、思考、交流、討論、概括。

 。2)實物模型、投影儀 四、教學思路

  (一)創(chuàng)設情景,揭示課題

  1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。

  2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學習的內容。

  (二)、研探新知

  1、引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。

  2、觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?

  3、組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。

  (1)有兩個面互相平行;

  (2)其余各面都是平行四邊形;

  (3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

  4、教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。

  5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?

  請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?

  6、以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。

  7、讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的.概念及圓柱的表示。

  8、引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。

  9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

  10、現(xiàn)實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結構特征的物體組合而成。請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?

  (三)質疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。

  1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)

  2、棱柱的何兩個平面都可以作為棱柱的底面嗎?

  3、課本P8,習題1.1 A組第1題。

  4、圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

  5、棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?

  四、鞏固深化

  練習:課本P7 練習1、2(1)(2) 課本P8 習題1.1 第2、3、4題 五、歸納整理

  由學生整理學習了哪些內容 六、布置作業(yè)

  課本P8 練習題1.1 B組第1題

  課外練習 課本P8 習題1.1 B組第2題

  高一數(shù)學教案 篇9

  一、教材分析

  (一)地位與作用

  數(shù)列是高中數(shù)學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面學習數(shù)列也為進一步學習數(shù)列的極限等內容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。

  (二)學情分析

  (1)學生已熟練掌握_________________。

  (2)學生的知識經(jīng)驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。

  (3)學生思維活潑,積極性高,已初步形成對數(shù)學問題的合作探究能力。

  (4)學生層次參次不齊,個體差異比較明顯。

  二、目標分析

  新課標指出“三維目標”是一個密切聯(lián)系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養(yǎng)為主線,透情感態(tài)度與價值觀,并把這兩者充分體現(xiàn)在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發(fā),根據(jù)____在教材內容中的地位與作用,結合學情分析,本節(jié)課教學應實現(xiàn)如下教學目標:

  (一)教學目標

  (1)知識與技能

  使學生理解函數(shù)單調性的概念,初步掌握判別函數(shù)單調性的方法;。

  (2)過程與方法

  引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數(shù)、單調減函數(shù)等概念;能運用函數(shù)單調性概念解決簡單的問題;使學生領會數(shù)形結合的數(shù)學思想方法,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

  (3)情感態(tài)度與價值觀

  在函數(shù)單調性的學習過程中,使學生體驗數(shù)學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹?shù)目茖W態(tài)度。

  (二)重點難點

  本節(jié)課的教學重點是________________________,教學難點是_____________________。

  三、教法、學法分析

  (一)教法

  基于本節(jié)課的內容特點和高二學生的年齡特征,按照臨沂市高中數(shù)學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現(xiàn)本節(jié)課的教學目標,在教法上我采取了:

  1、通過學生熟悉的實際生活問題引入課題,為概念學習創(chuàng)設情境,拉近數(shù)學與現(xiàn)實的距離,激發(fā)學生求知欲,調動學生主體參與的積極性.

  2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念.

  3、在鼓勵學生主體參與的同時,不可忽視教師的`主導作用,要教會學生清晰的思維、嚴謹?shù)耐评恚㈨樌赝瓿蓵姹磉_.

  (二)學法

  在學法上我重視了:

  1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。

  2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。

  四、教學過程分析

  (一)教學過程設計

  教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發(fā)、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發(fā)生、發(fā)展和運用過程的演繹、解釋和探究來組織和推動教學。

  (1)創(chuàng)設情境,提出問題。

  新課標指出:“應該讓學生在具體生動的情境中學習數(shù)學”。在本節(jié)課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統(tǒng)目的明確的設計方式,給學生的思考空間,充分體現(xiàn)學生主體地位。

  (2)引導探究,建構概念。

  數(shù)學概念的形成來自解決實際問題和數(shù)學自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經(jīng)驗和已有的知識基礎出發(fā),經(jīng)歷“數(shù)學化”、“再創(chuàng)造”的活動過過程.

  (3)自我嘗試,初步應用。

  有效的數(shù)學學習過程,不能單純的模仿與記憶,數(shù)學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學習,生生合作交流,共同探究.

  (4)當堂訓練,鞏固深化。

  通過學生的主體參與,使學生深切體會到本節(jié)課的主要內容和思想方法,從而實現(xiàn)對知識識的再次深化。

  (5)小結歸納,回顧反思。

  小結歸納不僅是對知識的簡單回顧,還要發(fā)揮學生的主體地位,從知識、方法、經(jīng)驗等方面進行總結。我設計了三個問題:(1)通過本節(jié)課的學習,你學到了哪些知識?(2)通過本節(jié)課的學習,你的體驗是什么?(3)通過本節(jié)課的學習,你掌握了哪些技能?

  (二)作業(yè)設計

  作業(yè)分為必做題和選做題,必做題對本節(jié)課學生知識水平的反饋,選做題是對本節(jié)課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業(yè)設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生自主發(fā)展、合作探究的學習氛圍的形成.

  高一數(shù)學教案 篇10

  教學目標:

  1、掌握對數(shù)的運算性質,并能理解推導這些法則的依據(jù)和過程;

  2、能較熟練地運用法則解決問題;

  教學重點:

  對數(shù)的運算性質

  教學過程:

  一、問題情境:

  1、指數(shù)冪的運算性質;

  2、問題:對數(shù)運算也有相應的運算性質嗎?

  二、學生活動:

  1、觀察教材P59的表2—3—1,驗證對數(shù)運算性質、

  2、理解對數(shù)的運算性質、

  3、證明對數(shù)性質、

  三、建構數(shù)學:

  1)引導學生驗證對數(shù)的運算性質、

  2)推導和證明對數(shù)運算性質、

  3)運用對數(shù)運算性質解題、

  探究:

  ①簡易語言表達:“積的.對數(shù)=對數(shù)的和”……

 、谟袝r逆向運用公式運算:如

  ③真數(shù)的取值范圍必須是:不成立;不成立、

  ④注意:,

  四、數(shù)學運用:

  1、例題:

  例1、(教材P60例4)求下列各式的值:

 。1);(2)125;(3)(補充)lg、

  例2、(教材P60例4)已知,,求下列各式的值(結果保留4位小數(shù))

 。1);(2)、

  例3、用,,表示下列各式:

  例4、計算:

 。1);(2);(3)

  2、練習:

  P60(練習)1,2,4,5、

  五、回顧小結:

  本節(jié)課學習了以下內容:對數(shù)的運算法則,公式的逆向使用、

  六、課外作業(yè):

  P63習題5

  補充:

  1、求下列各式的值:

 。1)6—3;(2)lg5+lg2;(3)3+、

  2、用lgx,lgy,lgz表示下列各式:

  (1)lg(xyz);(2)lg;(3);(4)、

  3、已知lg2=0、3010,lg3=0、4771,求下列各對數(shù)的值(精確到小數(shù)點后第四位)

 。1)lg6;(2)lg;(3)lg;(4)lg32、

  高一數(shù)學教案 篇11

  教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學模型.高中階段不僅把函數(shù)看成變量之間的依賴關系,同時還用集合與對應的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想.

  教學目的:

 。1)通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型,在此基礎上學習用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用;

 。2)了解構成函數(shù)的要素;

  (3)會求一些簡單函數(shù)的定義域和值域;

 。4)能夠正確使用“區(qū)間”的符號表示某些函數(shù)的定義域;

  教學重點:理解函數(shù)的模型化思想,用合與對應的語言來刻畫函數(shù);

  教學難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

  教學過程:

  一、引入課題

  1.復習初中所學函數(shù)的概念,強調函數(shù)的模型化思想;

  2.閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學模型的思想:

 。1)炮彈的射高與時間的變化關系問題;

 。2)南極臭氧空洞面積與時間的變化關系問題;

 。3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關系問題

  備用實例:

  我國xxxx年4月份非典疫情統(tǒng)計:

  日期222324252627282930

  新增確診病例數(shù)1061058910311312698152101

  3.引導學生應用集合與對應的語言描述各個實例中兩個變量間的依賴關系;

  4.根據(jù)初中所學函數(shù)的概念,判斷各個實例中的兩個變量間的關系是否是函數(shù)關系.

  二、新課教學

 。ㄒ唬┖瘮(shù)的有關概念

  1.函數(shù)的概念:

  設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).

  記作:y=f(x),x∈A.

  其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).

  注意:

  ○1“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;

  ○2函數(shù)符號“y=f(x)”中的f(x)表示與x對應的函數(shù)值,一個數(shù),而不是f乘x.

  2.構成函數(shù)的三要素:

  定義域、對應關系和值域

  3.區(qū)間的概念

 。1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;

  (2)無窮區(qū)間;

 。3)區(qū)間的數(shù)軸表示.

  4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的.定義域和值域討論

 。ㄓ蓪W生完成,師生共同分析講評)

 。ǘ┑湫屠}

  1.求函數(shù)定義域

  課本P20例1

  解:(略)

  說明:

  ○1函數(shù)的定義域通常由問題的實際背景確定,如果課前三個實例;

  ○2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;

  ○3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

  鞏固練習:課本P22第1題

  2.判斷兩個函數(shù)是否為同一函數(shù)

  課本P21例2

  解:(略)

  說明:

  ○1構成函數(shù)三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數(shù)的定義域和對應關系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))

  ○2兩個函數(shù)相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數(shù)值的字母無關。

  鞏固練習:

  ○1課本P22第2題

  ○2判斷下列函數(shù)f(x)與g(x)是否表示同一個函數(shù),說明理由?

 。1)f(x)=(x-1)0;g(x)=1

 。2)f(x)=x;g(x)=

 。3)f(x)=x2;f(x)=(x+1)2

 。4)f(x)=|x|;g(x)=

 。ㄈ┱n堂練習

  求下列函數(shù)的定義域

 。1)

 。2)

  (3)

  (4)

 。5)

  (6)

  三、歸納小結,強化思想

  從具體實例引入了函數(shù)的的概念,用集合與對應的語言描述了函數(shù)的定義及其相關概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來表示集合。

  四、作業(yè)布置

  課本P28習題1.2(A組)第1—7題(B組)第1題

  高一數(shù)學教案 篇12

  1.掌握對數(shù)函數(shù)的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用。

 。1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關系正確描繪對數(shù)函數(shù)的圖象。

 。2) 能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質去研究認識對數(shù)函數(shù)的性質,初步學會用對數(shù)函數(shù)的性質解決簡單的問題。

  2.通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉化的觀點,通過對數(shù)函數(shù)圖象和性質的學習,滲透數(shù)形結合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力。

  3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數(shù)學的積極性。

  高一數(shù)學對數(shù)函數(shù)教案:教材分析

 。1) 對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎上引入的.。故是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解。對數(shù)函數(shù)的概念,圖象與性質的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎。

 。2) 本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質。難點是利用指數(shù)函數(shù)的圖象和性質得到對數(shù)函數(shù)的圖象和性質。由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關系和反函數(shù)概念的基礎上,故應成為教學的重點。

 。3) 本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應圍繞著這條主線展開。而通過互為反函數(shù)的兩個函數(shù)的關系由已知函數(shù)研究未知函數(shù)的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節(jié)課的難點。

  高一數(shù)學對數(shù)函數(shù)教案:教法建議

  (1) 對數(shù)函數(shù)在引入時,就應從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù) 的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。

  (2) 在本節(jié)課中結合對數(shù)函數(shù)教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數(shù)這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。

  高一數(shù)學教案 篇13

  目標:

  (1)使學生初步理解集合的概念,知道常用數(shù)集的概念及其記法

  (2)使學生初步了解“屬于”關系的意義

  (3)使學生初步了解有限集、無限集、空集的意義

  重點:集合的基本概念

  教學過程:

  1.引入

  (1)章頭導言

  (2)集合論與集合論的-----康托爾(有關介紹可引用附錄中的內容)

  2.講授新課

  閱讀教材,并思考下列問題:

  (1)有那些概念?

  (2)有那些符號?

  (3)集合中元素的特性是什么?

  (4)如何給集合分類?

  (一)有關概念:

  1、集合的概念

  (1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,都可以稱作對象.

  (2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合.

  (3)元素:集合中每個對象叫做這個集合的元素.

  集合通常用大寫的拉丁字母表示,如A、B、C、……元素通常用小寫的拉丁字母表示,如a、b、c、……

  2、元素與集合的關系

  (1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

  (2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

  要注意“∈”的`方向,不能把a∈A顛倒過來寫.

  3、集合中元素的特性

  (1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了.

  (2)互異性:集合中的元素一定是不同的

  (3)無序性:集合中的元素沒有固定的順序.

  4、集合分類

  根據(jù)集合所含元素個屬不同,可把集合分為如下幾類:

  (1)把不含任何元素的集合叫做空集Ф

  (2)含有有限個元素的集合叫做有限集

  (3)含有無窮個元素的集合叫做無限集

  注:應區(qū)分,0等符號的含義

  5、常用數(shù)集及其表示方法

  (1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合.記作N

  (2)正整數(shù)集:非負整數(shù)集內排除0的集.記作N_或N+

  (3)整數(shù)集:全體整數(shù)的集合.記作Z

  (4)有理數(shù)集:全體有理數(shù)的集合.記作Q

  (5)實數(shù)集:全體實數(shù)的集合.記作R

  注:(1)自然數(shù)集包括數(shù)0.

  (2)非負整數(shù)集內排除0的集.記作N_或N+,Q、Z、R等其它數(shù)集內排除0的集,也這樣表示,例如,整數(shù)集內排除0的集,表示成Z_

  課堂練習:教材第5頁練習A、B

  小結:本節(jié)課我們了解集合論的發(fā)展,學習了集合的概念及有關性質

  課后作業(yè):第十頁習題1-1B第3題

【高一數(shù)學教案】相關文章:

高一數(shù)學教案12-08

高一數(shù)學教案數(shù)列12-30

高一數(shù)學教案(15篇)12-13

高一數(shù)學教案15篇12-11

高一數(shù)學教案 15篇04-19

高一數(shù)學教案精選15篇02-06

高一數(shù)學教案匯編15篇12-21

高一數(shù)學教案合集15篇12-21

高一數(shù)學教案(匯編15篇)12-19