亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

范文資料網(wǎng)>人事資料>常識>《初中數(shù)學基礎知識點總結

初中數(shù)學基礎知識點總結

時間:2024-05-08 07:27:03 常識 我要投稿
  • 相關推薦

【通用】初中數(shù)學基礎知識點總結5篇

  總結就是對一個時期的學習、工作或其完成情況進行一次全面系統(tǒng)的回顧和分析的書面材料,它是增長才干的一種好辦法,不如我們來制定一份總結吧。那么如何把總結寫出新花樣呢?下面是小編幫大家整理的初中數(shù)學基礎知識點總結,歡迎大家借鑒與參考,希望對大家有所幫助。

【通用】初中數(shù)學基礎知識點總結5篇

初中數(shù)學基礎知識點總結1

  1、不在同一直線上的三點確定一個圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對稱中心的中心對稱圖形

  4、圓是定點的距離等于定長的點的集合

  5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  6、圓的外部可以看作是圓心的'距離大于半徑的點的集合

  7、同圓或等圓的半徑相等

  8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  11、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

  12、①直線L和⊙O相交d

 、谥本L和⊙O相切d=r

 、壑本L和⊙O相離d>r

  13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑

  15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  18、圓的外切四邊形的兩組對邊的和相等,外角等于內(nèi)對角

  19、如果兩個圓相切,那么切點一定在連心線上

  20、①兩圓外離d>R+r

  ②兩圓外切d=R+r

 、蹆蓤A相交R-rr)

 、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

初中數(shù)學基礎知識點總結2

  圓周角知識點

  1、定義:頂點在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)

  2、定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。

  3、推論:1)在同圓或等圓中,相等的圓周角所對的弧相等。

  2)直徑(半圓)所對的圓周角是直角;900的圓周角所對的弦為直徑

  4、圓內(nèi)接四邊形的性質(zhì)定理:圓內(nèi)接四邊形的對角互補。(任意一個外角等于它的內(nèi)對角)

  補充:1、兩條平行弦所夾的弧相等。

  2、圓的兩條弦1)在圓外相交時,所夾角等于它所對的兩條弧度數(shù)差的一半。2)在圓內(nèi)相交時,所夾的角等于它所夾兩條弧度數(shù)和的一半。

  3、同弧所對的(在弧的同側(cè))圓內(nèi)部角其次是圓周角,最小的是圓外角。

  平均數(shù)中位數(shù)與眾數(shù)知識點

  1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.

  2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.

  3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.

  有理數(shù)知識點

  1.大于0的數(shù)叫做正數(shù)。

  2.在正數(shù)前面加上負號“-”的數(shù)叫做負數(shù)。

  3.整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)。

  4.人們通常用一條直線上的點表示數(shù),這條直線叫做數(shù)軸。

  5.在直線上任取一個點表示數(shù)0,這個點叫做原點。

  6.一般的,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值。

  7.由絕對值的定義可知:

  一個正數(shù)的絕對值是它本身;

  一個負數(shù)的絕對值是它的相反數(shù);

  0的`絕對值是0。

  8.正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù)。

  9.兩個負數(shù),絕對值大的反而小。

  10.有理數(shù)加法法則:

  (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  (2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的負號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0。

  (3)一個數(shù)同0相加,仍得這個數(shù)。

  11.有理數(shù)的加法中,兩個數(shù)相加,交換交換加數(shù)的位置,和不變。

  12.有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。

  13.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  14.有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值向乘。任何數(shù)同0相乘,都得0。

  15.有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù)。

  16.一般的,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。

  17.三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。

  18.一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。

  19.有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。

  20.兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。

初中數(shù)學基礎知識點總結3

  1 圓、圓心、半徑、直徑、圓弧、弦、半圓的定義

  2 垂直于弦的直徑

  圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;

  垂直于弦的直徑平分弦,并且平方弦所對的兩條。

  平分弦的直徑垂直弦,并且平分弦所對的兩條弧。

  3 弧、弦、圓心角

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。

  4 圓周角

  在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;

  半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。

  5 點和圓的位置關系

  點在圓外

  點在圓上 d=r

  點在圓內(nèi) d

  定理:不在同一條直線上的三個點確定一個圓。

  三角形的外接圓:經(jīng)過三角形的三個頂點的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。

  6直線和圓的位置關系

  相交 d

  相切 d=r

  相離 d>r

  切線的性質(zhì)定理:圓的切線垂直于過切點的半徑;

  切線的判定定理:經(jīng)過圓的外端并且垂直于這條半徑的直線是圓的切線;

  切線長定理:從圓外一點引圓的`兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。

  三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線的交點,為三角形的內(nèi)心。

  7 圓和圓的位置關系

  外離 d>R+r

  外切 d=R+r

  相交 R-r

  內(nèi)切 d=R-r

  內(nèi)含 d

  8 正多邊形和圓

  正多邊形的中心:外接圓的圓心

  正多邊形的半徑:外接圓的半徑

  正多邊形的中心角:沒邊所對的圓心角

  正多邊形的邊心距:中心到一邊的距離

初中數(shù)學基礎知識點總結4

  一、計算題:

  科學計數(shù)法、倒數(shù)相反數(shù)絕對值、簡單概率運算、三視圖求原圖面積、三角形(相似、全等、內(nèi)角外交關系)、統(tǒng)計(眾數(shù)、中位數(shù)、平均數(shù))、二次函數(shù)(頂點、對稱軸、表達式)、函數(shù)圖像關系

  二、填空題:

  因式分解、二次函數(shù)解析式求解、三角形(相似、周長面積計算)、坐標(坐標點運動規(guī)律)、直線和反比例函數(shù)圖像問題

  三、問答題:

  次方、開方、三角函數(shù)、次冪(0次、-1次)計算;

  求解不等式組;

  分式、多項式化簡(整體代入方法求值);

  方程組求解;

  幾何圖形中證明三角形邊相等;

  一次函數(shù)與二次函數(shù);

  四、圖形題

  四邊形邊長、周長、面積求解;

  圓相關問題(切割線、圓周角、圓心角);

  統(tǒng)計圖;

  在數(shù)軸中求三角形面積;

  五、解答題

  二次函數(shù)(解析式、直線方程);

  圓與直線關系;

  三角形角度相關計算;

  總體來說中考題,題目多,需要熟練掌握相關的知識點,快速做題。近些年中考數(shù)學題型都比較固定、難度適宜,需要在正確率方面留心,對于三角形、四邊形面積計算知識板塊要高度重視。

初中數(shù)學基礎知識點總結5

  有理數(shù)的加法運算

  同號兩數(shù)來相加,絕對值加不變號。

  異號相加大減小,大數(shù)決定和符號。

  互為相反數(shù)求和,結果是零須記好。

  【注】“大”減“小”是指絕對值的大小。

  有理數(shù)的減法運算

  減正等于加負,減負等于加正。

  有理數(shù)的乘法運算符號法則

  同號得正異號負,一項為零積是零。

  合并同類項

  說起合并同類項,法則千萬不能忘。

  只求系數(shù)代數(shù)和,字母指數(shù)留原樣。

  去、添括號法則

  去括號或添括號,關鍵要看連接號。

  擴號前面是正號,去添括號不變號。

  括號前面是負號,去添括號都變號。

  解方程

  已知未知鬧分離,分離要靠移完成。

  移加變減減變加,移乘變除除變乘。

  平方差公式

  兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。

  積化和差變兩項,完全平方不是它。

  完全平方公式

  二數(shù)和或差平方,展開式它共三項。

  首平方與末平方,首末二倍中間放。

  和的平方加聯(lián)結,先減后加差平方。

  完全平方公式

  首平方又末平方,二倍首末在中央。

  和的平方加再加,先減后加差平方。

  解一元一次方程

  先去分母再括號,移項變號要記牢。

  同類各項去合并,系數(shù)化“1”還沒好。

  求得未知須檢驗,回代值等才算了。

  解一元一次方程

  先去分母再括號,移項合并同類項。

  系數(shù)化1還沒好,準確無誤不白忙。

  因式分解與乘法

  和差化積是乘法,乘法本身是運算。

  積化和差是分解,因式分解非運算。

  因式分解

  兩式平方符號異,因式分解你別怕。

  兩底和乘兩底差,分解結果就是它。

  兩式平方符號同,底積2倍坐中央。

  因式分解能與否,符號上面有文章。

  同和異差先平方,還要加上正負號。

  同正則正負就負,異則需添冪符號。

  因式分解

  一提二套三分組,十字相乘也上數(shù)。

  四種方法都不行,拆項添項去重組。

  重組無望試求根,換元或者算余數(shù)。

  多種方法靈活選,連乘結果是基礎。

  同式相乘若出現(xiàn),乘方表示要記住。

  【注】 一提(提公因式)二套(套公式)

  因式分解

  一提二套三分組,叉乘求根也上數(shù)。

  五種方法都不行,拆項添項去重組。

  對癥下藥穩(wěn)又準,連乘結果是基礎。

  二次三項式的.因式分解

  先想完全平方式,十字相乘是其次。

  兩種方法行不通,求根分解去嘗試。

  比和比例

  兩數(shù)相除也叫比,兩比相等叫比例。

  外項積等內(nèi)項積,等積可化八比例。

  分別交換內(nèi)外項,統(tǒng)統(tǒng)都要叫更比。

  同時交換內(nèi)外項,便要稱其為反比。

  前后項和比后項,比值不變叫合比。

  前后項差比后項,組成比例是分比。

  兩項和比兩項差,比值相等合分比。

  前項和比后項和,比值不變叫等比。

  解比例

  外項積等內(nèi)項積,列出方程并解之。

  求比值

  由已知去求比值,多種途徑可利用。

  活用比例七性質(zhì),變量替換也走紅。

  消元也是好辦法,殊途同歸會變通。

  正比例與反比例

  商定變量成正比,積定變量成反比。

  正比例與反比例

  變化過程商一定,兩個變量成正比。

  變化過程積一定,兩個變量成反比。

  判斷四數(shù)成比例

  四數(shù)是否成比例,遞增遞減先排序。

  兩端積等中間積,四數(shù)一定成比例。

  判斷四式成比例

  四式是否成比例,生或降冪先排序。

  兩端積等中間積,四式便可成比例。

  比例中項

  成比例的四項中,外項相同會遇到。

  有時內(nèi)項會相同,比例中項少不了。

  比例中項很重要,多種場合會碰到。

  成比例的四項中,外項相同有不少。

  有時內(nèi)項會相同,比例中項出現(xiàn)了。

  同數(shù)平方等異積,比例中項無處逃。

  根式與無理式

  表示方根代數(shù)式,都可稱其為根式。

  根式異于無理式,被開方式無限制。

  被開方式有字母,才能稱為無理式。

  無理式都是根式,區(qū)分它們有標志。

  被開方式有字母,又可稱為無理式。

  求定義域

  求定義域有講究,四項原則須留意。

  負數(shù)不能開平方,分母為零無意義。

  指是分數(shù)底正數(shù),數(shù)零沒有零次冪。

  限制條件不唯一,滿足多個不等式。

  求定義域要過關,四項原則須注意。

  負數(shù)不能開平方,分母為零無意義。

  分數(shù)指數(shù)底正數(shù),數(shù)零沒有零次冪。

  限制條件不唯一,不等式組求解集。

  解一元一次不等式

  先去分母再括號,移項合并同類項。

  系數(shù)化“1”有講究,同乘除負要變向。

  先去分母再括號,移項別忘要變號。

  同類各項去合并,系數(shù)化“1”注意了。

  同乘除正無防礙,同乘除負也變號。

  解一元一次不等式組

  大于頭來小于尾,大小不一中間找。

  大大小小沒有解,四種情況全來了。

  同向取兩邊,異向取中間。

  中間無元素,無解便出現(xiàn)。

  幼兒園小鬼當家,(同小相對取較。

  敬老院以老為榮,(同大就要取較大)

  軍營里沒老沒少。(大小小大就是它)

  大大小小解集空。(小小大大哪有哇)

  解一元二次不等式

  首先化成一般式,構造函數(shù)第二站。

  判別式值若非負,曲線橫軸有交點。

  a正開口它向上,大于零則取兩邊。

  代數(shù)式若小于零,解集交點數(shù)之間。

  方程若無實數(shù)根,口上大零解為全。

  小于零將沒有解,開口向下正相反。

  用平方差公式因式分解

  異號兩個平方項,因式分解有辦法。

  兩底和乘兩底差,分解結果就是它。

  用完全平方公式因式分解

  兩平方項在兩端,底積2倍在中部。

  同正兩底和平方,全負和方相反數(shù)。

  分成兩底差平方,方正倍積要為負。

  兩邊為負中間正,底差平方相反數(shù)。

  一平方又一平方,底積2倍在中路。

  三正兩底和平方,全負和方相反數(shù)。

  分成兩底差平方,兩端為正倍積負。

  兩邊若負中間正,底差平方相反數(shù)。

  用公式法解一元二次方程

  要用公式解方程,首先化成一般式。

  調(diào)整系數(shù)隨其后,使其成為最簡比。

  確定參數(shù)abc,計算方程判別式。

  判別式值與零比,有無實根便得知。

  有實根可套公式,沒有實根要告之。

  用常規(guī)配方法解一元二次方程

  左未右已先分離,二系化“1”是其次。

  一系折半再平方,兩邊同加沒問題。

  左邊分解右合并,直接開方去解題。

  該種解法叫配方,解方程時多練習。

  用間接配方法解一元二次方程

  已知未知先分離,因式分解是其次。

  調(diào)整系數(shù)等互反,和差積套恒等式。

  完全平方等常數(shù),間接配方顯優(yōu)勢

  【注】 恒等式

  解一元二次方程

  方程沒有一次項,直接開方最理想。

  如果缺少常數(shù)項,因式分解沒商量。

  b、c相等都為零,等根是零不要忘。

  b、c同時不為零,因式分解或配方,也可直接套公式,因題而異擇良方。

  正比例函數(shù)的鑒別

  判斷正比例函數(shù),檢驗當分兩步走。

  一量表示另一量, 有沒有。

  若有再去看取值,全體實數(shù)都需要。

  區(qū)分正比例函數(shù),衡量可分兩步走。

  一量表示另一量, 是與否。

  若有還要看取值,全體實數(shù)都要有。

  正比例函數(shù)的圖象與性質(zhì)

  正比函數(shù)圖直線,經(jīng)過 和原點。

  K正一三負二四,變化趨勢記心間。

  K正左低右邊高,同大同小向爬山。

  K負左高右邊低,一大另小下山巒。

  一次函數(shù)

  一次函數(shù)圖直線,經(jīng)過 點。

  K正左低右邊高,越走越高向爬山。

  K負左高右邊低,越來越低很明顯。

  K稱斜率b截距,截距為零變正函。

  反比例函數(shù)

  反比函數(shù)雙曲線,經(jīng)過 點。

  K正一三負二四,兩軸是它漸近線。

  K正左高右邊低,一三象限滑下山。

  K負左低右邊高,二四象限如爬山。

  二次函數(shù)

  二次方程零換y,二次函數(shù)便出現(xiàn)。

  全體實數(shù)定義域,圖像叫做拋物線。

  拋物線有對稱軸,兩邊單調(diào)正相反。

  A定開口及大小,線軸交點叫頂點。

  頂點非高即最低。上低下高很顯眼。

  如果要畫拋物線,平移也可去描點,提取配方定頂點,兩條途徑再挑選。

  列表描點后連線,平移規(guī)律記心間。

  左加右減括號內(nèi),號外上加下要減。

  二次方程零換y,就得到二次函數(shù)。

  圖像叫做拋物線,定義域全體實數(shù)。

  A定開口及大小,開口向上是正數(shù)。

  絕對值大開口小,開口向下A負數(shù)。

  拋物線有對稱軸,增減特性可看圖。

  線軸交點叫頂點,頂點縱標最值出。

  如果要畫拋物線,描點平移兩條路。

  提取配方定頂點,平移描點皆成圖。

  列表描點后連線,三點大致定全圖。

  若要平移也不難,先畫基礎拋物線,頂點移到新位置,開口大小隨基礎。

  【注】基礎拋物線

  直線、射線與線段

  直線射線與線段,形狀相似有關聯(lián)。

  直線長短不確定,可向兩方無限延。

  射線僅有一端點,反向延長成直線。

  線段定長兩端點,雙向延伸變直線。

  兩點定線是共性,組成圖形最常見。

  角

  一點出發(fā)兩射線,組成圖形叫做角。

  共線反向是平角,平角之半叫直角。

  平角兩倍成周角,小于直角叫銳角。

  直平之間是鈍角,平周之間叫優(yōu)角。

  互余兩角和直角,和是平角互補角。

  一點出發(fā)兩射線,組成圖形叫做角。

  平角反向且共線,平角之半叫直角。

  平角兩倍成周角,小于直角叫銳角。

  鈍角界于直平間,平周之間叫優(yōu)角。

  和為直角叫互余,互為補角和平角。

  證等積或比例線段

  等積或比例線段,多種途徑可以證。

  證等積要改等比,對照圖形看特征。

  共點共線線相交,平行截比把題證。

  三點定型十分像,想法來把相似證。

  圖形明顯不相似,等線段比替換證。

  換后結論能成立,原來命題即得證。

  實在不行用面積,射影角分線也成。

  只要學習肯登攀,手腦并用無不勝。

  解無理方程

  一無一有各一邊,兩無也要放兩邊。

  乘方根號無蹤跡,方程可解無負擔。

  兩無一有相對難,兩次乘方也好辦。

  特殊情況去換元,得解驗根是必然。

  解分式方程

  先約后乘公分母,整式方程轉(zhuǎn)化出。

  特殊情況可換元,去掉分母是出路。

  求得解后要驗根,原留增舍別含糊。

  列方程解應用題

  列方程解應用題,審設列解雙檢答。

  審題弄清已未知,設元直間兩辦法。

  列表畫圖造方程,解方程時守章法。

  檢驗準且合題意,問求同一才作答。

  添加輔助線

  學習幾何體會深,成敗也許一線牽。

  分散條件要集中,常要添加輔助線。

  畏懼心理不要有,其次要把觀念變。

  熟能生巧有規(guī)律,真知灼見靠實踐。

  圖中已知有中線,倍長中線把線連。

  旋轉(zhuǎn)構造全等形,等線段角可代換。

  多條中線連中點,便可得到中位線。

  倘若知角平分線,既可兩邊作垂線。

  也可沿線去翻折,全等圖形立呈現(xiàn)。

  角分線若加垂線,等腰三角形可見。

  角分線加平行線,等線段角位置變。

  已知線段中垂線,連接兩端等線段。

  輔助線必畫虛線,便與原圖聯(lián)系看。

  兩點間距離公式

  同軸兩點求距離,大減小數(shù)就為之。

  與軸等距兩個點,間距求法亦如此。

  平面任意兩個點,橫縱標差先求值。

  差方相加開平方,距離公式要牢記。

  矩形的判定

  任意一個四邊形,三個直角成矩形;

  對角線等互平分,四邊形它是矩形。

  已知平行四邊形,一個直角叫矩形;

  兩對角線若相等,理所當然為矩形。

  菱形的判定

  任意一個四邊形,四邊相等成菱形;

  四邊形的對角線,垂直互分是菱形。

  已知平行四邊形,鄰邊相等叫菱形;

  兩對角線若垂直,順理成章為菱形。

【初中數(shù)學基礎知識點總結】相關文章:

初中數(shù)學基礎知識點總結03-11

初中數(shù)學知識點之基礎知識點總結03-11

初中數(shù)學幾何知識點總結01-20

初中化學基礎知識點03-13

初中語文基礎知識點02-16

初中數(shù)學公式知識點總結01-16

(優(yōu))初中數(shù)學幾何知識點總結03-11

初中數(shù)學知識點總結歸納04-11

機械基礎知識點總結04-02

初中數(shù)學知識點總結15篇12-13