初二數(shù)學(xué)知識點之軸對稱
初二數(shù)學(xué)知識點之軸對稱1
經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。
軸對稱圖形的對稱軸,是任何一對對應(yīng)點所連接線段的垂直平分線。
線段垂直平分線上的點與這條線段兩個端點的距離相等。
由一個平面圖形得到它的軸對稱圖形叫做軸對稱變換。
等腰三角形的性質(zhì):
等腰三角形的兩個底角相等。(等邊對等角)
等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)(附:頂角+2底角=180°)
如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)
有一個角是60°的等腰三角形是等邊三角形。
在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半。
初二數(shù)學(xué)知識點之軸對稱2
一、軸對稱圖形
1.把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關(guān)于這條直線(成軸)對稱。
2.把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關(guān)于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點是對應(yīng)點,叫做對稱點
3、軸對稱圖形和軸對稱的區(qū)別與聯(lián)系
4.軸對稱與軸對稱圖形的性質(zhì)
①關(guān)于某直線對稱的兩個圖形是全等形。
、谌绻麅蓚圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點所連線段的垂直平分線。
、圯S對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的垂直平分線。
、苋绻麅蓚圖形的對應(yīng)點連線被同條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。
⑤兩個圖形關(guān)于某條直線成軸對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上。
二、線段的垂直平分線
1.定義:經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。
2.性質(zhì):線段垂直平分線上的點與這條線段的兩個端點的距離相等
3.判定:與一條線段兩個端點距離相等的.點,在線段的垂直平分線上
三、用坐標表示軸對稱小結(jié):
1.在平面直角坐標系中
、訇P(guān)于x軸對稱的點橫坐標相等,縱坐標互為相反數(shù);
②關(guān)于y軸對稱的點橫坐標互為相反數(shù),縱坐標相等;
、坳P(guān)于原點對稱的點橫坐標和縱坐標互為相反數(shù);
、芘cX軸或Y軸平行的直線的兩個點橫(縱)坐標的關(guān)系;
、蓐P(guān)于與直線X=C或Y=C對稱的坐標
點(x,y)關(guān)于x軸對稱的點的坐標為_(x,-y)_____.
點(x,y)關(guān)于y軸對稱的點的坐標為___(-x,y)___.
2.三角形三條邊的垂直平分線相交于一點,這個點到三角形三個頂點的距離相等
四、(等腰三角形)知識點回顧
1.等腰三角形的性質(zhì)
①.等腰三角形的兩個底角相等。(等邊對等角)
、.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)
理解:已知等腰三角形的一線就可以推知另兩線。
2、等腰三角形的判定:
如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)
五、(等邊三角形)知識點回顧
1.等邊三角形的性質(zhì):
等邊三角形的三個角都相等,并且每一個角都等于600。
2、等邊三角形的判定:
、偃齻角都相等的三角形是等邊三角形。
、谟幸粋角是600的等腰三角形是等邊三角形。
3.在直角三角形中,如果一個銳角等于300,那么它所對的直角邊等于斜邊的一半。
【初二數(shù)學(xué)知識點之軸對稱】相關(guān)文章:
初二數(shù)學(xué)軸對稱知識點總結(jié)07-04
初二數(shù)學(xué)軸對稱圖形知識點復(fù)習08-09