初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
總結(jié)就是對(duì)一個(gè)時(shí)期的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的回顧和分析的書面材料,它能使我們及時(shí)找出錯(cuò)誤并改正,不如我們來制定一份總結(jié)吧。但是卻發(fā)現(xiàn)不知道該寫些什么,下面是小編收集整理的初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎閱讀,希望大家能夠喜歡。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
一、重要概念
1.數(shù)的分類及概念數(shù)系表:
說明:分類的原則:1)相稱(不重、不漏) 2)有標(biāo)準(zhǔn)
2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x0)
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)數(shù)均為0。
3.倒數(shù):
、俣x及表示法
、谛再|(zhì):A.a1/a(a1);B.1/a中,aa1時(shí),1/aD.積為1。
4.相反數(shù):
、俣x及表示法
、谛再|(zhì):A.a0時(shí),aB.a與-a在數(shù)軸上的位置;C.和為0,商為-1。
5.數(shù)軸:
、俣x(三要素)
、谧饔茫篈.直觀地比較實(shí)數(shù)的大小;B.明確體現(xiàn)絕對(duì)值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)-自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7.絕對(duì)值:
①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對(duì)值頂?shù)腵幾何意義是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。
、讴│0,符號(hào)││是非負(fù)數(shù)的標(biāo)志;
、蹟(shù)a的絕對(duì)值只有一個(gè);
④處理任何類型的題目,只要其中有││出現(xiàn),其關(guān)鍵一步是去掉││符號(hào)。
二、實(shí)數(shù)的運(yùn)算
1.運(yùn)算法則(加、減、乘、除、乘方、開方)
2.運(yùn)算定律(五個(gè)-加法[乘法]交換律、結(jié)合律;[乘法對(duì)加法的]
分配律)
3.運(yùn)算順序:A.高級(jí)運(yùn)算到低級(jí)運(yùn)算;B.(同級(jí)運(yùn)算)從左
到右(如5 C.(有括號(hào)時(shí))由小到中到大。
三、應(yīng)用舉例(略)
附:典型例題
1.已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│=b-a.
2.已知:a-b=-2且ab0,(a0,b0),判斷a、b的符號(hào)。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
特別地,二次函數(shù)(以下稱函數(shù))y=ax+bx+c。
當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax+bx+c=0。
此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
1.二次函數(shù)y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。當(dāng)h>0時(shí),y=a(x-h)的圖象可由拋物線y=ax向右平行移動(dòng)h個(gè)單位得到。
當(dāng)h<0時(shí),則向xxx移動(dòng)|h|個(gè)單位得到。
當(dāng)h>0,k>0時(shí),將拋物線y=ax向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)+k的圖象。
當(dāng)h>0,k<0時(shí),將拋物線y=ax向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。
當(dāng)h<0,k>0時(shí),將拋物線向xxx移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。
當(dāng)h<0,k<0時(shí),將拋物線向xxx移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。
因此,研究拋物線y=ax+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)+k的'形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。
2.拋物線y=ax+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b]/4a)。
3.拋物線y=ax+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小。
4.拋物線y=ax+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c)。
(2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x-x|。
當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0。
5.拋物線y=ax+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b)/4a。
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值。
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:y=ax+bx+c(a≠0)。
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)+k(a≠0)。
(3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x)(x-x)(a≠0)。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
初三數(shù)學(xué)知識(shí)點(diǎn)第一章二次根式
1二次根式:形如a(a0)的式子為二次根式;性質(zhì):a(a0)是一個(gè)非負(fù)數(shù);aaa0;
2a2aa0。
2二次根式的乘除:ababa0,b0;
aaa0,b0。bb3二次根式的加減:二次根式加減時(shí),先將二次根式華為最簡(jiǎn)二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并。
4海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc。2第二章一元二次方程
1一元二次方程:等號(hào)兩邊都是整式,且只有一個(gè)未知數(shù),未知數(shù)的最高次是2的方程。
2一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然后兩邊開方;
bb24ac公式法:x
2a因式分解法:左邊是兩個(gè)因式的乘積,右邊為零。3一元二次方程在實(shí)際問題中的應(yīng)用
4韋達(dá)定理:設(shè)x1,x2是方程ax2bxc0的`兩個(gè)根,那么有x1x2,x1x2第三章旋轉(zhuǎn)1圖形的旋轉(zhuǎn)
旋轉(zhuǎn):一個(gè)圖形繞某一點(diǎn)轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;
對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角旋轉(zhuǎn)前后的圖形全等。
2中心對(duì)稱:一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180度,和另一個(gè)圖
形重合,則兩個(gè)圖形關(guān)于這個(gè)點(diǎn)中心對(duì)稱;
中心對(duì)稱圖形:一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180度后得到的
圖形能夠和原來的圖形重合,則說這個(gè)圖形是中心對(duì)稱圖形;
3關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)第四章圓
1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義2垂直于弦的直徑
圓是軸對(duì)稱圖形,任何一條直徑所在的直線都是它
的對(duì)稱軸;
垂直于弦的直徑平分弦,并且平方弦所對(duì)的兩條;平分弦的直徑垂直弦,并且平分弦所對(duì)的兩條弧。3弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所
baca對(duì)的弦也相等。
4圓周角
在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等
于這條弧所對(duì)的圓心角的一半;
半圓(或直徑)所對(duì)的圓周角是直角,90度的圓周角
所對(duì)的弦是直徑。
5點(diǎn)和圓的位置關(guān)系點(diǎn)在
dr
點(diǎn)在圓上d=r點(diǎn)在圓內(nèi)d相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角。
三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,
圓心是三角形的三條角平分線的交點(diǎn),為三角形的內(nèi)心。
7圓和圓的位置關(guān)系
外離d>R+r外切d=R+r相交R-r第五章概率初步
1概率意義:在大量重復(fù)試驗(yàn)中,事件A發(fā)生的頻率某個(gè)常數(shù)p附近,則常數(shù)p叫做事件A的概率。
2用列舉法求概率
一般的,在一次試驗(yàn)中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=
mnm穩(wěn)定在n3用頻率去估計(jì)概率
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
直角三角形的判定方法:
判定1:定義,有一個(gè)角為90°的三角形是直角三角形。
判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的'三邊a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一個(gè)三角形30°內(nèi)角所對(duì)的邊是某一邊的一半,則這個(gè)三角形是以這條長(zhǎng)邊為斜邊的直角三角形。
判定4:兩個(gè)銳角互為余角(兩角相加等于90°)的三角形是直角三角形。
判定5:若兩直線相交且它們的斜率之積互為負(fù)倒數(shù),則兩直線互相垂直。那么
判定6:若在一個(gè)三角形中一邊上的中線等于其所在邊的一半,那么這個(gè)三角形為直角三角形。
判定7:一個(gè)三角形30°角所對(duì)的邊等于這個(gè)三角形斜邊的一半,則這個(gè)三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
第21章二次根式知識(shí)框圖
理解并掌握下列結(jié)論:
。1)是非負(fù)數(shù);(2);(3);
I.二次根式的定義和概念:
1、定義:一般地,形如√ā(a≥0)的代數(shù)式叫做二次根式。當(dāng)a>0時(shí),√a表示a的算數(shù)平方根,√0=0
2、概念:式子√。╝≥0)叫二次根式。√。╝≥0)是一個(gè)非負(fù)數(shù)。
II.二次根式√ā的簡(jiǎn)單性質(zhì)和幾何意義
1)a≥0;√ā≥0[雙重非負(fù)性]
2)(√。2=a(a≥0)[任何一個(gè)非負(fù)數(shù)都可以寫成一個(gè)數(shù)的平方的形式]3)√(a^2+b^2)表示平面間兩點(diǎn)之間的距離,即勾股定理推論。
IV.二次根式的乘法和除法
1運(yùn)算法則
√a√b=√ab(a≥0,b≥0)
√a/b=√a/√b(a≥0,b>0)
二數(shù)二次根之積,等于二數(shù)之積的二次根。2共軛因式
如果兩個(gè)含有根式的代數(shù)式的積不再含有根式,那么這兩個(gè)代數(shù)式叫做共軛因式,也稱互為有理化根式。
V.二次根式的加法和減法
1同類二次根式
一般地,把幾個(gè)二次根式化為最簡(jiǎn)二次根式后,如果它們的被開方數(shù)相同,就把這幾個(gè)二次根式叫做同類二次根式。2合并同類二次根式
把幾個(gè)同類二次根式合并為一個(gè)二次根式就叫做合并同類二次根式。
3二次根式加減時(shí),可以先將二次根式化為最簡(jiǎn)二次根式,再將被開方數(shù)相同的進(jìn)行合并
、.二次根式的混合運(yùn)算
1確定運(yùn)算順序2靈活運(yùn)用運(yùn)算定律3正確使用乘法公式4大多數(shù)分母有理化要及時(shí)
5在有些簡(jiǎn)便運(yùn)算中也許可以約分,不要盲目有理化
VII.分母有理化
分母有理化有兩種方法I.分母是單項(xiàng)式
如:√a/√b=√a×√b/√b×√b=√ab/b
II.分母是多項(xiàng)式要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-bIII.分母是多項(xiàng)式要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b第22章一元二次方程知識(shí)框圖
旋轉(zhuǎn)的定義
旋轉(zhuǎn)對(duì)稱中心
大于360°)。
把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種
圖形叫做旋轉(zhuǎn)對(duì)稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對(duì)稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,
也就是說:
、僦行膶(duì)稱圖形:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個(gè)圖形成中心對(duì)稱圖形。
、谥行膶(duì)稱:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說,這兩個(gè)圖形成中心對(duì)稱。
中心對(duì)稱圖形
正(2N)邊形(N為大于1的正整數(shù)),線段,矩形,菱形,圓
只是中心對(duì)稱圖形
平行四邊形等.第24章圓知識(shí)框圖
圓和點(diǎn)的位置關(guān)系:以點(diǎn)P與圓O的為例(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO<r。
直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。以直線AB與圓O為例(設(shè)OP⊥AB于P,則PO是AB到圓心的距離):AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO<r。
兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r。
圓的平面幾何性質(zhì)和定理
一有關(guān)圓的基本性質(zhì)與定理
、艌A的確定:不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
圓的對(duì)稱性質(zhì):圓是軸對(duì)稱圖形,其對(duì)稱軸是任意一條通過圓心的直線。圓也是中心對(duì)稱圖形,其對(duì)稱中心是圓心。垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的2條弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的2條弧。
、朴嘘P(guān)圓周角和圓心角的性質(zhì)和定理在同圓或等圓中,如果兩個(gè)圓心角,兩個(gè)圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。
⑶有關(guān)外接圓和內(nèi)切圓的性質(zhì)和定理
、僖粋(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形三個(gè)頂點(diǎn)距離相等;
、趦(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形三邊距離相等。③S三角=1/2*△三角形周長(zhǎng)*內(nèi)切圓半徑
、軆上嗲袌A的連心線過切點(diǎn)(連心線:兩個(gè)圓心相連的線段)
⑤圓O中的弦PQ的中點(diǎn)M,過點(diǎn)M任作兩弦AB,CD,弦AD與BC分別交PQ于X,Y,則M為XY之中點(diǎn)。
〖有關(guān)切線的性質(zhì)和定理〗
圓的切線垂直于過切點(diǎn)的半徑;經(jīng)過半徑的一端,并且垂直于這條半徑的.直線,是這個(gè)圓的切線。
切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線。
切線的性質(zhì):(1)經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線。(2)經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心。(3)圓的切線垂直于經(jīng)過切點(diǎn)的半徑。
切線長(zhǎng)定理:從圓外一點(diǎn)到圓的兩條切線的長(zhǎng)相等,那點(diǎn)與圓心的連線平分切線的夾角!加嘘P(guān)圓的計(jì)算公式〗
1.圓的周長(zhǎng)C=2πr=πd2.圓的面積S=πr^2;3.扇形弧長(zhǎng)l=nπr/1804.扇形面積S=π(R^2-r^2)5.圓錐側(cè)面積S=πrl
第25章概率初步知識(shí)框圖
第26章二次函數(shù)
知識(shí)框圖
定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:
一般式:y=ax^2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù)。頂點(diǎn)式:y=a(x-h)^2+k
交點(diǎn)式(與x軸):y=a(x-x1)(x-x2)
重要概念:(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a
1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=-b/2a。
對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為P(-b/2a,(4ac-b)/4a)當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b-4ac=0時(shí),P在x軸上。3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;因?yàn)槿魧?duì)稱軸在左邊則對(duì)稱軸小于0,也就是-b/2a0,所以b/2a要小于0,所以a、b要異號(hào)
事實(shí)上,b有其自身的幾何意義:拋物線與y軸的交點(diǎn)處的該拋物線切線的函數(shù)解析式(一次函數(shù))的斜率k的值?赏ㄟ^對(duì)二次函數(shù)求導(dǎo)得到。5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。拋物線與y軸交于(0,c)6.拋物線與x軸交點(diǎn)個(gè)數(shù)
Δ=b-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。Δ=b-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。_______
Δ=b-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
當(dāng)a>0時(shí),函數(shù)在x=-b/2a處取得最小值f(-b/2a)=4ac-b/4a;在{x|x-b/2a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y≥4ac-b/4a}相反不變
當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸,這時(shí),函數(shù)是偶函數(shù),解析式變形為y=ax+c(a≠0)解析式:
第27章相似知識(shí)框圖
相似三角形的認(rèn)識(shí)
對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形。(similartriangles);橄嗨菩蔚娜切谓凶鱿嗨迫切
相似三角形的判定方法
根據(jù)相似圖形的特征來判斷。(對(duì)應(yīng)邊成比例,對(duì)應(yīng)角相等)
1.平行于三角形一邊的直線(或兩邊的延長(zhǎng)線)和其他兩邊相交,所構(gòu)成的三角形與原三角形相似;
。ㄟ@是相似三角形判定的引理,是以下判定方法證明的基礎(chǔ)。這個(gè)引理的證明方法需要平行線分線段成比例的證明)
2.如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似;
直角三角形相似判定定理
1.斜邊與一條直角邊對(duì)應(yīng)成比例的兩直角三角形相似。
2.直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原直角三角形相似,并且分成的兩個(gè)直角三角形也相似。射影定理
三角形相似的判定定理推論
推論一:頂角或底角相等的那個(gè)的兩個(gè)等腰三角形相似。推論二:腰和底對(duì)應(yīng)成比例的兩個(gè)等腰三角形相似。推論三:有一個(gè)銳角相等的兩個(gè)直角三角形相似。
推論四:直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形都相似。
推論五:如果一個(gè)三角形的兩邊和其中一邊上的中線與另一個(gè)三角形的對(duì)應(yīng)部分成比例,那么這兩個(gè)三角形相似。
推論六:如果一個(gè)三角形的兩邊和第三邊上的中線與另一個(gè)三角形的對(duì)應(yīng)部分成比例,那么這兩個(gè)三角形相似。
相似三角形的性質(zhì)
1.相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比。
2.相似三角形周長(zhǎng)的比等于相似比。3.相似三角形面積的比等于相似比的平方。
相似三角形的特例
能夠完全重合的兩個(gè)三角形叫做全等三角形。(congruenttriangles)全等三角形是相似三角形的特例。全等三角形的特征:1.形狀完全相同,相似比是k=1。
全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。
因此,相似三角形包括全等三角形。全等三角形的定義
能夠完全重合的兩個(gè)三角形稱為全等三角形。(注:全等三角形是相似三角形中的特殊情況)當(dāng)兩個(gè)三角形完全重合時(shí),互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn),互相重合的邊叫做對(duì)應(yīng)邊,互相重合的角叫做對(duì)應(yīng)角。
由此,可以得出:全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。
(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊;(2)全等三角形對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角;(3)有公共邊的,公共邊一定是對(duì)應(yīng)邊;(4)有公共角的,角一定是對(duì)應(yīng)角;(5)有對(duì)頂角的,對(duì)頂角一定是對(duì)應(yīng)角;三角形全等的判定公理及推論
1、三組對(duì)應(yīng)邊分別相等的兩個(gè)三角形全等(簡(jiǎn)稱SSS或“邊邊邊”),這一條也說明了三角形具有穩(wěn)定性的原因。
2、有兩邊及其夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(SAS或“邊角邊”)。3、有兩角及其夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(ASA或“角邊角”)。由3可推到
4、有兩角及一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(AAS或“角角邊”)
5、直角三角形全等條件有:斜邊及一直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(HL或“斜邊,直角邊”)
所以,SSS,SAS,ASA,AAS,HL均為判定三角形全等的定理。
注意:在全等的判定中,沒有AAA和SSA,這兩種情況都不能唯一確定三角形的形狀。A是英文角的縮寫(angle),S是英文邊的縮寫(side)。全等三角形的性質(zhì)
1、全等三角形的對(duì)應(yīng)角相等、對(duì)應(yīng)邊相等。2、全等三角形的對(duì)應(yīng)邊上的高對(duì)應(yīng)相等。3、全等三角形的對(duì)應(yīng)角平分線相等。4、全等三角形的對(duì)應(yīng)中線相等。5、全等三角形面積相等。6、全等三角形周長(zhǎng)相等。
7、三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(SSS)
8、兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等。(SAS)9、兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(ASA)
10、兩個(gè)角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(AAS)11、斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。(HL)全等三角形的運(yùn)用
1、性質(zhì)中三角形全等是條件,結(jié)論是對(duì)應(yīng)角、對(duì)應(yīng)邊相等。而全等的判定卻剛好相反。2、利用性質(zhì)和判定,學(xué)會(huì)準(zhǔn)確地找出兩個(gè)全等三角形中的對(duì)應(yīng)邊與對(duì)應(yīng)角是關(guān)鍵。在寫兩個(gè)三角形全等時(shí),一定把對(duì)應(yīng)的頂點(diǎn),角、邊的順序?qū)懸恢,為找?duì)應(yīng)邊,角提供方便。3,當(dāng)圖中出現(xiàn)兩個(gè)以上等邊三角形時(shí),應(yīng)首先考慮用SAS找全等三角形。
第28章銳角三角函數(shù)
知識(shí)框圖
第29章投影與視圖知識(shí)框圖
代數(shù)重點(diǎn)難點(diǎn)總結(jié)
方程(組)
一、基本概念
1.方程、方程的解(根)、方程組的解、解方程(組)二、一元二次方程1.定義及一般形式:
2.解法:⑴直接開平方法(注意特征)⑵配方法(注意步驟推倒求根公式)⑶公式法:⑷因式分解法(特征:左邊=0)3.根的判別式:b24ac
bc4.根與系數(shù)的關(guān)系(韋達(dá)定理):x1+x2=,x1x2=
aa逆定理:若,則以x1,x2為根的一元二次方程是:a(x-x1)(x-x2)=0。5.常用等式:
三、可化為一元二次方程的方程1.分式方程⑴定義
、苹舅枷耄喝シ帜
、腔窘夥ǎ孩偃シ帜阜á趽Q元法(如,)⑷驗(yàn)根及方法2.無理方程⑴定義
、苹舅枷耄悍帜赣欣砘
、腔窘夥ǎ孩俪朔椒ǎㄗ⒁饧记桑。。趽Q元法(例,)⑷驗(yàn)根及方法
3.簡(jiǎn)單的二元二次方程組
由一個(gè)二元一次方程和一個(gè)二元二次方程組成的二元二次方程組都可用代入法解。四、列方程解應(yīng)用題一概述
列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實(shí)際的一個(gè)重要方面。其具體步驟是:
、艑忣}。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。
、圃O(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。
、怯煤粗獢(shù)的代數(shù)式表示相關(guān)的量。
、葘ふ蚁嗟汝P(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個(gè)數(shù)與方程個(gè)數(shù)是相同的。⑸解方程及檢驗(yàn)。⑹答案。
綜上所述,列方程解應(yīng)用題實(shí)質(zhì)是先把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題(設(shè)元、列方程),在由數(shù)學(xué)問題的解決而導(dǎo)致實(shí)際問題的解決(列方程、寫出答案)。在這個(gè)過程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。
函數(shù)及其圖象
★重難點(diǎn)★二次函數(shù)的圖象和性質(zhì)。一、平面直角坐標(biāo)系
1.各象限內(nèi)點(diǎn)的坐標(biāo)的特點(diǎn)2.坐標(biāo)軸上點(diǎn)的坐標(biāo)的特點(diǎn)
3.關(guān)于坐標(biāo)軸、原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特點(diǎn)4.坐標(biāo)平面內(nèi)點(diǎn)與有序?qū)崝?shù)對(duì)的對(duì)應(yīng)關(guān)系二、函數(shù)
1.表示方法:⑴解析法;⑵列表法;⑶圖象法。
2.確定自變量取值范圍的原則:⑴使代數(shù)式有意義;⑵使實(shí)際問題有意義。
3.畫函數(shù)圖象:⑴列表;⑵描點(diǎn);⑶連線。三、二次函數(shù)(定義→圖象→性質(zhì))⑴定義:
、茍D象:拋物線(用描點(diǎn)法畫出:先確定頂點(diǎn)、對(duì)稱軸、開口方向,再對(duì)稱地描點(diǎn))。用配方法變?yōu),則頂點(diǎn)為(h,k);對(duì)稱軸為直線x=h;a>0時(shí),開口向上;a0時(shí),在對(duì)稱軸左側(cè),右側(cè);a
四邊形
★重難點(diǎn)★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。分類表:
1.一般性質(zhì)(角)⑴內(nèi)角和:360°
⑵順次連結(jié)各邊中點(diǎn)得平行四邊形。
推論1:順次連結(jié)對(duì)角線相等的四邊形各邊中點(diǎn)得菱形。
推論2:順次連結(jié)對(duì)角線互相垂直的四邊形各邊中點(diǎn)得矩形。⑶外角和:360°2.特殊四邊形
、叛芯克鼈兊囊话惴椒:
⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定⑶判定步驟:四邊形→平行四邊形→矩形→正方形┗→菱形↑
、葘(duì)角線的紐帶作用:3.對(duì)稱圖形
、泡S對(duì)稱(定義及性質(zhì));⑵中心對(duì)稱(定義及性質(zhì))4.有關(guān)定理:①平行線等分線段定理及其推論1、2②三角形、梯形的中位線定理
、燮叫芯間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結(jié)四邊形的對(duì)角線;②梯形中!捌揭埔谎、“平移對(duì)角線”、“作高”、“連結(jié)頂點(diǎn)和對(duì)腰中點(diǎn)并延長(zhǎng)與底邊相交”轉(zhuǎn)化為三角形。6.作圖:任意等分線段。
第十章圓
★重難點(diǎn)★①圓的重要性質(zhì);②直線與圓、圓與圓的位置關(guān)系;③與圓有關(guān)的角的定理;④與圓有關(guān)的比例線段定理。一、圓的基本性質(zhì)1.圓的定義
2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。3.“三點(diǎn)定圓”定理4.垂徑定理及其推論
5.“等對(duì)等”定理及其推論
5.與圓有關(guān)的角:⑴圓心角定義(等對(duì)等定理)⑵圓周角定義(圓周角定理,與圓心角的關(guān)系)⑶弦切角定義(弦切角定理)二、直線和圓的位置關(guān)系
1.三種位置及判定與性質(zhì):相離、相切、相交2.切線的性質(zhì)(重點(diǎn))
3.切線的判定定理(重點(diǎn))。圓的切線的判定有⑴⑵
4.切線長(zhǎng)定理
三、圓換圓的位置關(guān)系
1.五種位置關(guān)系及判定與性質(zhì):(重點(diǎn):相切)外離、外切、相交、內(nèi)切、內(nèi)含
2.相切(交)兩圓連心線的性質(zhì)定理3.兩圓的公切線:⑴定義⑵性質(zhì)四、與圓有關(guān)的比例線段1.相交弦定理2.切割線定理
五、與和正多邊形
1.圓的內(nèi)接、外切多邊形(三角形、四邊形)2.三角形的外接圓、內(nèi)切圓及性質(zhì)3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì)4.正多邊形及計(jì)算中心角:
內(nèi)角的一半:(解Rt△OAM可求出相關(guān)元素等)六、一組計(jì)算公式1.圓周長(zhǎng)公式2.圓面積公式3.扇形面積公式4.弧長(zhǎng)公式
5.弓形面積的計(jì)算方法
6.圓柱、圓錐的側(cè)面展開圖及相關(guān)計(jì)算七、點(diǎn)的軌跡六條基本軌跡八、有關(guān)作圖
1.作三角形的外接圓、內(nèi)切圓2.平分已知弧
3.作已知兩線段的比例中項(xiàng)4.等分圓周:4、8;6、3等分九、基本圖形十、重要輔助線1.作半徑
2.見弦往往作弦心距
3.見直徑往往作直徑上的圓周角4.切點(diǎn)圓心莫忘連
5.兩圓相切公切線(連心線)6.兩圓相交公共弦
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
字母表示數(shù)
01、本節(jié)核心
字母可以表示任何數(shù)!
02、用什么樣的字母表示數(shù)?
26個(gè)字母任何一個(gè)其實(shí)都是可以的,因?yàn)橛脕肀硎救魏我粋(gè)數(shù)時(shí),它只是需要一個(gè)符號(hào)而已。但是一般情況下,我們xxxx表示。
03、字母表示數(shù)有何意義?
可以簡(jiǎn)明地表達(dá)問題中的數(shù)量關(guān)系
舉個(gè)栗子~
第一個(gè),圓的半徑可以表示為r,那么該圓的面積是Πr2,周長(zhǎng)就是2Πr
第二個(gè),我們?cè)诘谝徽聦W(xué)的,棱柱,還記得嗎?
n棱柱,有n+2個(gè)面,2n個(gè)頂點(diǎn),3n條
04、用字母表示數(shù)要注意四點(diǎn)
1、在同一個(gè)問題中,不同的量用不同的字母表示。比如說,在長(zhǎng)方形中,如果長(zhǎng)用a表示,寬就不能用a表示了,可以用b表示,不然就會(huì)引起混亂。
2、在特定的情況下,有些字母表示的內(nèi)容有它特定的意義。比如說,在計(jì)算面積和周長(zhǎng)時(shí),習(xí)慣用s表示面積,c表示周長(zhǎng),h表示高。
3、用字母表示數(shù)時(shí),數(shù)字和字母,字母和字母之間的乘號(hào)可以記作_·_或者省略不寫。
4、用字母表示數(shù)需要寫單位名稱時(shí),如果是乘法和分?jǐn)?shù)的形式,可以直接在后面寫上單位名稱,如果出現(xiàn)了+、—,請(qǐng)加上小括號(hào)再寫單位。比如說,(a+5)米和5/a米的區(qū)別。
代數(shù)式
01、代數(shù)式的概念
用運(yùn)算符號(hào)(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是代數(shù)式。
注意:
、俅鷶(shù)式中除了含有數(shù)、字母和運(yùn)算符號(hào)外,還可以有括號(hào);
、诖鷶(shù)式中不含有“=、>、<、≠”等符號(hào)。等式和不等式都不是代數(shù)式,但等號(hào)和不等號(hào)兩邊的式子一般都是代數(shù)式;
、鄞鷶(shù)式中的字母所表示的數(shù)必須要使這個(gè)代數(shù)式有意義,是實(shí)際問題的要符合實(shí)際問題的意義。
01、代數(shù)式的書寫格式
、俅鷶(shù)式中出現(xiàn)乘號(hào),通常省略不寫,如vt;
、跀(shù)字與字母相乘時(shí),數(shù)字應(yīng)寫在字母前面,如4a;
③帶分?jǐn)?shù)與字母相乘時(shí),應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù);
、軘(shù)字與數(shù)字相乘,一般仍用“×”號(hào),即“×”號(hào)不省略;
、菰诖鷶(shù)式中出現(xiàn)除法運(yùn)算時(shí),一般寫成分?jǐn)?shù)的形式;注意:分?jǐn)?shù)線具有“÷”號(hào)和括號(hào)的雙重作用。
⑥在表示和(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面。
定義:?jiǎn)雾?xiàng)式和多項(xiàng)式統(tǒng)稱為整式。
①單項(xiàng)式:都是數(shù)字和字母乘積的形式的代數(shù)式叫做單項(xiàng)式。單項(xiàng)式中,所有字母的指數(shù)之和叫做這個(gè)單項(xiàng)式的次數(shù);數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的系數(shù)。
注意:
1、單獨(dú)的.一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式;
2、單獨(dú)一個(gè)非零數(shù)的次數(shù)是0;
3、當(dāng)單項(xiàng)式的系數(shù)為1或—1時(shí),這個(gè)“1”應(yīng)省略不寫,如—ab的系數(shù)是—1,a3b的系數(shù)是1。
、诙囗(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng);次數(shù)最高的項(xiàng)的次數(shù)叫做多項(xiàng)式的次數(shù)。
整式的加減
01、什么是同類項(xiàng)
1、同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。
2、注意:
、偻愴(xiàng)有兩個(gè)條件:a、所含字母相同;b、相同字母的指數(shù)也相同。
、谕愴(xiàng)與系數(shù)無關(guān),與字母的排列順序無關(guān);
、蹘讉(gè)常數(shù)項(xiàng)也是同類項(xiàng)。
02合并同類項(xiàng)法則
把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
03去括號(hào)法則
①根據(jù)去括號(hào)法則去括號(hào):
括號(hào)前面是“+”號(hào),把括號(hào)和它前面的“+”號(hào)去掉,括號(hào)里各項(xiàng)都不改變符號(hào);括號(hào)前面是“-”號(hào),把括號(hào)和它前面的“-”號(hào)去掉,括號(hào)里各項(xiàng)都改變符號(hào)。
、诟鶕(jù)分配律去括號(hào):
括號(hào)前面是“+”號(hào)看成+1,括號(hào)前面是“-”號(hào)看成—1,根據(jù)乘法的分配律用+1或—1去乘括號(hào)里的每一項(xiàng)以達(dá)到去括號(hào)的目的。
04添括號(hào)法則
添“+”號(hào)和括號(hào),添到括號(hào)里的各項(xiàng)符號(hào)都不改變;添“-”號(hào)和括號(hào),添到括號(hào)里的各項(xiàng)符號(hào)都要改變。
05整式的運(yùn)算:
整式的加減法:(1)去括號(hào);(2)合并同類項(xiàng)。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
1、圖形的相似
相似多邊形的對(duì)應(yīng)邊的比值相等,對(duì)應(yīng)角相等;
兩個(gè)多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比值也相等,那么這兩個(gè)多邊形相似;
相似比:相似多邊形對(duì)應(yīng)邊的比值。
2、相似三角形
判定:
平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;
如果兩個(gè)三角形的三組對(duì)應(yīng)邊的比相等,那么這兩個(gè)三角形相似;
如果兩個(gè)三角形的兩組對(duì)應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個(gè)三角形相似;
如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的'兩個(gè)角對(duì)應(yīng)相等,那么兩個(gè)三角形相似。
3相似三角形的周長(zhǎng)和面積
相似三角形(多邊形)的周長(zhǎng)的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
4位似
位似圖形:兩個(gè)多邊形相似,而且對(duì)應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對(duì)應(yīng)邊互相平行,這樣的兩個(gè)圖形叫位似圖形,相交的點(diǎn)叫位似中心。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
1、弧長(zhǎng)公式
n°的圓心角所對(duì)的弧長(zhǎng)l的計(jì)算公式為L(zhǎng)=nπr/180
2、扇形面積公式,其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長(zhǎng).
S=﹙n/360﹚πR2=1/2×lR
3、圓錐的側(cè)面積,其中l(wèi)是圓錐的母線長(zhǎng),r是圓錐的`地面半徑.
S=1/2×l×2πr=πrl
4、弦切角定理
弦切角:圓的切線與經(jīng)過切點(diǎn)的弦所夾的角,叫做弦切角.
弦切角定理:弦切角等于弦與切線夾的弧所對(duì)的圓周角.
一、選擇題
1.(20xxo珠海,第4題3分)已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側(cè)面積為()
A.24πcm2B.36πcm2C.12cm2D.24cm2
考點(diǎn):圓柱的計(jì)算.
分析:圓柱的側(cè)面積=底面周長(zhǎng)×高,把相應(yīng)數(shù)值代入即可求解.
解答:解:圓柱的側(cè)面積=2π×3×4=24π.
故選A.
點(diǎn)評(píng):本題考查了圓柱的計(jì)算,解題的關(guān)鍵是弄清圓柱的側(cè)面積的計(jì)算方法.
2.(20xxo廣西賀州,第11題3分)如圖,以AB為直徑的⊙O與弦CD相交于點(diǎn)E,且AC=2,AE=,CE=1.則弧BD的長(zhǎng)是()
A.B.C.D.
考點(diǎn):垂徑定理;勾股定理;勾股定理的逆定理;弧長(zhǎng)的計(jì)算.
分析:連接OC,先根據(jù)勾股定理判斷出△ACE的形狀,再由垂徑定理得出CE=DE,故=,由銳角三角函數(shù)的定義求出∠A的度數(shù),故可得出∠BOC的度數(shù),求出OC的長(zhǎng),再根據(jù)弧長(zhǎng)公式即可得出結(jié)論.
解答:解:連接OC,
∵△ACE中,AC=2,AE=,CE=1,
∴AE2+CE2=AC2,
∴△ACE是直角三角形,即AE⊥CD,
∵sinA==,
∴∠A=30°,
∴∠COE=60°,
∴=sin∠COE,即=,解得OC=,
∵AE⊥CD,
∴=,
∴===.
故選B.
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9
1、二次根式:形如a(a0)的式子為二次根式;性質(zhì):a(a0)是一個(gè)非負(fù)數(shù);a2aa0。
2、二次根式的乘除:ababa0,b0;aaa0,b0。
3、二次根式的加減:二次根式加減時(shí),先將二次根式華為最簡(jiǎn)二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并。
4、海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc
第二章一元二次方程
1、一元二次方程:等號(hào)兩邊都是整式,且只有一個(gè)未知數(shù),未知數(shù)的最高次是2的方程。
2、一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然后兩邊開方;
bb24ac公式法:x2a因式分解法:左邊是兩個(gè)因式的乘積,右邊為零。
3、一元二次方程在實(shí)際問題中的應(yīng)用
4、韋達(dá)定理:設(shè)x1,x2是方程ax2bxc0的兩個(gè)根,那么有x1x2,x1x2
第三章旋轉(zhuǎn)
1、圖形的旋轉(zhuǎn)旋轉(zhuǎn):一個(gè)圖形繞某一點(diǎn)轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角旋轉(zhuǎn)前后的圖形全等。
2、中心對(duì)稱:一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180度,和另一個(gè)圖形重合,則兩個(gè)圖形關(guān)于這個(gè)點(diǎn)中心對(duì)稱;
中心對(duì)稱圖形:一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180度后得到的圖形能夠和原來的圖形重合,則說這個(gè)圖形是中心對(duì)稱圖形;
關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)第四章圓
1、圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2、垂直于弦的直徑
圓是軸對(duì)稱圖形,任何一條直徑所在的直線都是它的.對(duì)稱軸;
垂直于弦的直徑平分弦,并且平方弦所對(duì)的兩條弧;平分弦的直徑垂直弦,并且平分弦所對(duì)的兩條弧。
3、弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所baca對(duì)的弦也相等。
4、圓周角
在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;
半圓(或直徑)所對(duì)的圓周角是直角,90度的圓周角所對(duì)的弦是直徑。
5、點(diǎn)和圓的位置關(guān)系點(diǎn)在dr點(diǎn)在圓上d=r點(diǎn)在圓內(nèi)d相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角。
三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線的交點(diǎn),為三角形的內(nèi)心。
6、圓和圓的位置關(guān)系
外離d>R+r外切d=R+r相交R-r
第五章概率初步
1、概率意義:在大量重復(fù)試驗(yàn)中,事件A發(fā)生的頻率某個(gè)常數(shù)p附近,則常數(shù)p叫做事件A的概率。
2、用列舉法求概率
一般的,在一次試驗(yàn)中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=mnm穩(wěn)定在n3用頻率去估計(jì)概率
初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)
1.一元二次方程:在整式方程中,只含個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是的方程叫做一元二次方程.一元二次方程的一般形式是( ).其中( )叫做二次項(xiàng),( )叫做一次項(xiàng),( )叫做常數(shù)項(xiàng);( )叫做二次項(xiàng)的系數(shù),( )叫做一次項(xiàng)的系數(shù).
2.易錯(cuò)知識(shí)辨析:
(1)判斷一個(gè)方程是不是一元二次方程,應(yīng)把它進(jìn)行整理,化成一般形式后再進(jìn)行判斷,注意一元二次方程一般形式中.
(2)用公式法和因式分解的方法解方程時(shí)要先化成一般形式.
(3)用配方法時(shí)二次項(xiàng)系數(shù)要化1。
(4)用直接開平方的方法時(shí)要記得取正、負(fù)。
初三上冊(cè)數(shù)學(xué)?贾R(shí)點(diǎn)
1、必然事件、不可能事件、隨機(jī)事件的區(qū)別
2、概率
一般地,在大量重復(fù)試驗(yàn)中,如果事件A發(fā)生的頻率會(huì)穩(wěn)定在某個(gè)常數(shù)p附近,那么這個(gè)常數(shù)p就叫做事件A的概率(probability),記作P(A)= p.
注意:
(1)概率是隨機(jī)事件發(fā)生的可能性的大小的數(shù)量反映.
(2)概率是事件在大量重復(fù)試驗(yàn)中頻率逐漸穩(wěn)定到的值,即可以用大量重復(fù)試驗(yàn)中事件發(fā)生的頻率去估計(jì)得到事件發(fā)生的概率,但二者不能簡(jiǎn)單地等同.
3、求概率的方法
(1)用列舉法求概率(列表法、畫樹形圖法)
(2)用頻率估計(jì)概率:一大面,可用大量重復(fù)試驗(yàn)中事件發(fā)生頻率來估計(jì)事件發(fā)生的概率.另一方面,大量重復(fù)試驗(yàn)中事件發(fā)生的頻率穩(wěn)定在某個(gè)常數(shù)(事件發(fā)生的概率)附近,說明概率是個(gè)定值,而頻率隨不同試驗(yàn)次數(shù)而有所不同,是概率的近似值,二者不能簡(jiǎn)單地等同。
如何學(xué)好初中數(shù)學(xué)
1、上課以及課前課后
同學(xué)們平時(shí)的學(xué)習(xí)時(shí)間是在課上,但是大家要樹立一個(gè)意識(shí):課前課后也很重要。利用好這些時(shí)間,在配合適當(dāng)?shù)膶W(xué)習(xí)方法,學(xué)好數(shù)學(xué)其實(shí)并不難。
課前:課前預(yù)習(xí)很重要,一方面可以先了解上課知識(shí),課上能跟上老師思路,另一方面標(biāo)記出自己不會(huì)的知識(shí)點(diǎn),課上可以根據(jù)自己的情況側(cè)重去聽。
課上:課上45分鐘,大多數(shù)同學(xué)都很難保證整節(jié)課集中精神,這就要求我們課前一定要預(yù)習(xí),找到自己不會(huì)的知識(shí)點(diǎn),課上盡量理解吸收。還是希望大家課上盡量集中精神,跟隨老師的進(jìn)度了解重點(diǎn)與難點(diǎn),有利于復(fù)習(xí)。
課后:課后的時(shí)間一般用來復(fù)習(xí),大家可以把自己沒有掌握的知識(shí)點(diǎn)復(fù)習(xí)一下,也可以對(duì)本節(jié)所學(xué)知識(shí)進(jìn)行檢測(cè)與鞏固。如果課后復(fù)習(xí)還存在不理解的地方,大家一定要找老師和同學(xué)去問清楚。
有了課前課上課后三個(gè)階段,相信大家數(shù)學(xué)基礎(chǔ)基本差不多了,也希望大家繼續(xù)保持這個(gè)習(xí)慣。
2、適當(dāng)練習(xí)
大家都知道學(xué)習(xí)數(shù)學(xué)最重要的是練習(xí),平時(shí)多做一些基礎(chǔ)題可以鍛煉解題熟練度,多做一些中檔題可以熟悉考試題型,過于困難的題目不建議大家多做,可以嘗試解決了解難度,掌握做題技巧,訓(xùn)練不要盲目,不要鉆牛角尖。做題要學(xué)會(huì)總結(jié),總結(jié)哪些題目經(jīng)常出現(xiàn),這可能是中考?碱}型。有的同學(xué)每天都在做題,輔導(dǎo)書用掉一堆卻沒有提高,這就是盲目做題沒有技巧,沒有總結(jié)。
同學(xué)們?cè)谧鲱}時(shí)多關(guān)注一下解題思路、方法、技巧等,掌握做題思路,總結(jié)做題技巧,這對(duì)考試來說至關(guān)重要考試中時(shí)間最寶貴,掌握了好的思路、方法、技巧,不僅解題速度快,而且也不容易犯錯(cuò)。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10
一、二次函數(shù)概念:
a0)b,c是常數(shù)
1.二次函數(shù)的概念:一般地,形如yax2bxc(a,的函數(shù),叫做二次函數(shù)。這c可以為零.二次函數(shù)的定義域是全體實(shí)里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù)a0,而b,數(shù).
2.二次函數(shù)yax2bxc的結(jié)構(gòu)特征:
、诺忍(hào)左邊是函數(shù),右邊是關(guān)于自變量x的二次式,x的最高次數(shù)是2.b,c是常數(shù),a是二次項(xiàng)系數(shù),b是一次項(xiàng)系數(shù),c是常數(shù)項(xiàng).
、芶,二、二次函數(shù)的基本形式
1.二次函數(shù)基本形式:yax2的性質(zhì):a的絕對(duì)值越大,拋物線的開口越小。
a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上00,00,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減;x0時(shí),y有最小值0.x0時(shí),y隨x的增大而減小;x0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值0.
2.yax2c的性質(zhì):上加下減。
a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上c0,c0,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減小;x0時(shí),y有最小值c.x0時(shí),y隨x的增大而減。粁0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值c.
3.yaxh的性質(zhì):左加右減。
2a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上0h,0h,性質(zhì)xh時(shí),y隨x的增大而增大;xh時(shí),y隨X=hx的增大而減;xh時(shí),y有最小值0.xh時(shí),y隨x的增大而減小;xh時(shí),y隨a02向下X=hx的增大而增大;xh時(shí),y有最大值0.
4.yaxhk的性質(zhì):
a的符號(hào)開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)a0向上h,kh,kX=hxh時(shí),y隨x的增大而增大;xh時(shí),y隨x的增大而減小;xh時(shí),y有最小值k.xh時(shí),y隨x的增大而減。粁h時(shí),y隨a0向下X=hx的增大而增大;xh時(shí),y有最大值k.
三、二次函數(shù)圖象的平移
1.平移步驟:
方法一:
、艑佄锞解析式轉(zhuǎn)化成頂點(diǎn)式y(tǒng)axhk,確定其頂點(diǎn)坐標(biāo)h,k;
、票3謷佄锞yax2的形狀不變,將其頂點(diǎn)平移到h,k處,具體平移方法如下:
向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k
畫草圖時(shí)應(yīng)抓住以下幾點(diǎn):開口方向,對(duì)稱軸,頂點(diǎn),與x軸的交點(diǎn),與y軸的交點(diǎn).
六、二次函數(shù)yax2bxc的性質(zhì)
b4acb2b1.當(dāng)a0時(shí),拋物線開口向上,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,.
2a4a2a當(dāng)xbbb時(shí),y隨x的增大而減小;當(dāng)x時(shí),y隨x的增大而增大;當(dāng)x時(shí),y有最小2a2a2a4acb2值.
4ab4acb2bb2.當(dāng)a0時(shí),拋物線開口向下,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,時(shí),y隨.當(dāng)x2a4a2a2a4acb2bb.x的增大而增大;當(dāng)x時(shí),y隨x的增大而減。划(dāng)x時(shí),y有最大值
2a2a4a
七、二次函數(shù)解析式的表示方法
1.一般式:yax2bxc(a,b,c為常數(shù),a0);
2.頂點(diǎn)式:ya(xh)2k(a,h,k為常數(shù),a0);
3.兩根式:ya(xx1)(xx2)(a0,x1,x2是拋物線與x軸兩交點(diǎn)的橫坐標(biāo)).
注意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數(shù)都可以寫成交點(diǎn)式,只有拋物線與x軸有交點(diǎn),即b24ac0時(shí),拋物線的解析式才可以用交點(diǎn)式表示.二次函數(shù)解析式的這三種形式可以互化.
八、二次函數(shù)的圖象與各項(xiàng)系數(shù)之間的關(guān)系
1.二次項(xiàng)系數(shù)a
二次函數(shù)yax2bxc中,a作為二次項(xiàng)系數(shù),顯然a0.
、女(dāng)a0時(shí),拋物線開口向上,a的值越大,開口越小,反之a(chǎn)的值越小,開口越大;
、飘(dāng)a0時(shí),拋物線開口向下,a的值越小,開口越小,反之a(chǎn)的值越大,開口越大.
總結(jié)起來,a決定了拋物線開口的大小和方向,a的正負(fù)決定開口方向,a的大小決定開口的大。
2.一次項(xiàng)系數(shù)b
在二次項(xiàng)系數(shù)a確定的前提下,b決定了拋物線的對(duì)稱軸.
⑴在a0的前提下,當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對(duì)稱軸在y軸左側(cè);2ab0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的右側(cè).2a⑵在a0的前提下,結(jié)論剛好與上述相反,即當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對(duì)稱軸在y軸右側(cè);2ab0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的左側(cè).2a
總結(jié)起來,在a確定的前提下,b決定了拋物線對(duì)稱軸的位置.
ab的符號(hào)的判定:對(duì)稱軸xb在y軸左邊則ab0,在y軸的右側(cè)則ab0,概括的說就是“左同2a右異”總結(jié):
3.常數(shù)項(xiàng)c
、女(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸上方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為正;
⑵當(dāng)c0時(shí),拋物線與y軸的交點(diǎn)為坐標(biāo)原點(diǎn),即拋物線與y軸交點(diǎn)的縱坐標(biāo)為0;
、钱(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸下方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為負(fù).總結(jié)起來,c決定了拋物線與y軸交點(diǎn)的位置.
b,c都確定,那么這條拋物線就是唯一確定的.總之,只要a,二次函數(shù)解析式的確定:
根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法.用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點(diǎn),選擇適當(dāng)?shù)男问,才能使解題簡(jiǎn)便.一般來說,有如下幾種情況:
1.已知拋物線上三點(diǎn)的坐標(biāo),一般選用一般式;
2.已知拋物線頂點(diǎn)或?qū)ΨQ軸或最大(。┲担话氵x用頂點(diǎn)式;
3.已知拋物線與x軸的兩個(gè)交點(diǎn)的'橫坐標(biāo),一般選用兩根式;
4.已知拋物線上縱坐標(biāo)相同的兩點(diǎn),常選用頂點(diǎn)式.
九、二次函數(shù)圖象的對(duì)稱
二次函數(shù)圖象的對(duì)稱一般有五種情況,可以用一般式或頂點(diǎn)式表達(dá)
1.關(guān)于x軸對(duì)稱
yax2bxc關(guān)于x軸對(duì)稱后,得到的解析式是yax2bxc;
yaxhk關(guān)于x軸對(duì)稱后,得到的解析式是yaxhk;
2.關(guān)于y軸對(duì)稱
yax2bxc關(guān)于y軸對(duì)稱后,得到的解析式是yax2bxc;
22yaxhk關(guān)于y軸對(duì)稱后,得到的解析式是yaxhk;
3.關(guān)于原點(diǎn)對(duì)稱
yax2bxc關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是yax2bxc;yaxhk關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是yaxhk;
4.關(guān)于頂點(diǎn)對(duì)稱(即:拋物線繞頂點(diǎn)旋轉(zhuǎn)180°)
2222b2yaxbxc關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是yaxbxc;
2a22yaxhk關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是yaxhk.n對(duì)稱
5.關(guān)于點(diǎn)m,n對(duì)稱后,得到的解析式是yaxh2m2nkyaxhk關(guān)于點(diǎn)m,根據(jù)對(duì)稱的性質(zhì),顯然無論作何種對(duì)稱變換,拋物線的形狀一定不會(huì)發(fā)生變化,因此a永遠(yuǎn)不變.求拋物線的對(duì)稱拋物線的表達(dá)式時(shí),可以依據(jù)題意或方便運(yùn)算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點(diǎn)坐標(biāo)及開口方向,再確定其對(duì)稱拋物線的頂點(diǎn)坐標(biāo)及開口方向,然后再寫出其對(duì)稱拋物線的表達(dá)式.
十、二次函數(shù)與一元二次方程:
1.二次函數(shù)與一元二次方程的關(guān)系(二次函數(shù)與x軸交點(diǎn)情況):
一元二次方程ax2bxc0是二次函數(shù)yax2bxc當(dāng)函數(shù)值y0時(shí)的特殊情況.圖象與x軸的交點(diǎn)個(gè)數(shù):
、佼(dāng)b24ac0時(shí),圖象與x軸交于兩點(diǎn)Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次
b24ac方程axbxc0a0的兩根.這兩點(diǎn)間的距離ABx2x1.
a2
、诋(dāng)0時(shí),圖象與x軸只有一個(gè)交點(diǎn);
、郛(dāng)0時(shí),圖象與x軸沒有交點(diǎn).
1"當(dāng)a0時(shí),圖象落在x軸的上方,無論x為任何實(shí)數(shù),都有y0;
2"當(dāng)a0時(shí),圖象落在x軸的下方,無論x為任何實(shí)數(shù),都有y0.
2.拋物線yax2bxc的圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
3.二次函數(shù)常用解題方法總結(jié):
⑴求二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo),需轉(zhuǎn)化為一元二次方程;
、魄蠖魏瘮(shù)的最大(。┲敌枰门浞椒▽⒍魏瘮(shù)由一般式轉(zhuǎn)化為頂點(diǎn)式;
、歉鶕(jù)圖象的位置判斷二次函數(shù)yax2bxc中a,b,c的符號(hào),或由二次函數(shù)中a,b,c的符號(hào)判斷圖象的位置,要數(shù)形結(jié)合;
、榷魏瘮(shù)的圖象關(guān)于對(duì)稱軸對(duì)稱,可利用這一性質(zhì),求和已知一點(diǎn)對(duì)稱的點(diǎn)坐標(biāo),或已知與x軸的一個(gè)交點(diǎn)坐標(biāo),可由對(duì)稱性求出另一個(gè)交點(diǎn)坐標(biāo).
⑸與二次函數(shù)有關(guān)的還有二次三項(xiàng)式,二次三項(xiàng)式ax2bxc(a0)本身就是所含字母x的二次函數(shù);下面以a0時(shí)為例,揭示二次函數(shù)、二次三項(xiàng)式和一元二次方程之間的內(nèi)在聯(lián)系:
0拋物線與x軸有兩個(gè)交點(diǎn)0二次三項(xiàng)式的值可正、可零、可負(fù)二次三項(xiàng)式的值為非負(fù)二次三項(xiàng)式的值恒為正一元二次方程有兩個(gè)不相等實(shí)根一元二次方程有兩個(gè)相等的實(shí)數(shù)根一元二次方程無實(shí)數(shù)根.0拋物線與x軸只有一個(gè)交點(diǎn)拋物線與x軸無交點(diǎn)y=2x2y=x2y=3(x+4)2二次函數(shù)圖像參考:
y=3x2y=3(x-2)2y=x22
y=2x2y=2(x-4)2y=2(x-4)2-3y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2x2十一、函數(shù)的應(yīng)用
剎車距離二次函數(shù)應(yīng)用何時(shí)獲得最大利潤(rùn)
最大面積是多少y=-2(x+3)2y=-2x2y=-2(x-3)2
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11
第21章二次根式
1、二次根式:一般地,式子叫做二次根式。
注意:
。1)若這個(gè)條件不成立,則不是二次根式;
。2)是一個(gè)重要的非負(fù)數(shù),即; ≥0。
2、重要公式:
3、積的算術(shù)平方根:
積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積;
4、二次根式的乘法法則:。
5、二次根式比較大小的方法:
。1)利用近似值比大;
。2)把二次根式的系數(shù)移入二次根號(hào)內(nèi),然后比大小;
。3)分別平方,然后比大小。
6、商的算術(shù)平方根:,
商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。
7、二次根式的除法法則:
分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>
8、最簡(jiǎn)二次根式:
。1)滿足下列兩個(gè)條件的二次根式,叫做最簡(jiǎn)二次根式,
①被開方數(shù)的因數(shù)是整數(shù),因式是整式,
、诒婚_方數(shù)中不含能開的盡的因數(shù)或因式;
(2)最簡(jiǎn)二次根式中,被開方數(shù)不能含有小數(shù)、分?jǐn)?shù),字母因式次數(shù)低于2,且不含分母;
。3)化簡(jiǎn)二次根式時(shí),往往需要把被開方數(shù)先分解因數(shù)或分解因式;
。4)二次根式計(jì)算的最后結(jié)果必須化為最簡(jiǎn)二次根式。
9、同類二次根式:幾個(gè)二次根式化成最簡(jiǎn)二次根式后,如果被開方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式。
10、二次根式的混合運(yùn)算:
。1)二次根式的混合運(yùn)算包括加、減、乘、除、乘方、開方六種代數(shù)運(yùn)算,以前學(xué)過的,在有理數(shù)范圍內(nèi)的一切公式和運(yùn)算律在二次根式的混合運(yùn)算中都適用;
。2)二次根式的運(yùn)算一般要先把二次根式進(jìn)行適當(dāng)化簡(jiǎn),例如:化為同類二次根式才能合并;除法運(yùn)算有時(shí)轉(zhuǎn)化為分母有理化或約分更為簡(jiǎn)便;使用乘法公式等。
第22章一元二次方程
1、一元二次方程的一般形式:
a≠0時(shí),ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問題時(shí),多數(shù)習(xí)題要先化為一般形式,目的是確定一般形式中的a、 b、 c;其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式。
2、一元二次方程的解法:一元二次方程的四種解法要求靈活運(yùn)用,其中直接開平方法雖然簡(jiǎn)單,但是適用范圍較小;公式法雖然適用范圍大,但計(jì)算較繁,易發(fā)生計(jì)算錯(cuò)誤;因式分解法適用范圍較大,且計(jì)算簡(jiǎn)便,是首選方法;配方法使用較少。
3。一元二次方程根的判別式:當(dāng)ax2+bx+c=0
(a≠0)時(shí),Δ=b2—4ac叫一元二次方程根的判別式。請(qǐng)注意以下等價(jià)命題:
Δ>0 <=>有兩個(gè)不等的實(shí)根;
Δ=0 <=>有兩個(gè)相等的實(shí)根;Δ<0 <=>無實(shí)根;
4。平均增長(zhǎng)率問題————————應(yīng)用題的類型題之一(設(shè)增長(zhǎng)率為x):
。1)第一年為a ,第二年為a(1+x) ,第三年為a(1+x)2。
(2)常利用以下相等關(guān)系列方程:第三年=第三年或第一年+第二年+第三年=總和。
第23章旋轉(zhuǎn)
1、概念:
把一個(gè)圖形繞著某一點(diǎn)O轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角。
旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角
2、旋轉(zhuǎn)的`性質(zhì):
(1)旋轉(zhuǎn)前后的兩個(gè)圖形是全等形;
(2)兩個(gè)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等
。3)兩個(gè)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角
3、中心對(duì)稱:
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心。
這兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做關(guān)于中心的對(duì)稱點(diǎn)。
4、中心對(duì)稱的性質(zhì):
(1)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)所連線段都經(jīng)過對(duì)稱中心,而且被對(duì)稱中心所平分。
。2)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等圖形。
5、中心對(duì)稱圖形:
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12
三角形的外心定義:
外心:是三角形三條邊的垂直平分線的交點(diǎn),即外接圓的圓心。
外心定理:三角形的三邊的垂直平分線交于一點(diǎn)。該點(diǎn)叫做三角形的'外心。
三角形的外心的性質(zhì):
1、三角形三條邊的垂直平分線的交于一點(diǎn),該點(diǎn)即為三角形外接圓的圓心;
2、三角形的外接圓有且只有一個(gè),即對(duì)于給定的三角形,其外心是的,但一個(gè)圓的內(nèi)接三角形卻有無數(shù)個(gè),這些三角形的外心重合;
3、銳角三角形的外心在三角形內(nèi);
鈍角三角形的外心在三角形外;
直角三角形的外心與斜邊的中點(diǎn)重合。
在△ABC中
4、OA=OB=OC=R
5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6、S△ABC=abc/4R
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13
扇形周長(zhǎng)公式
因?yàn)樯刃?兩條半徑+弧長(zhǎng)
若半徑為R,扇形所對(duì)的圓心角為n°,那么扇形周長(zhǎng):
C=2R+nπR÷180
扇形面積公式
在半徑為R的圓中,因?yàn)?60°的圓心角所對(duì)的扇形的面積就是圓面積S=πR^2,所以圓心角為n°的扇形面積
S=nπR^2÷360
▲什么是圓周率?
圓周率是一個(gè)常數(shù),是代表圓周和直徑的比例。它是一個(gè)無理數(shù),即是一個(gè)無限不循環(huán)小數(shù)。但在日常生活中,通常都用3.14來代表圓周率去進(jìn)行計(jì)算,即使是工程師或物理學(xué)家要進(jìn)行較精密的計(jì)算,也只取值至小數(shù)點(diǎn)后約20位。
▲什么是π?
π是第十六個(gè)希臘字母,本來它是和圓周率沒有關(guān)系的,但大數(shù)學(xué)家歐拉在一七三六年開始,在書信和論文中都用π來代表圓周率。既然他是大數(shù)學(xué)家,所以人們也有樣學(xué)樣地用π來表圓周率了。但π除了表示圓周率外,也可以用來表示其他事物,在統(tǒng)計(jì)學(xué)中也能看到它的出現(xiàn)。
圓的面積s = π × r × r
其中,π是周圍率,等于3。14
r是圓的半徑。
圓的周長(zhǎng)計(jì)算公式為:C=2πR 。C代表圓的周長(zhǎng),r代表圓的半徑。圓的面積公式為:S=πR2(R的平方) 。S代表圓的.面積,r為圓的半徑。
橢圓周長(zhǎng)計(jì)算公式
橢圓周長(zhǎng)公式:L=2πb+4(a—b)
橢圓周長(zhǎng)定理:橢圓的周長(zhǎng)等于該橢圓短半軸長(zhǎng)為半徑的圓周長(zhǎng)(2πb)加上四倍的該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的差。
橢圓面積計(jì)算公式
橢圓面積公式:S=πab
橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的乘積。
1、有關(guān)的計(jì)算:
(1)圓的周長(zhǎng)C=2πR;(2)弧長(zhǎng)L= ;(3)圓的面積S=πR2。
。4)扇形面積S扇形= ;
。5)弓形面積S弓形=扇形面積SAOB±ΔAOB的面積。(如圖)
2、圓柱與圓錐的側(cè)面展開圖:
。1)圓柱的側(cè)面積:S圓柱側(cè)=2πrh; (r:底面半徑;h:圓柱高)
(2)圓錐的側(cè)面積:S圓錐側(cè)= =πrR。 (L=2πr,R是圓錐母線長(zhǎng);r是底面半徑)
描述定義:在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A所形成的圖形叫做圓。固定的端點(diǎn)O叫圓心。線段OA叫做半徑。
集合定義:平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長(zhǎng)稱為半徑。
2、圓的表示方法:以O(shè)為圓心的圓記做⊙O,讀作圓O。
3、圓弧和弦:圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫做直徑。
4、半徑:圓心與圓上任意一點(diǎn)所連的線段叫半徑。直徑:經(jīng)過圓心的弦叫直徑。
5、圓心角:頂點(diǎn)在圓心上的角叫圓心角。
6、圓周角:頂點(diǎn)在圓上,并且兩邊都與圓相交的角叫圓周角。
7、弦心距:圓心到弦的垂線段的長(zhǎng)。
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
1二次函數(shù)的定義
一般地,形如y=ax2+bx+c(a,b,c為常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù).如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函數(shù).
注意:(1)二次函數(shù)是關(guān)于自變量的二次式,二次項(xiàng)系數(shù)a必須是非零實(shí)數(shù),即a≠0,而b,c是任意實(shí)數(shù),二次函數(shù)的表達(dá)式是一個(gè)整式;
(2)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),自變量x的取值范圍是全體實(shí)數(shù);
(3)當(dāng)b=c=0時(shí),二次函數(shù)y=ax2是最簡(jiǎn)單的二次函數(shù);
(4)一個(gè)函數(shù)是否是二次函數(shù),要化簡(jiǎn)整理后,對(duì)照定義才能下結(jié)論,例如y=x2-x(x-1)化簡(jiǎn)后變?yōu)閥=x,故它不是二次函數(shù).
2二次函數(shù)解析式的幾種形式
(1)一般式:y=ax2+bx+c (a,b,c為常數(shù),a≠0).
(2)頂點(diǎn)式:y=a(x-h)2+k(a,h,k為常數(shù),a≠0).
(3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點(diǎn)的橫坐標(biāo),即一元二次方程ax2+bx+c=0的兩個(gè)根,a≠0.
說明:(1)任何一個(gè)二次函數(shù)通過配方都可以化為頂點(diǎn)式y(tǒng)=a(x-h)2+k,拋物線的頂點(diǎn)坐標(biāo)是(h,k),h=0時(shí),拋物線y=ax2+k的頂點(diǎn)在y軸上;當(dāng)k=0時(shí),拋物線a(x-h)2的頂點(diǎn)在x軸上;當(dāng)h=0且k=0時(shí),拋物線y=ax2的頂點(diǎn)在原點(diǎn)
3二次函數(shù)y=ax2+c的圖象與性質(zhì)
(1)拋物線y=ax2+c的`形狀由a決定,位置由c決定.
(2)二次函數(shù)y=ax2+c的圖象是一條拋物線,頂點(diǎn)坐標(biāo)是(0,c),對(duì)稱軸是y軸.
當(dāng)a>0時(shí),圖象的開口向上,有最低點(diǎn)(即頂點(diǎn)),當(dāng)x=0時(shí),y最小值=c.在y軸左側(cè),y隨x的增大而減小;在y軸右側(cè),y隨x增大而增大.
當(dāng)a<0時(shí),圖象的開口向下,有最高點(diǎn)(即頂點(diǎn)),當(dāng)x=0時(shí),y最大值=c.在y軸左側(cè),y隨x的增大而增大;在y軸右側(cè),y隨x增大而減小.
(3)拋物線y=ax2+c與y=ax2的關(guān)系.
拋物線y=ax2+c與y=ax2形狀相同,只有位置不同.拋物線y=ax2+c可由拋物線y=ax2沿y軸向上或向下平行移動(dòng)|c|個(gè)單位得到.當(dāng)c>0時(shí),向上平行移動(dòng),當(dāng)c<0時(shí),向下平行移動(dòng).
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15
1.不在同一直線上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1 ①平分弦不是直徑的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對(duì)的兩條弧
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7.同圓或等圓的半徑相等
8.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
9.定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
10.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
11定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
12.①直線L和⊙O相交d
、谥本L和⊙O相切d=r
、壑本L和⊙O相離d>r
13.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑
15.推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
16.推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
17.切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對(duì)邊的和相等外角等于內(nèi)對(duì)角
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20.①兩圓外離d>R+r ②兩圓外切d=R+r
、.兩圓相交R-rr
、.兩圓內(nèi)切d=R-rR>r ⑤兩圓內(nèi)含dr
21.定理相交兩圓的連心線垂直平分兩圓的公共弦
22.定理把圓分成nn≥3:
、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
24.正n邊形的每個(gè)內(nèi)角都等于n-2×180°/n
25.定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(zhǎng)
27.正三角形面積√3a/4 a表示邊長(zhǎng)
28.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×n-2180°/n=360°化為n-2k-2=4
29.弧長(zhǎng)計(jì)算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內(nèi)公切線長(zhǎng)= d-R-r外公切線長(zhǎng)= d-R+r
32.定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
33.推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
34.推論2半圓或直徑所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
35.弧長(zhǎng)公式l=ar a是圓心角的弧度數(shù)r >0扇形面積公式s=1/2lr
初三數(shù)學(xué)復(fù)習(xí)方法
一、回歸課本,夯實(shí)基礎(chǔ),做好預(yù)習(xí)。
數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是復(fù)習(xí)的重中之重;貧w課本,要先對(duì)知識(shí)點(diǎn)進(jìn)行梳理,把教材上的每一個(gè)例題、習(xí)題再做一遍,確;靖拍睢⒐降壤喂陶莆,要穩(wěn)扎穩(wěn)打,不要盲目攀高,欲速則不達(dá)。復(fù)習(xí)課的內(nèi)容多、時(shí)間緊。要提高復(fù)習(xí)效率,必須使自己的`思維與老師的思維同步。而預(yù)習(xí)則是達(dá)到這一目的的重要途徑。沒有預(yù)習(xí),聽老師講課,會(huì)感到老師講的都重要,抓不住老師講的重點(diǎn);而預(yù)習(xí)了之后,再聽老師講課,就會(huì)在記憶上對(duì)老師講的內(nèi)容有所取舍,把重點(diǎn)放在自己還未掌握的內(nèi)容上,提高學(xué)習(xí)效率。
二、提高課堂聽課效率,多動(dòng)腦,勤動(dòng)手
初三的課只有兩種形式:復(fù)習(xí)課和評(píng)講課,到初三所有課都進(jìn)入復(fù)習(xí)階段,通過復(fù)習(xí),學(xué)生要知道自己哪些知識(shí)點(diǎn)掌握的比較好,哪些知識(shí)點(diǎn)有待提高,因此在復(fù)習(xí)課之前一定要有自己的思考,這樣聽課的目的就明確了,F(xiàn)在學(xué)生手中都會(huì)有一些復(fù)習(xí)資料,在老師講課之前,要把例題做一遍,做題中發(fā)現(xiàn)的難點(diǎn),就是聽課的重點(diǎn);對(duì)預(yù)習(xí)中遇到的沒有掌握好的舊知識(shí),可進(jìn)行查漏補(bǔ)缺,以減少聽課過程中的困難,自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己的數(shù)學(xué)思維;體會(huì)分析問題的思路和解決問題的思想方法,堅(jiān)持下去,就一定能舉一反三,事半功倍。此外對(duì)于老師講課中的難點(diǎn),重點(diǎn)要作好筆記,筆記不是記錄而是將上述聽課中的要點(diǎn),思維方法等作出簡(jiǎn)單扼要的記錄,以便復(fù)習(xí),消化,思考。
三、建立錯(cuò)題本,查漏補(bǔ)缺
初三復(fù)習(xí),各類試題要做幾十套,甚至上百套。特級(jí)教師提醒學(xué)生可以建立一個(gè)錯(cuò)題本,把平時(shí)做錯(cuò)的題系統(tǒng)的整理好,在上面寫上評(píng)析和做錯(cuò)的原因,每過一段時(shí)間,就把“錯(cuò)題筆記”拿出來看一看。在看參考書時(shí),也可以把精彩之處或做錯(cuò)的題目做上標(biāo)記,以后再看這本書時(shí)就會(huì)有所側(cè)重。查漏補(bǔ)缺的過程就是反思的過程。除了把不同的問題弄懂以外,還要學(xué)會(huì)“舉一反三,融會(huì)貫通”,及時(shí)歸納總結(jié)。每次訂正試卷或作業(yè)時(shí),在錯(cuò)題旁邊要寫明做錯(cuò)的原因。
初三數(shù)學(xué)學(xué)習(xí)建議
培養(yǎng)良好的學(xué)習(xí)習(xí)慣
1制定計(jì)劃。從而使學(xué)習(xí)目的明確,時(shí)間安排合理,不慌不忙,穩(wěn)打穩(wěn)扎,它是推動(dòng)學(xué)生主動(dòng)學(xué)習(xí)和克服困難的內(nèi)在動(dòng)力。但計(jì)劃一定要切實(shí)可行,既有長(zhǎng)遠(yuǎn)打算,又有短期安排,執(zhí)行過程中嚴(yán)格要求自己,磨練學(xué)習(xí)意志。
2課前自學(xué)。這是上好新課,取得較好學(xué)習(xí)效果的基礎(chǔ)。課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)的主動(dòng)權(quán)。自學(xué)不能搞走過場(chǎng),要講究質(zhì)量,力爭(zhēng)在課前把教材弄懂,上課著重聽老師講思路,把握重點(diǎn),突破難點(diǎn),盡可能把問題解決在課堂上。
3專心上課。“學(xué)然后知不足”,這是理解和掌握基本知識(shí)、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。課前自學(xué)過的學(xué)生上課更能專心聽課,他們知道什么地方該詳細(xì)聽,什么地方可以一帶而過,該記的地方才記下來,而不是全盤抄錄,顧此失彼。
4及時(shí)復(fù)習(xí)。這是高效率學(xué)習(xí)的重要一環(huán)。通過反復(fù)閱讀教材,多方面查閱有關(guān)資料,強(qiáng)化對(duì)基本概念知識(shí)體系的理解與記憶,將所學(xué)的新知識(shí)與有關(guān)舊知識(shí)聯(lián)系起來,進(jìn)行分析比效,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記本上,使對(duì)所學(xué)的新知識(shí)由“懂”到“會(huì)”。
5獨(dú)立作業(yè)。這是掌握獨(dú)立思考,分析問題、解決問題,進(jìn)一步加深對(duì)所學(xué)新知識(shí)的理解和對(duì)新技能的必要過程。這一過程也是對(duì)學(xué)生意志毅力的考驗(yàn),通過作業(yè)練習(xí)使學(xué)生對(duì)所學(xué)知識(shí)由“會(huì)”到“熟”。
6解決疑難。這是指對(duì)獨(dú)立完成作業(yè)過程中暴露出來對(duì)知識(shí)理解的錯(cuò)誤,或由于思維受阻遺漏解答,通過點(diǎn)撥使思路暢通,補(bǔ)遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯(cuò)的作業(yè)再做一遍。對(duì)錯(cuò)誤的地方?jīng)]弄清楚要反復(fù)思考,實(shí)在解決不了的要請(qǐng)教老師和同學(xué),并經(jīng)常把容易錯(cuò)的地方拿來復(fù)習(xí)強(qiáng)化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把從老師、同學(xué)處獲得的東西消化變成自己的知識(shí),長(zhǎng)期堅(jiān)持使對(duì)所學(xué)知識(shí)由“熟”到“活”。
7系統(tǒng)小結(jié)。這是通過積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識(shí)和發(fā)展認(rèn)識(shí)能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與資料,通過分析、綜合、類比、概括,揭示知識(shí)間的內(nèi)在聯(lián)系,以達(dá)到對(duì)所學(xué)知識(shí)融會(huì)貫通的目的。經(jīng)常進(jìn)行多層次小結(jié),能對(duì)所學(xué)知識(shí)由“活”到“悟”。
8課外學(xué)習(xí)。課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補(bǔ)充和繼續(xù),包括閱讀課外書籍與報(bào)刊,參加學(xué)科競(jìng)賽與講座,走訪高年級(jí)同學(xué)或老師交流學(xué)習(xí)心得等。它不僅能豐富學(xué)生的文化科學(xué)知識(shí),加深和鞏固課內(nèi)所學(xué)的知識(shí),而且能夠滿足和發(fā)展學(xué)生的興趣愛好,培養(yǎng)獨(dú)立學(xué)習(xí)和工作的能力,激發(fā)求知欲與學(xué)習(xí)熱情。
【初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
初三數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)10-25
初三數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)11-22
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-18
初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)11-18
初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)06-19
關(guān)于初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-18
初三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)06-16
初三數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)歸納06-18