亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-08-06 11:42:04 初三 我要投稿

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(優(yōu))

  總結(jié)是事后對(duì)某一階段的學(xué)習(xí)或工作情況作加以回顧檢查并分析評(píng)價(jià)的書面材料,寫總結(jié)有利于我們學(xué)習(xí)和工作能力的提高,因此,讓我們寫一份總結(jié)吧?偨Y(jié)怎么寫才不會(huì)千篇一律呢?下面是小編收集整理的初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(優(yōu))

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  三角形的外心定義:

  外心:是三角形三條邊的垂直平分線的交點(diǎn),即外接圓的圓心。

  外心定理:三角形的三邊的垂直平分線交于一點(diǎn)。該點(diǎn)叫做三角形的外心。

  三角形的外心的性質(zhì):

  1、三角形三條邊的垂直平分線的交于一點(diǎn),該點(diǎn)即為三角形外接圓的圓心;

  2、三角形的外接圓有且只有一個(gè),即對(duì)于給定的三角形,其外心是的,但一個(gè)圓的`內(nèi)接三角形卻有無數(shù)個(gè),這些三角形的外心重合;

  3、銳角三角形的外心在三角形內(nèi);

  鈍角三角形的外心在三角形外;

  直角三角形的外心與斜邊的中點(diǎn)重合。

  在△ABC中

  4、OA=OB=OC=R

  5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA

  6、S△ABC=abc/4R

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  1、二次根式:形如a(a0)的式子為二次根式;性質(zhì):a(a0)是一個(gè)非負(fù)數(shù);a2aa0。

  2、二次根式的乘除:ababa0,b0;aaa0,b0。

  3、二次根式的加減:二次根式加減時(shí),先將二次根式華為最簡(jiǎn)二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并。

  4、海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc

  第二章一元二次方程

  1、一元二次方程:等號(hào)兩邊都是整式,且只有一個(gè)未知數(shù),未知數(shù)的最高次是2的方程。

  2、一元二次方程的解法

  配方法:將方程的一邊配成完全平方式,然后兩邊開方;

  bb24ac公式法:x2a因式分解法:左邊是兩個(gè)因式的乘積,右邊為零。

  3、一元二次方程在實(shí)際問題中的應(yīng)用

  4、韋達(dá)定理:設(shè)x1,x2是方程ax2bxc0的兩個(gè)根,那么有x1x2,x1x2

  第三章旋轉(zhuǎn)

  1、圖形的旋轉(zhuǎn)旋轉(zhuǎn):一個(gè)圖形繞某一點(diǎn)轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角旋轉(zhuǎn)前后的圖形全等。

  2、中心對(duì)稱:一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180度,和另一個(gè)圖形重合,則兩個(gè)圖形關(guān)于這個(gè)點(diǎn)中心對(duì)稱;

  中心對(duì)稱圖形:一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180度后得到的圖形能夠和原來的圖形重合,則說這個(gè)圖形是中心對(duì)稱圖形;

  關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)第四章圓

  1、圓、圓心、半徑、直徑、圓弧、弦、半圓的定義

  2、垂直于弦的直徑

  圓是軸對(duì)稱圖形,任何一條直徑所在的直線都是它的對(duì)稱軸;

  垂直于弦的直徑平分弦,并且平方弦所對(duì)的兩條弧;平分弦的直徑垂直弦,并且平分弦所對(duì)的兩條弧。

  3、弧、弦、圓心角

  在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所baca對(duì)的弦也相等。

  4、圓周角

  在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;

  半圓(或直徑)所對(duì)的圓周角是直角,90度的圓周角所對(duì)的弦是直徑。

  5、點(diǎn)和圓的位置關(guān)系點(diǎn)在dr點(diǎn)在圓上d=r點(diǎn)在圓內(nèi)d相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角。

  三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線的交點(diǎn),為三角形的內(nèi)心。

  6、圓和圓的位置關(guān)系

  外離d>R+r外切d=R+r相交R-r

  第五章概率初步

  1、概率意義:在大量重復(fù)試驗(yàn)中,事件A發(fā)生的頻率某個(gè)常數(shù)p附近,則常數(shù)p叫做事件A的概率。

  2、用列舉法求概率

  一般的,在一次試驗(yàn)中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=mnm穩(wěn)定在n3用頻率去估計(jì)概率

  初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)

  1.一元二次方程:在整式方程中,只含個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是的方程叫做一元二次方程.一元二次方程的一般形式是( ).其中( )叫做二次項(xiàng),( )叫做一次項(xiàng),( )叫做常數(shù)項(xiàng);( )叫做二次項(xiàng)的系數(shù),( )叫做一次項(xiàng)的系數(shù).

  2.易錯(cuò)知識(shí)辨析:

  (1)判斷一個(gè)方程是不是一元二次方程,應(yīng)把它進(jìn)行整理,化成一般形式后再進(jìn)行判斷,注意一元二次方程一般形式中.

  (2)用公式法和因式分解的方法解方程時(shí)要先化成一般形式.

  (3)用配方法時(shí)二次項(xiàng)系數(shù)要化1。

  (4)用直接開平方的方法時(shí)要記得取正、負(fù)。

  初三上冊(cè)數(shù)學(xué)?贾R(shí)點(diǎn)

  1、必然事件、不可能事件、隨機(jī)事件的區(qū)別

  2、概率

  一般地,在大量重復(fù)試驗(yàn)中,如果事件A發(fā)生的頻率會(huì)穩(wěn)定在某個(gè)常數(shù)p附近,那么這個(gè)常數(shù)p就叫做事件A的概率(probability),記作P(A)= p.

  注意:

  (1)概率是隨機(jī)事件發(fā)生的.可能性的大小的數(shù)量反映.

  (2)概率是事件在大量重復(fù)試驗(yàn)中頻率逐漸穩(wěn)定到的值,即可以用大量重復(fù)試驗(yàn)中事件發(fā)生的頻率去估計(jì)得到事件發(fā)生的概率,但二者不能簡(jiǎn)單地等同.

  3、求概率的方法

  (1)用列舉法求概率(列表法、畫樹形圖法)

  (2)用頻率估計(jì)概率:一大面,可用大量重復(fù)試驗(yàn)中事件發(fā)生頻率來估計(jì)事件發(fā)生的概率.另一方面,大量重復(fù)試驗(yàn)中事件發(fā)生的頻率穩(wěn)定在某個(gè)常數(shù)(事件發(fā)生的概率)附近,說明概率是個(gè)定值,而頻率隨不同試驗(yàn)次數(shù)而有所不同,是概率的近似值,二者不能簡(jiǎn)單地等同。

  如何學(xué)好初中數(shù)學(xué)

  1、上課以及課前課后

  同學(xué)們平時(shí)的學(xué)習(xí)時(shí)間是在課上,但是大家要樹立一個(gè)意識(shí):課前課后也很重要。利用好這些時(shí)間,在配合適當(dāng)?shù)膶W(xué)習(xí)方法,學(xué)好數(shù)學(xué)其實(shí)并不難。

  課前:課前預(yù)習(xí)很重要,一方面可以先了解上課知識(shí),課上能跟上老師思路,另一方面標(biāo)記出自己不會(huì)的知識(shí)點(diǎn),課上可以根據(jù)自己的情況側(cè)重去聽。

  課上:課上45分鐘,大多數(shù)同學(xué)都很難保證整節(jié)課集中精神,這就要求我們課前一定要預(yù)習(xí),找到自己不會(huì)的知識(shí)點(diǎn),課上盡量理解吸收。還是希望大家課上盡量集中精神,跟隨老師的進(jìn)度了解重點(diǎn)與難點(diǎn),有利于復(fù)習(xí)。

  課后:課后的時(shí)間一般用來復(fù)習(xí),大家可以把自己沒有掌握的知識(shí)點(diǎn)復(fù)習(xí)一下,也可以對(duì)本節(jié)所學(xué)知識(shí)進(jìn)行檢測(cè)與鞏固。如果課后復(fù)習(xí)還存在不理解的地方,大家一定要找老師和同學(xué)去問清楚。

  有了課前課上課后三個(gè)階段,相信大家數(shù)學(xué)基礎(chǔ)基本差不多了,也希望大家繼續(xù)保持這個(gè)習(xí)慣。

  2、適當(dāng)練習(xí)

  大家都知道學(xué)習(xí)數(shù)學(xué)最重要的是練習(xí),平時(shí)多做一些基礎(chǔ)題可以鍛煉解題熟練度,多做一些中檔題可以熟悉考試題型,過于困難的題目不建議大家多做,可以嘗試解決了解難度,掌握做題技巧,訓(xùn)練不要盲目,不要鉆牛角尖。做題要學(xué)會(huì)總結(jié),總結(jié)哪些題目經(jīng)常出現(xiàn),這可能是中考?碱}型。有的同學(xué)每天都在做題,輔導(dǎo)書用掉一堆卻沒有提高,這就是盲目做題沒有技巧,沒有總結(jié)。

  同學(xué)們?cè)谧鲱}時(shí)多關(guān)注一下解題思路、方法、技巧等,掌握做題思路,總結(jié)做題技巧,這對(duì)考試來說至關(guān)重要考試中時(shí)間最寶貴,掌握了好的思路、方法、技巧,不僅解題速度快,而且也不容易犯錯(cuò)。

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  字母表示數(shù)

  01、本節(jié)核心

  字母可以表示任何數(shù)!

  02、用什么樣的字母表示數(shù)?

  26個(gè)字母任何一個(gè)其實(shí)都是可以的,因?yàn)橛脕肀硎救魏我粋(gè)數(shù)時(shí),它只是需要一個(gè)符號(hào)而已。但是一般情況下,我們xxxx表示。

  03、字母表示數(shù)有何意義?

  可以簡(jiǎn)明地表達(dá)問題中的數(shù)量關(guān)系

  舉個(gè)栗子~

  第一個(gè),圓的半徑可以表示為r,那么該圓的面積是Πr2,周長(zhǎng)就是2Πr

  第二個(gè),我們?cè)诘谝徽聦W(xué)的,棱柱,還記得嗎?

  n棱柱,有n+2個(gè)面,2n個(gè)頂點(diǎn),3n條

  04、用字母表示數(shù)要注意四點(diǎn)

  1、在同一個(gè)問題中,不同的量用不同的字母表示。比如說,在長(zhǎng)方形中,如果長(zhǎng)用a表示,寬就不能用a表示了,可以用b表示,不然就會(huì)引起混亂。

  2、在特定的情況下,有些字母表示的內(nèi)容有它特定的意義。比如說,在計(jì)算面積和周長(zhǎng)時(shí),習(xí)慣用s表示面積,c表示周長(zhǎng),h表示高。

  3、用字母表示數(shù)時(shí),數(shù)字和字母,字母和字母之間的乘號(hào)可以記作_·_或者省略不寫。

  4、用字母表示數(shù)需要寫單位名稱時(shí),如果是乘法和分?jǐn)?shù)的形式,可以直接在后面寫上單位名稱,如果出現(xiàn)了+、—,請(qǐng)加上小括號(hào)再寫單位。比如說,(a+5)米和5/a米的區(qū)別。

  代數(shù)式

  01、代數(shù)式的概念

  用運(yùn)算符號(hào)(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是代數(shù)式。

  注意:

 、俅鷶(shù)式中除了含有數(shù)、字母和運(yùn)算符號(hào)外,還可以有括號(hào);

  ②代數(shù)式中不含有“=、>、<、≠”等符號(hào)。等式和不等式都不是代數(shù)式,但等號(hào)和不等號(hào)兩邊的式子一般都是代數(shù)式;

 、鄞鷶(shù)式中的字母所表示的數(shù)必須要使這個(gè)代數(shù)式有意義,是實(shí)際問題的要符合實(shí)際問題的意義。

  01、代數(shù)式的書寫格式

 、俅鷶(shù)式中出現(xiàn)乘號(hào),通常省略不寫,如vt;

  ②數(shù)字與字母相乘時(shí),數(shù)字應(yīng)寫在字母前面,如4a;

 、蹘Х?jǐn)?shù)與字母相乘時(shí),應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù);

 、軘(shù)字與數(shù)字相乘,一般仍用“×”號(hào),即“×”號(hào)不省略;

 、菰诖鷶(shù)式中出現(xiàn)除法運(yùn)算時(shí),一般寫成分?jǐn)?shù)的形式;注意:分?jǐn)?shù)線具有“÷”號(hào)和括號(hào)的雙重作用。

  ⑥在表示和(或)差的'代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面。

  定義:?jiǎn)雾?xiàng)式和多項(xiàng)式統(tǒng)稱為整式。

 、賳雾(xiàng)式:都是數(shù)字和字母乘積的形式的代數(shù)式叫做單項(xiàng)式。單項(xiàng)式中,所有字母的指數(shù)之和叫做這個(gè)單項(xiàng)式的次數(shù);數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的系數(shù)。

  注意:

  1、單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式;

  2、單獨(dú)一個(gè)非零數(shù)的次數(shù)是0;

  3、當(dāng)單項(xiàng)式的系數(shù)為1或—1時(shí),這個(gè)“1”應(yīng)省略不寫,如—ab的系數(shù)是—1,a3b的系數(shù)是1。

  ②多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng);次數(shù)最高的項(xiàng)的次數(shù)叫做多項(xiàng)式的次數(shù)。

  整式的加減

  01、什么是同類項(xiàng)

  1、同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。

  2、注意:

 、偻愴(xiàng)有兩個(gè)條件:a、所含字母相同;b、相同字母的指數(shù)也相同。

 、谕愴(xiàng)與系數(shù)無關(guān),與字母的排列順序無關(guān);

 、蹘讉(gè)常數(shù)項(xiàng)也是同類項(xiàng)。

  02合并同類項(xiàng)法則

  把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

  03去括號(hào)法則

 、俑鶕(jù)去括號(hào)法則去括號(hào):

  括號(hào)前面是“+”號(hào),把括號(hào)和它前面的“+”號(hào)去掉,括號(hào)里各項(xiàng)都不改變符號(hào);括號(hào)前面是“-”號(hào),把括號(hào)和它前面的“-”號(hào)去掉,括號(hào)里各項(xiàng)都改變符號(hào)。

 、诟鶕(jù)分配律去括號(hào):

  括號(hào)前面是“+”號(hào)看成+1,括號(hào)前面是“-”號(hào)看成—1,根據(jù)乘法的分配律用+1或—1去乘括號(hào)里的每一項(xiàng)以達(dá)到去括號(hào)的目的。

  04添括號(hào)法則

  添“+”號(hào)和括號(hào),添到括號(hào)里的各項(xiàng)符號(hào)都不改變;添“-”號(hào)和括號(hào),添到括號(hào)里的各項(xiàng)符號(hào)都要改變。

  05整式的運(yùn)算:

  整式的加減法:(1)去括號(hào);(2)合并同類項(xiàng)。

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  扇形周長(zhǎng)公式

  因?yàn)樯刃?兩條半徑+弧長(zhǎng)

  若半徑為R,扇形所對(duì)的圓心角為n°,那么扇形周長(zhǎng):

  C=2R+nπR÷180

  扇形面積公式

  在半徑為R的圓中,因?yàn)?60°的圓心角所對(duì)的扇形的面積就是圓面積S=πR^2,所以圓心角為n°的扇形面積

  S=nπR^2÷360

  ▲什么是圓周率?

  圓周率是一個(gè)常數(shù),是代表圓周和直徑的比例。它是一個(gè)無理數(shù),即是一個(gè)無限不循環(huán)小數(shù)。但在日常生活中,通常都用3.14來代表圓周率去進(jìn)行計(jì)算,即使是工程師或物理學(xué)家要進(jìn)行較精密的計(jì)算,也只取值至小數(shù)點(diǎn)后約20位。

  ▲什么是π?

  π是第十六個(gè)希臘字母,本來它是和圓周率沒有關(guān)系的,但大數(shù)學(xué)家歐拉在一七三六年開始,在書信和論文中都用π來代表圓周率。既然他是大數(shù)學(xué)家,所以人們也有樣學(xué)樣地用π來表圓周率了。但π除了表示圓周率外,也可以用來表示其他事物,在統(tǒng)計(jì)學(xué)中也能看到它的出現(xiàn)。

  圓的面積s = π × r × r

  其中,π是周圍率,等于3。14

  r是圓的半徑。

  圓的周長(zhǎng)計(jì)算公式為:C=2πR 。C代表圓的周長(zhǎng),r代表圓的半徑。圓的'面積公式為:S=πR2(R的平方) 。S代表圓的面積,r為圓的半徑。

  橢圓周長(zhǎng)計(jì)算公式

  橢圓周長(zhǎng)公式:L=2πb+4(a—b)

  橢圓周長(zhǎng)定理:橢圓的周長(zhǎng)等于該橢圓短半軸長(zhǎng)為半徑的圓周長(zhǎng)(2πb)加上四倍的該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的差。

  橢圓面積計(jì)算公式

  橢圓面積公式:S=πab

  橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的乘積。

  1、有關(guān)的計(jì)算:

 。1)圓的周長(zhǎng)C=2πR;(2)弧長(zhǎng)L= ;(3)圓的面積S=πR2。

 。4)扇形面積S扇形= ;

 。5)弓形面積S弓形=扇形面積SAOB±ΔAOB的面積。(如圖)

  2、圓柱與圓錐的側(cè)面展開圖:

 。1)圓柱的側(cè)面積:S圓柱側(cè)=2πrh; (r:底面半徑;h:圓柱高)

 。2)圓錐的側(cè)面積:S圓錐側(cè)= =πrR。 (L=2πr,R是圓錐母線長(zhǎng);r是底面半徑)

  描述定義:在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A所形成的圖形叫做圓。固定的端點(diǎn)O叫圓心。線段OA叫做半徑。

  集合定義:平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長(zhǎng)稱為半徑。

  2、圓的表示方法:以O(shè)為圓心的圓記做⊙O,讀作圓O。

  3、圓弧和弦:圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫做直徑。

  4、半徑:圓心與圓上任意一點(diǎn)所連的線段叫半徑。直徑:經(jīng)過圓心的弦叫直徑。

  5、圓心角:頂點(diǎn)在圓心上的角叫圓心角。

  6、圓周角:頂點(diǎn)在圓上,并且兩邊都與圓相交的角叫圓周角。

  7、弦心距:圓心到弦的垂線段的長(zhǎng)。

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  不等式的概念

  1、不等式:用不等號(hào)表示不等關(guān)系的式子,叫做不等式。

  2、不等式的解集:對(duì)于一個(gè)含有未知數(shù)的不等式,任何一個(gè)適合這個(gè)不等式的未知數(shù)的值,都叫做這個(gè)不等式的解。

  3、對(duì)于一個(gè)含有未知數(shù)的不等式,它的所有解的集合叫做這個(gè)不等式的解的集合,簡(jiǎn)稱這個(gè)不等式的解集。

  4、求不等式的解集的過程,叫做解不等式。

  5、用數(shù)軸表示不等式的方法。

  不等式基本性質(zhì)

  1、不等式兩邊都加上或減去同一個(gè)數(shù)或同一個(gè)整式,不等號(hào)的方向不變。

  2、不等式兩邊都乘以或除以同一個(gè)正數(shù),不等號(hào)的方向不變。

  3、不等式兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。

  4、說明:①在一元一次不等式中,不像等式那樣,等號(hào)是不變的,是隨著加或乘的運(yùn)算改變。②如果不等式乘以0,那么不等號(hào)改為等號(hào)所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。

  一元一次不等式

  1、一元一次不等式的概念:一般地,不等式中只含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。

  2、解一元一次不等式的一般步驟:1去分母2去括號(hào)3移項(xiàng)4合并同類項(xiàng)5將x項(xiàng)的系數(shù)化為1。

  一元一次不等式組

  1、一元一次不等式組的概念:幾個(gè)一元一次不等式合在一起,就組成了一個(gè)一元一次不等式組。

  2、幾個(gè)一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。

  3、求不等式組的解集的過程,叫做解不等式組。

  4、當(dāng)任何數(shù)x都不能使不等式同時(shí)成立,我們就說這個(gè)不等式組無解或其解為空集。

  5、一元一次不等式組的解法

  1分別求出不等式組中各個(gè)不等式的解集。

  2利用數(shù)軸求出這些不等式的解集的公共部分,即這個(gè)不等式組的解集。

  6、不等式與不等式組

  不等式:①用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的'方向不變。③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。

  7、不等式的解集:

 、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

 、谝粋(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

  ③求不等式解集的過程叫做解不等式。

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。

  主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問題,這是第一個(gè)板塊。

  第二:平面向量和三角函數(shù)。

  重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。

  第三:數(shù)列。

  數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

  第四:空間向量和立體幾何。

  在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

  第五:概率和統(tǒng)計(jì)。

  這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面,第一……等可能的概率,第二………事件,第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。

  第六:解析幾何。

  這是我們比較頭疼的問題,是整個(gè)試卷里難度比較大,計(jì)算量最高的題,當(dāng)然這一類題,我總結(jié)下面五類?嫉念}型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容。考生應(yīng)該掌握它的通法,第二類我們所講的動(dòng)點(diǎn)問題,第三類是弦長(zhǎng)問題,第四類是對(duì)稱問題,這也是20xx年高考已經(jīng)考過的一點(diǎn),第五類重點(diǎn)問題,這類題時(shí)往往覺得有思路,但是沒有答案,當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的原因,往往有這個(gè)原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。

  第七:押軸題。

  考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。

  第一輪數(shù)學(xué)復(fù)習(xí)主要知識(shí)點(diǎn)總結(jié)2:參數(shù)方程定義

  一般的,在平面直角坐標(biāo)系中,如果曲線上任意一點(diǎn)的坐標(biāo)x,y都是某個(gè)變數(shù)t的函數(shù)x=f(t)、y=g(t)

  并且對(duì)于t的每一個(gè)允許值,由上述方程組所確定的點(diǎn)M(x,y)都在這條曲線上,那么上述方程則為這條曲線的參數(shù)方程,聯(lián)系x,y的變數(shù)t叫做變參數(shù),簡(jiǎn)稱參數(shù),相對(duì)于參數(shù)方程而言,直接給出點(diǎn)的坐標(biāo)間關(guān)系的方程叫做普通方程。(注意:參數(shù)是聯(lián)系變數(shù)x,y的.橋梁,可以是一個(gè)有物理意義和幾何意義的變數(shù),也可以是沒有實(shí)際意義的變數(shù)。

  第一輪數(shù)學(xué)復(fù)習(xí)主要知識(shí)點(diǎn)總結(jié)3:參數(shù)方程

  圓的參數(shù)方程x=a+rcosθy=b+rsinθ(a,b)為圓心坐標(biāo)r為圓半徑θ為參數(shù)

  橢圓的參數(shù)方程x=acosθy=bsinθa為長(zhǎng)半軸長(zhǎng)b為短半軸長(zhǎng)θ為參數(shù)

  雙曲線的參數(shù)方程x=asecθ(正割)y=btanθa為實(shí)半軸長(zhǎng)b為虛半軸長(zhǎng)θ為參數(shù)

  拋物線的參數(shù)方程x=2pt?y=2ptp表示焦點(diǎn)到準(zhǔn)線的距離t為參數(shù)

  直線的參數(shù)方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直線經(jīng)過(x',y'),且傾斜角為a,t為參數(shù)

  第一輪數(shù)學(xué)復(fù)習(xí)主要知識(shí)點(diǎn)總結(jié)4:幾何

  (1)題型穩(wěn)定:近幾年來高考解析幾何試題一直穩(wěn)定在三(或二)個(gè)選擇題,一個(gè)填空題,一個(gè)解答題上,分值約為30分左右, 占總分值的20%左右。

  (2)整體平衡,重點(diǎn)突出:對(duì)直線、圓、圓錐曲線知識(shí)的考查幾乎沒有遺漏,通過對(duì)知識(shí)的重新組合,考查時(shí)既注意全面,更注意突出重點(diǎn), 對(duì)支撐數(shù)學(xué)科知識(shí)體系的主干知識(shí), 考查時(shí)保證較高的比例并保持必要深度。近四年新教材高考對(duì)解析幾何內(nèi)容的考查主要集中在如下幾個(gè)類型:

  ① 求曲線方程( 類型確定、類型未定);

 、谥本與圓錐曲線的交點(diǎn)問題(含切線問題);

 、叟c曲線有關(guān)的最(極)值問題;

 、芘c曲線有關(guān)的幾何證明(對(duì)稱性或求對(duì)稱曲線、平行、垂直);

  ⑤探求曲線方程中幾何量及參數(shù)間的數(shù)量特征;

  (3)能力立意,滲透數(shù)學(xué)思想:一些雖是常見的基本題型,但如果借助于數(shù)形結(jié)合的思想,就能快速準(zhǔn)確的得到答案。

  (4)題型新穎,位置不定:近幾年解析幾何試題的難度有所下降,選擇題、填空題均屬易中等題,且解答題未必處于壓軸題的位置,計(jì)算量減少,思考量增大。加大與相關(guān)知識(shí)的聯(lián)系(如向量、函數(shù)、方程、不等式等),凸現(xiàn)教材中研究性學(xué)習(xí)的能力要求。加大探索性題型的分量。

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

  1二次函數(shù)的定義

  一般地,形如y=ax2+bx+c(a,b,c為常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù).如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函數(shù).

  注意:(1)二次函數(shù)是關(guān)于自變量的二次式,二次項(xiàng)系數(shù)a必須是非零實(shí)數(shù),即a≠0,而b,c是任意實(shí)數(shù),二次函數(shù)的表達(dá)式是一個(gè)整式;

  (2)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),自變量x的取值范圍是全體實(shí)數(shù);

  (3)當(dāng)b=c=0時(shí),二次函數(shù)y=ax2是最簡(jiǎn)單的二次函數(shù);

  (4)一個(gè)函數(shù)是否是二次函數(shù),要化簡(jiǎn)整理后,對(duì)照定義才能下結(jié)論,例如y=x2-x(x-1)化簡(jiǎn)后變?yōu)閥=x,故它不是二次函數(shù).

  2二次函數(shù)解析式的幾種形式

  (1)一般式:y=ax2+bx+c (a,b,c為常數(shù),a≠0).

  (2)頂點(diǎn)式:y=a(x-h)2+k(a,h,k為常數(shù),a≠0).

  (3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點(diǎn)的橫坐標(biāo),即一元二次方程ax2+bx+c=0的兩個(gè)根,a≠0.

  說明:(1)任何一個(gè)二次函數(shù)通過配方都可以化為頂點(diǎn)式y(tǒng)=a(x-h)2+k,拋物線的`頂點(diǎn)坐標(biāo)是(h,k),h=0時(shí),拋物線y=ax2+k的頂點(diǎn)在y軸上;當(dāng)k=0時(shí),拋物線a(x-h)2的頂點(diǎn)在x軸上;當(dāng)h=0且k=0時(shí),拋物線y=ax2的頂點(diǎn)在原點(diǎn)

  3二次函數(shù)y=ax2+c的圖象與性質(zhì)

  (1)拋物線y=ax2+c的形狀由a決定,位置由c決定.

  (2)二次函數(shù)y=ax2+c的圖象是一條拋物線,頂點(diǎn)坐標(biāo)是(0,c),對(duì)稱軸是y軸.

  當(dāng)a>0時(shí),圖象的開口向上,有最低點(diǎn)(即頂點(diǎn)),當(dāng)x=0時(shí),y最小值=c.在y軸左側(cè),y隨x的增大而減小;在y軸右側(cè),y隨x增大而增大.

  當(dāng)a<0時(shí),圖象的開口向下,有最高點(diǎn)(即頂點(diǎn)),當(dāng)x=0時(shí),y最大值=c.在y軸左側(cè),y隨x的增大而增大;在y軸右側(cè),y隨x增大而減小.

  (3)拋物線y=ax2+c與y=ax2的關(guān)系.

  拋物線y=ax2+c與y=ax2形狀相同,只有位置不同.拋物線y=ax2+c可由拋物線y=ax2沿y軸向上或向下平行移動(dòng)|c|個(gè)單位得到.當(dāng)c>0時(shí),向上平行移動(dòng),當(dāng)c<0時(shí),向下平行移動(dòng).

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  全套教科書包含了課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)規(guī)定的“數(shù)與代數(shù)”“空間與圖形”“統(tǒng)計(jì)與概率”“實(shí)踐與綜合應(yīng)用”四個(gè)領(lǐng)域的內(nèi)容,在體系結(jié)構(gòu)的設(shè)計(jì)上力求反映這些內(nèi)容之間的聯(lián)系與綜合,使它們形成一個(gè)有機(jī)的整體。

  九年級(jí)上冊(cè)包括二次根式、一元二次方程、旋轉(zhuǎn)、圓、概率初步五章內(nèi)容,學(xué)習(xí)內(nèi)容涉及到了《課程標(biāo)準(zhǔn)》的四個(gè)領(lǐng)域。本冊(cè)書內(nèi)容分析如下:

  第21章二次根式

  學(xué)生已經(jīng)學(xué)過整式與分式,知道用式子可以表示實(shí)際問題中的數(shù)量關(guān)系。解決與數(shù)量關(guān)系有關(guān)的問題還會(huì)遇到二次根式!岸胃健币徽戮蛠碚J(rèn)識(shí)這種式子,探索它的性質(zhì),掌握它的運(yùn)算。

  在這一章,首先讓學(xué)生了解二次根式的概念,并掌握以下重要結(jié)論:

  注:關(guān)于二次根式的運(yùn)算,由于二次根式的乘除相對(duì)于二次根式的加減來說更易于掌握,教科書先安排二次根式的乘除,再安排二次根式的加減!岸胃降某顺币还(jié)的內(nèi)容有兩條發(fā)展的線索。一條是用具體計(jì)算的例子體會(huì)二次根式乘除法則的合理性,并運(yùn)用二次根式的乘除法則進(jìn)行運(yùn)算;一條是由二次根式的乘除法則得到

  并運(yùn)用它們進(jìn)行二次根式的化簡(jiǎn)。

  “二次根式的加減”一節(jié)先安排二次根式加減的內(nèi)容,再安排二次根式加減乘除混合運(yùn)算的內(nèi)容。在本節(jié)中,注意類比整式運(yùn)算的有關(guān)內(nèi)容。例如,讓學(xué)生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運(yùn)算中,多項(xiàng)式乘法法則和乘法公式仍然適用。這些處理有助于學(xué)生掌握本節(jié)內(nèi)容。

  第22章一元二次方程

  學(xué)生已經(jīng)掌握了用一元一次方程解決實(shí)際問題的方法。在解決某些實(shí)際問題時(shí)還會(huì)遇到一種新方程——一元二次方程!耙辉畏匠獭币徽戮蛠碚J(rèn)識(shí)這種方程,討論這種方程的解法,并運(yùn)用這種方程解決一些實(shí)際問題。

  本章首先通過雕像設(shè)計(jì)、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學(xué)生通過數(shù)值代入的方法找出某些簡(jiǎn)單的一元二次方程的解,對(duì)一元二次方程的解加以體會(huì),并給出一元二次方程的根的概念,

  “22.2降次——解一元二次方程”一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。

  (1)在介紹配方法時(shí),首先通過實(shí)際問題引出形如的方程。這樣的方程可以化為更為簡(jiǎn)單的形如的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說明如何解形如的方程。然后舉例說明一元二次方程可以化為形如的方程,引出配方法。最后安排運(yùn)用配方法解一元二次方程的例題。在例題中,涉及二次項(xiàng)系數(shù)不是1的一元二次方程,也涉及沒有實(shí)數(shù)根的一元二次方程。對(duì)于沒有實(shí)數(shù)根的一元二次方程,學(xué)了“公式法”以后,學(xué)生對(duì)這個(gè)內(nèi)容會(huì)有進(jìn)一步的理解。

  (2)在介紹公式法時(shí),首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運(yùn)用公式法解一元二次方程的例題。在例題中,涉及有兩個(gè)相等實(shí)數(shù)根的一元二次方程,也涉及沒有實(shí)數(shù)根的一元二次方程。由此引出一元二次方程的解的三種情況。

  (3)在介紹因式分解法時(shí),首先通過實(shí)際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運(yùn)用因式分解法解一元二次方程的例題。最后對(duì)配方法、公式法、因式分解法三種解一元二次方程的`方法進(jìn)行小結(jié)。

  “22.3實(shí)際問題與一元二次方程”一節(jié)安排了四個(gè)探究欄目,分別探究傳播、成本下降率、面積、勻變速運(yùn)動(dòng)等問題,使學(xué)生進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的一個(gè)有效的數(shù)學(xué)模型。

  第23章旋轉(zhuǎn)

  學(xué)生已經(jīng)認(rèn)識(shí)了平移、軸對(duì)稱,探索了它們的性質(zhì),并運(yùn)用它們進(jìn)行圖案設(shè)計(jì)。本書中圖形變換又增添了一名新成員――旋轉(zhuǎn)。“旋轉(zhuǎn)”一章就來認(rèn)識(shí)這種變換,探索它的性質(zhì)。在此基礎(chǔ)上,認(rèn)識(shí)中心對(duì)稱和中心對(duì)稱圖形。

  “23.1旋轉(zhuǎn)”一節(jié)首先通過實(shí)例介紹旋轉(zhuǎn)的概念。然后讓學(xué)生探究旋轉(zhuǎn)的性質(zhì)。在此基礎(chǔ)上,通過例題說明作一個(gè)圖形旋轉(zhuǎn)后的圖形的方法。最后舉例說明用旋轉(zhuǎn)可以進(jìn)行圖案設(shè)計(jì)。

  “23.2中心對(duì)稱”一節(jié)首先通過實(shí)例介紹中心對(duì)稱的概念。然后讓學(xué)生探究中心對(duì)稱的性質(zhì)。在此基礎(chǔ)上,通過例題說明作與一個(gè)圖形成中心對(duì)稱的圖形的方法。這些內(nèi)容之后,通過線段、平行四邊形引出中心對(duì)稱圖形的概念。最后介紹關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的關(guān)系,以及利用這一關(guān)系作與一個(gè)圖形成中心對(duì)稱的圖形的方法。

  “23.3課題學(xué)習(xí)圖案設(shè)計(jì)”一節(jié)讓學(xué)生探索圖形之間的變換關(guān)系(平移、軸對(duì)稱、旋轉(zhuǎn)及其組合),靈活運(yùn)用平移、軸對(duì)稱、旋轉(zhuǎn)的組合進(jìn)行圖案設(shè)計(jì)。

  第24章圓

  圓是一種常見的圖形。在“圓”這一章,學(xué)生將進(jìn)一步認(rèn)識(shí)圓,探索它的性質(zhì),并用這些知識(shí)解決一些實(shí)際問題。通過這一章的學(xué)習(xí),學(xué)生的解決圖形問題的能力將會(huì)進(jìn)一步提高。

  “24.1圓”一節(jié)首先介紹圓及其有關(guān)概念。然后讓學(xué)生探究與垂直于弦的直徑有關(guān)的結(jié)論,并運(yùn)用這些結(jié)論解決問題。接下來,讓學(xué)生探究弧、弦、圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問題。最后讓學(xué)生探究圓周角與圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問題。

  “24.2與圓有關(guān)的位置關(guān)系”一節(jié)首先介紹點(diǎn)和圓的三種位置關(guān)系、三角形的外心的概念,并通過證明“在同一直線上的三點(diǎn)不能作圓”引出了反證法。然后介紹直線和圓的三種位置關(guān)系、切線的概念以及與切線有關(guān)的結(jié)論。最后介紹圓和圓的位置關(guān)系。

  “24.3正多邊形和圓”一節(jié)揭示了正多邊形和圓的關(guān)系,介紹了等分圓周得到正多邊形的方法。

  “24.4弧長(zhǎng)和扇形面積”一節(jié)首先介紹弧長(zhǎng)公式。然后介紹扇形及其面積公式。最后介紹圓錐的側(cè)面積公式。

  第25章概率初步

  將一枚硬幣拋擲一次,可能出現(xiàn)正面也可能出現(xiàn)反面,出現(xiàn)正面的可能性大還是出現(xiàn)反面的可能性大呢?學(xué)了“概率”一章,學(xué)生就能更好地認(rèn)識(shí)這個(gè)問題了。掌握了概率的初步知識(shí),學(xué)生還會(huì)解決更多的實(shí)際問題。

  “25.1概率”一節(jié)首先通過實(shí)例介紹隨機(jī)事件的概念,然后通過擲幣問題引出概率的概念。

  “25.2用列舉法求概率”一節(jié)首先通過具體試驗(yàn)引出用列舉法求概率的方法。然后安排運(yùn)用這種方法求概率的例題。在例題中,涉及列表及畫樹形圖。

  “25.3利用頻率估計(jì)概率”一節(jié)通過幼樹成活率和柑橘損壞率等問題介紹了用頻率估計(jì)概率的方法。

  “25.4課題學(xué)習(xí)鍵盤上字母的排列規(guī)律”一節(jié)讓學(xué)生通過這一課題的研究體會(huì)概率的廣泛應(yīng)用。

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  特別地,二次函數(shù)(以下稱函數(shù))y=ax+bx+c。

  當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax+bx+c=0。

  此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

  1.二次函數(shù)y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。當(dāng)h>0時(shí),y=a(x-h)的圖象可由拋物線y=ax向右平行移動(dòng)h個(gè)單位得到。

  當(dāng)h<0時(shí),則向xxx移動(dòng)|h|個(gè)單位得到。

  當(dāng)h>0,k>0時(shí),將拋物線y=ax向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)+k的圖象。

  當(dāng)h>0,k<0時(shí),將拋物線y=ax向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。

  當(dāng)h<0,k>0時(shí),將拋物線向xxx移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。

  當(dāng)h<0,k<0時(shí),將拋物線向xxx移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。

  因此,研究拋物線y=ax+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。

  2.拋物線y=ax+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b]/4a)。

  3.拋物線y=ax+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小。

  4.拋物線y=ax+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

  (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c)。

  (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的.x1,x2是一元二次方程ax+bx+c=0(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x-x|。

  當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0。

  5.拋物線y=ax+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b)/4a。

  頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值。

  6.用待定系數(shù)法求二次函數(shù)的解析式

  (1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:y=ax+bx+c(a≠0)。

  (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)+k(a≠0)。

  (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x)(x-x)(a≠0)。

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  生活中的立體圖形分類

  知識(shí)點(diǎn)1常見的幾何體及其特征

  知識(shí)點(diǎn)2幾何體的分類

  常見的幾何體不僅可以按柱體、錐體、球分類,也可以按圍成的面分類。分類如下:

  提醒:如果對(duì)于我們看到的物體,只研究它們的形狀、大小和位置關(guān)系,而不考慮顏色、質(zhì)量、原料等其他性質(zhì)時(shí),就得到各種幾何體。

  知識(shí)點(diǎn)3棱柱的相關(guān)概念及其特征

  1、棱柱的相關(guān)概念

  在棱柱中,相鄰兩個(gè)面的交線叫做棱,相鄰兩個(gè)側(cè)面的交線叫做側(cè)棱。

  2、棱柱的特征

 、倮庵乃欣忾L(zhǎng)都相等

 、诶庵纳舷碌酌嫘螤钕嗤

 、劾庵膫(cè)面形狀是平行四邊形

  3、棱柱的分類

  根據(jù)底面圖形的邊數(shù),將棱柱分為三棱柱、四棱柱、五棱柱、六棱柱......它們底面圖形的形狀分別為三角形、四邊形、五邊形、六邊形......

  4、棱柱中元素之間的關(guān)系

  底面多邊形的邊數(shù)n確定該棱柱是n棱柱,它有2n個(gè)頂點(diǎn),3n條棱,其中有n條側(cè)棱,有(n+2)個(gè)面,n個(gè)側(cè)面。

  知識(shí)點(diǎn)4圓柱與棱柱的異同點(diǎn)

  知識(shí)點(diǎn)5圖形的構(gòu)成

  1、圖形是由點(diǎn)、線、面構(gòu)成的,其中面有平面也有曲面;線有直線也有曲面,面與面相交得到線,線與線相交得到點(diǎn)。

  2、用運(yùn)動(dòng)的觀點(diǎn)看點(diǎn)、線、面、體之間的關(guān)系

  點(diǎn)動(dòng)成線:把筆尖看作一個(gè)點(diǎn),當(dāng)筆尖在紙上移動(dòng)時(shí),就可畫出線;

  線動(dòng)成面:鐘表上的指針旋轉(zhuǎn)時(shí)可以形成一個(gè)圓面;

  面動(dòng)成體:長(zhǎng)方形繞它一邊旋轉(zhuǎn),形成一個(gè)圓柱體

  展開與折疊

  知識(shí)點(diǎn)1正方體的表面展開圖

  知識(shí)點(diǎn)2棱柱、棱錐的表面展開圖

  (1)棱柱的表面展開圖是由兩個(gè)相同的多邊形和一些平行四邊形組成的'。沿棱柱表面不同的棱剪開,可以得到不同組合方式的表面展開圖。如圖:

 。2)棱錐的表面展開圖是由一個(gè)多邊形和一些三角形組成的。沿棱錐表面不同的棱剪開,可得到不同組合方式的表面展開圖。

  知識(shí)點(diǎn)3圓柱、圓錐的表面展開圖

 。3)圓柱的表面展開圖是由兩個(gè)大小相同的圓和一個(gè)長(zhǎng)方形組成的,其中長(zhǎng)方形的一邊是底面圓的周長(zhǎng),另一邊的長(zhǎng)是圓柱的高。

 。4)圓錐的表面展開圖是由一個(gè)扇形和一個(gè)圓組成的,其中扇形的半徑長(zhǎng)是圓錐的母線,而扇形的弧長(zhǎng)是圓錐底面圓的周長(zhǎng)。

  截一個(gè)幾何體

  知識(shí)點(diǎn)1截面

  用一個(gè)平面去截幾何體,截出的面叫做截面,截面形狀通常為三角形、正方向、長(zhǎng)方形、梯形、圓、橢圓等,截面的形狀既與被截的幾何體有關(guān),還與截面的角度與方向有關(guān)。

  知識(shí)點(diǎn)2截一個(gè)幾何體所得截面的形狀

  三視圖

  物體的三視圖指主視圖、俯視圖、左視圖。

  主視圖:從正面看到的圖,叫做主視圖。

  左視圖:從左面看到的圖,叫做左視圖。

  俯視圖:從上面看到的圖,叫做俯視圖。

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  1.二次函數(shù)的概念

  二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零.二次函數(shù)的定義域是全體實(shí)數(shù)。

  2.二次函數(shù)的結(jié)構(gòu)特征:

 、诺忍(hào)左邊是函數(shù),右邊是關(guān)于自變量的二次式,的`最高次數(shù)是2。

 、剖浅(shù),是二次項(xiàng)系數(shù),是一次項(xiàng)系數(shù),是常數(shù)項(xiàng)。

  2.初三數(shù)學(xué)二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)。頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]。

  交點(diǎn)式:y=a(x-x)(x-x)[僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線]。

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a。

  3.二次函數(shù)的性質(zhì)

  1.性質(zhì):

  (1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

  (2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。

  2.k,b與函數(shù)圖像所在象限:當(dāng)k>0時(shí),直線必通過一、三象限,y隨x的增大而增大;當(dāng)k<0時(shí),直線必通過二、四象限,y隨x的增大而減小。當(dāng)b>0時(shí),直線必通過一、二象限;當(dāng)b=0時(shí),直線通過原點(diǎn);當(dāng)b<0時(shí),直線必通過三、四象限。特別地,當(dāng)b=o時(shí),直線通過原點(diǎn)o(0,0)表示的是正比例函數(shù)的圖像。這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。

  4.初三數(shù)學(xué)二次函數(shù)圖像

  對(duì)于一般式:①y=ax2+bx+c與y=ax2-bx+c兩圖像關(guān)于y軸對(duì)稱。

 、趛=ax2+bx+c與y=-ax2-bx-c兩圖像關(guān)于x軸對(duì)稱。

 、踶=ax2+bx+c與y=-ax2-bx+c-b2/2a關(guān)于頂點(diǎn)對(duì)稱。

 、躽=ax2+bx+c與y=-ax2+bx-c關(guān)于原點(diǎn)中心對(duì)稱。(即繞原點(diǎn)旋轉(zhuǎn)180度后得到的圖形)

  對(duì)于頂點(diǎn)式:

 、賧=a(x-h)2+k與y=a(x+h)2+k兩圖像關(guān)于y軸對(duì)稱,即頂點(diǎn)(h,k)和(-h,k)關(guān)于y軸對(duì)稱,橫坐標(biāo)相反、縱坐標(biāo)相同。

 、趛=a(x-h)2+k與y=-a(x-h)2-k兩圖像關(guān)于x軸對(duì)稱,即頂點(diǎn)(h,k)和(h,-k)關(guān)于x軸對(duì)稱,橫坐標(biāo)相同、縱坐標(biāo)相反。

 、踶=a(x-h)2+k與y=-a(x-h)2+k關(guān)于頂點(diǎn)對(duì)稱,即頂點(diǎn)(h,k)和(h,k)相同,開口方向相反。

  ④y=a(x-h)2+k與y=-a(x+h)2-k關(guān)于原點(diǎn)對(duì)稱,即頂點(diǎn)(h,k)和(-h,-k)關(guān)于原點(diǎn)對(duì)稱,橫坐標(biāo)、縱坐標(biāo)都相反。(其實(shí)①③④就是對(duì)f(x)來說f(-x),-f(x),-f(-x)的情況)

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  一、二次函數(shù)概念:

  a0)b,c是常數(shù)

  1.二次函數(shù)的概念:一般地,形如yax2bxc(a,的函數(shù),叫做二次函數(shù)。這c可以為零.二次函數(shù)的定義域是全體實(shí)里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù)a0,而b,數(shù).

  2.二次函數(shù)yax2bxc的結(jié)構(gòu)特征:

  ⑴等號(hào)左邊是函數(shù),右邊是關(guān)于自變量x的二次式,x的最高次數(shù)是2.b,c是常數(shù),a是二次項(xiàng)系數(shù),b是一次項(xiàng)系數(shù),c是常數(shù)項(xiàng).

 、芶,二、二次函數(shù)的基本形式

  1.二次函數(shù)基本形式:yax2的性質(zhì):a的絕對(duì)值越大,拋物線的開口越小。

  a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上00,00,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減。粁0時(shí),y有最小值0.x0時(shí),y隨x的增大而減。粁0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值0.

  2.yax2c的性質(zhì):上加下減。

  a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上c0,c0,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減;x0時(shí),y有最小值c.x0時(shí),y隨x的增大而減。粁0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值c.

  3.yaxh的性質(zhì):左加右減。

  2a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上0h,0h,性質(zhì)xh時(shí),y隨x的增大而增大;xh時(shí),y隨X=hx的增大而減小;xh時(shí),y有最小值0.xh時(shí),y隨x的增大而減;xh時(shí),y隨a02向下X=hx的增大而增大;xh時(shí),y有最大值0.

  4.yaxhk的性質(zhì):

  a的符號(hào)開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)a0向上h,kh,kX=hxh時(shí),y隨x的增大而增大;xh時(shí),y隨x的增大而減;xh時(shí),y有最小值k.xh時(shí),y隨x的增大而減小;xh時(shí),y隨a0向下X=hx的增大而增大;xh時(shí),y有最大值k.

  三、二次函數(shù)圖象的平移

  1.平移步驟:

  方法一:

 、艑佄锞解析式轉(zhuǎn)化成頂點(diǎn)式y(tǒng)axhk,確定其頂點(diǎn)坐標(biāo)h,k;

 、票3謷佄锞yax2的形狀不變,將其頂點(diǎn)平移到h,k處,具體平移方法如下:

  向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k

  畫草圖時(shí)應(yīng)抓住以下幾點(diǎn):開口方向,對(duì)稱軸,頂點(diǎn),與x軸的交點(diǎn),與y軸的交點(diǎn).

  六、二次函數(shù)yax2bxc的性質(zhì)

  b4acb2b1.當(dāng)a0時(shí),拋物線開口向上,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,.

  2a4a2a當(dāng)xbbb時(shí),y隨x的增大而減;當(dāng)x時(shí),y隨x的增大而增大;當(dāng)x時(shí),y有最小2a2a2a4acb2值.

  4ab4acb2bb2.當(dāng)a0時(shí),拋物線開口向下,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,時(shí),y隨.當(dāng)x2a4a2a2a4acb2bb.x的增大而增大;當(dāng)x時(shí),y隨x的增大而減小;當(dāng)x時(shí),y有最大值

  2a2a4a

  七、二次函數(shù)解析式的表示方法

  1.一般式:yax2bxc(a,b,c為常數(shù),a0);

  2.頂點(diǎn)式:ya(xh)2k(a,h,k為常數(shù),a0);

  3.兩根式:ya(xx1)(xx2)(a0,x1,x2是拋物線與x軸兩交點(diǎn)的橫坐標(biāo)).

  注意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數(shù)都可以寫成交點(diǎn)式,只有拋物線與x軸有交點(diǎn),即b24ac0時(shí),拋物線的解析式才可以用交點(diǎn)式表示.二次函數(shù)解析式的這三種形式可以互化.

  八、二次函數(shù)的圖象與各項(xiàng)系數(shù)之間的關(guān)系

  1.二次項(xiàng)系數(shù)a

  二次函數(shù)yax2bxc中,a作為二次項(xiàng)系數(shù),顯然a0.

 、女(dāng)a0時(shí),拋物線開口向上,a的值越大,開口越小,反之a(chǎn)的值越小,開口越大;

 、飘(dāng)a0時(shí),拋物線開口向下,a的值越小,開口越小,反之a(chǎn)的值越大,開口越大.

  總結(jié)起來,a決定了拋物線開口的大小和方向,a的正負(fù)決定開口方向,a的大小決定開口的大。

  2.一次項(xiàng)系數(shù)b

  在二次項(xiàng)系數(shù)a確定的前提下,b決定了拋物線的對(duì)稱軸.

 、旁赼0的前提下,當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對(duì)稱軸在y軸左側(cè);2ab0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的右側(cè).2a⑵在a0的前提下,結(jié)論剛好與上述相反,即當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對(duì)稱軸在y軸右側(cè);2ab0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的左側(cè).2a

  總結(jié)起來,在a確定的前提下,b決定了拋物線對(duì)稱軸的位置.

  ab的符號(hào)的判定:對(duì)稱軸xb在y軸左邊則ab0,在y軸的右側(cè)則ab0,概括的說就是“左同2a右異”總結(jié):

  3.常數(shù)項(xiàng)c

 、女(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸上方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為正;

 、飘(dāng)c0時(shí),拋物線與y軸的交點(diǎn)為坐標(biāo)原點(diǎn),即拋物線與y軸交點(diǎn)的縱坐標(biāo)為0;

 、钱(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸下方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為負(fù).總結(jié)起來,c決定了拋物線與y軸交點(diǎn)的位置.

  b,c都確定,那么這條拋物線就是唯一確定的.總之,只要a,二次函數(shù)解析式的確定:

  根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法.用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點(diǎn),選擇適當(dāng)?shù)男问,才能使解題簡(jiǎn)便.一般來說,有如下幾種情況:

  1.已知拋物線上三點(diǎn)的坐標(biāo),一般選用一般式;

  2.已知拋物線頂點(diǎn)或?qū)ΨQ軸或最大(小)值,一般選用頂點(diǎn)式;

  3.已知拋物線與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo),一般選用兩根式;

  4.已知拋物線上縱坐標(biāo)相同的兩點(diǎn),常選用頂點(diǎn)式.

  九、二次函數(shù)圖象的對(duì)稱

  二次函數(shù)圖象的對(duì)稱一般有五種情況,可以用一般式或頂點(diǎn)式表達(dá)

  1.關(guān)于x軸對(duì)稱

  yax2bxc關(guān)于x軸對(duì)稱后,得到的解析式是yax2bxc;

  yaxhk關(guān)于x軸對(duì)稱后,得到的解析式是yaxhk;

  2.關(guān)于y軸對(duì)稱

  yax2bxc關(guān)于y軸對(duì)稱后,得到的解析式是yax2bxc;

  22yaxhk關(guān)于y軸對(duì)稱后,得到的解析式是yaxhk;

  3.關(guān)于原點(diǎn)對(duì)稱

  yax2bxc關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是yax2bxc;yaxhk關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是yaxhk;

  4.關(guān)于頂點(diǎn)對(duì)稱(即:拋物線繞頂點(diǎn)旋轉(zhuǎn)180°)

  2222b2yaxbxc關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是yaxbxc;

  2a22yaxhk關(guān)于頂點(diǎn)對(duì)稱后,得到的'解析式是yaxhk.n對(duì)稱

  5.關(guān)于點(diǎn)m,n對(duì)稱后,得到的解析式是yaxh2m2nkyaxhk關(guān)于點(diǎn)m,根據(jù)對(duì)稱的性質(zhì),顯然無論作何種對(duì)稱變換,拋物線的形狀一定不會(huì)發(fā)生變化,因此a永遠(yuǎn)不變.求拋物線的對(duì)稱拋物線的表達(dá)式時(shí),可以依據(jù)題意或方便運(yùn)算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點(diǎn)坐標(biāo)及開口方向,再確定其對(duì)稱拋物線的頂點(diǎn)坐標(biāo)及開口方向,然后再寫出其對(duì)稱拋物線的表達(dá)式.

  十、二次函數(shù)與一元二次方程:

  1.二次函數(shù)與一元二次方程的關(guān)系(二次函數(shù)與x軸交點(diǎn)情況):

  一元二次方程ax2bxc0是二次函數(shù)yax2bxc當(dāng)函數(shù)值y0時(shí)的特殊情況.圖象與x軸的交點(diǎn)個(gè)數(shù):

 、佼(dāng)b24ac0時(shí),圖象與x軸交于兩點(diǎn)Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次

  b24ac方程axbxc0a0的兩根.這兩點(diǎn)間的距離ABx2x1.

  a2

 、诋(dāng)0時(shí),圖象與x軸只有一個(gè)交點(diǎn);

 、郛(dāng)0時(shí),圖象與x軸沒有交點(diǎn).

  1"當(dāng)a0時(shí),圖象落在x軸的上方,無論x為任何實(shí)數(shù),都有y0;

  2"當(dāng)a0時(shí),圖象落在x軸的下方,無論x為任何實(shí)數(shù),都有y0.

  2.拋物線yax2bxc的圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

  3.二次函數(shù)常用解題方法總結(jié):

  ⑴求二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo),需轉(zhuǎn)化為一元二次方程;

  ⑵求二次函數(shù)的最大(。┲敌枰门浞椒▽⒍魏瘮(shù)由一般式轉(zhuǎn)化為頂點(diǎn)式;

 、歉鶕(jù)圖象的位置判斷二次函數(shù)yax2bxc中a,b,c的符號(hào),或由二次函數(shù)中a,b,c的符號(hào)判斷圖象的位置,要數(shù)形結(jié)合;

  ⑷二次函數(shù)的圖象關(guān)于對(duì)稱軸對(duì)稱,可利用這一性質(zhì),求和已知一點(diǎn)對(duì)稱的點(diǎn)坐標(biāo),或已知與x軸的一個(gè)交點(diǎn)坐標(biāo),可由對(duì)稱性求出另一個(gè)交點(diǎn)坐標(biāo).

  ⑸與二次函數(shù)有關(guān)的還有二次三項(xiàng)式,二次三項(xiàng)式ax2bxc(a0)本身就是所含字母x的二次函數(shù);下面以a0時(shí)為例,揭示二次函數(shù)、二次三項(xiàng)式和一元二次方程之間的內(nèi)在聯(lián)系:

  0拋物線與x軸有兩個(gè)交點(diǎn)0二次三項(xiàng)式的值可正、可零、可負(fù)二次三項(xiàng)式的值為非負(fù)二次三項(xiàng)式的值恒為正一元二次方程有兩個(gè)不相等實(shí)根一元二次方程有兩個(gè)相等的實(shí)數(shù)根一元二次方程無實(shí)數(shù)根.0拋物線與x軸只有一個(gè)交點(diǎn)拋物線與x軸無交點(diǎn)y=2x2y=x2y=3(x+4)2二次函數(shù)圖像參考:

  y=3x2y=3(x-2)2y=x22

  y=2x2y=2(x-4)2y=2(x-4)2-3y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2x2十一、函數(shù)的應(yīng)用

  剎車距離二次函數(shù)應(yīng)用何時(shí)獲得最大利潤(rùn)

  最大面積是多少y=-2(x+3)2y=-2x2y=-2(x-3)2

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  1、弧長(zhǎng)公式

  n°的圓心角所對(duì)的弧長(zhǎng)l的計(jì)算公式為L(zhǎng)=nπr/180

  2、扇形面積公式,其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長(zhǎng).

  S=﹙n/360﹚πR2=1/2×lR

  3、圓錐的側(cè)面積,其中l(wèi)是圓錐的母線長(zhǎng),r是圓錐的.地面半徑.

  S=1/2×l×2πr=πrl

  4、弦切角定理

  弦切角:圓的切線與經(jīng)過切點(diǎn)的弦所夾的角,叫做弦切角.

  弦切角定理:弦切角等于弦與切線夾的弧所對(duì)的圓周角.

  一、選擇題

  1.(20xxo珠海,第4題3分)已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側(cè)面積為()

  A.24πcm2B.36πcm2C.12cm2D.24cm2

  考點(diǎn):圓柱的計(jì)算.

  分析:圓柱的側(cè)面積=底面周長(zhǎng)×高,把相應(yīng)數(shù)值代入即可求解.

  解答:解:圓柱的側(cè)面積=2π×3×4=24π.

  故選A.

  點(diǎn)評(píng):本題考查了圓柱的計(jì)算,解題的關(guān)鍵是弄清圓柱的側(cè)面積的計(jì)算方法.

  2.(20xxo廣西賀州,第11題3分)如圖,以AB為直徑的⊙O與弦CD相交于點(diǎn)E,且AC=2,AE=,CE=1.則弧BD的長(zhǎng)是()

  A.B.C.D.

  考點(diǎn):垂徑定理;勾股定理;勾股定理的逆定理;弧長(zhǎng)的計(jì)算.

  分析:連接OC,先根據(jù)勾股定理判斷出△ACE的形狀,再由垂徑定理得出CE=DE,故=,由銳角三角函數(shù)的定義求出∠A的度數(shù),故可得出∠BOC的度數(shù),求出OC的長(zhǎng),再根據(jù)弧長(zhǎng)公式即可得出結(jié)論.

  解答:解:連接OC,

  ∵△ACE中,AC=2,AE=,CE=1,

  ∴AE2+CE2=AC2,

  ∴△ACE是直角三角形,即AE⊥CD,

  ∵sinA==,

  ∴∠A=30°,

  ∴∠COE=60°,

  ∴=sin∠COE,即=,解得OC=,

  ∵AE⊥CD,

  ∴=,

  ∴===.

  故選B.

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  1二次根式:形如a(a0)的式子為二次根式;性質(zhì):a(a0)是一個(gè)非負(fù)數(shù);

  a2aa0。

  2二次根式的乘除:ababa0,b0;

  aaa0,b0。bb3二次根式的加減:二次根式加減時(shí),先將二次根式華為最簡(jiǎn)二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并。

  4海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc。2第二章一元二次方程

  1一元二次方程:等號(hào)兩邊都是整式,且只有一個(gè)未知數(shù),未知數(shù)的最高次是2的方程。

  2一元二次方程的解法

  配方法:將方程的一邊配成完全平方式,然后兩邊開方;

  bb24ac公式法:x2a因式分解法:左邊是兩個(gè)因式的乘積,右邊為零。

  3一元二次方程在實(shí)際問題中的應(yīng)用

  4韋達(dá)定理:設(shè)x1,x2是方程ax2bxc0的兩個(gè)根,那么有x1x2,x1x2第三章旋轉(zhuǎn)

  1圖形的.旋轉(zhuǎn)旋轉(zhuǎn):一個(gè)圖形繞某一點(diǎn)轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;

  對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角旋轉(zhuǎn)前后的圖形全等。

  2中心對(duì)稱:一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180度,和另一個(gè)圖形重合,則兩個(gè)圖形關(guān)于這個(gè)點(diǎn)中心對(duì)稱;

  中心對(duì)稱圖形:一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180度后得到的圖形能夠和原來的圖形重合,則說這個(gè)圖形是中心對(duì)稱圖形;

  3關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)第四章圓

  1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義

  2垂直于弦的直徑

  圓是軸對(duì)稱圖形,任何一條直徑所在的直線都是它的對(duì)稱軸;

  垂直于弦的直徑平分弦,并且平方弦所對(duì)的兩條;平分弦的直徑垂直弦,并且平分弦所對(duì)的兩條弧。

  3弧、弦、圓心角

  在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所baca對(duì)的弦也相等。

  4圓周角

  在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;

  半圓(或直徑)所對(duì)的圓周角是直角,90度的圓周角所對(duì)的弦是直徑。

  5點(diǎn)和圓的位置關(guān)系點(diǎn)在dr點(diǎn)在圓上d=r點(diǎn)在圓內(nèi)d相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角。

  三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線的交點(diǎn),為三角形的內(nèi)心。

  6圓和圓的位置關(guān)系

  外離d>R+r外切d=R+r相交R-r第五章概率初步

  1概率意義:在大量重復(fù)試驗(yàn)中,事件A發(fā)生的頻率某個(gè)常數(shù)p附近,則常數(shù)p叫做事件A的概率。

  2用列舉法求概率

  一般的,在一次試驗(yàn)中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=mnm穩(wěn)定在n3用頻率去估計(jì)概率

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  圓的全章復(fù)習(xí)

  圓的基礎(chǔ)知識(shí)(1)圓的有關(guān)概念:

  弦,弧,半圓,弓形,弓形高,等。[含同圓等圓),弦心距,直徑等。

  (2)圓的確定

  圓心決定位置,半徑?jīng)Q定大小,不共線的三點(diǎn)確定一個(gè)圓。注意:作圖(兩邊中垂線找交點(diǎn)),外心的位置,外心到三角形各頂點(diǎn)距離等

  圓的對(duì)稱性:軸對(duì)稱,中心對(duì)稱,旋轉(zhuǎn)不變性

  2.圓與其它圖形

 。1)點(diǎn)與圓三種

 。2)直線與圓

  相離dr

 、僖粭l直線與圓三種相切dr

  相交d

  r②兩條直線與圓有關(guān)的角:圓周角,弦切角,圓外角等比例線段:圓冪定理等

  ③三條直線與圓即三角形與圓

  三角形“四心”的區(qū)別:垂心意義三條高的交點(diǎn)性質(zhì)等式積:位置銳角三角形:內(nèi)部直角三角形:直角頂點(diǎn)鈍角三角形:外部必在三角形內(nèi)部ahabhbchc重心三條中線的交點(diǎn)同一中線上重心到頂點(diǎn)的距離是它到該頂點(diǎn)的對(duì)邊距離的2倍外心

  1.外接圓的圓心

  2.三邊中垂線的交點(diǎn)

  3.內(nèi)切圓的圓心

  4.三條角平分線的交點(diǎn)到三角形三頂點(diǎn)距離相等銳角三角形:內(nèi)部直角三角形:斜邊中點(diǎn)鈍角三角形:外部到三角形三邊距離相等與頂點(diǎn)連線平分該內(nèi)角必在三角形內(nèi)部?jī)?nèi)心

 、芩臈l直線與圓為180內(nèi)切四邊形:對(duì)角之和的和相等外切四邊形:兩組對(duì)邊

 。3)兩圓與直線

  兩圓外切時(shí)連心線過內(nèi)公切線切點(diǎn)與該切線垂直。兩圓內(nèi)切時(shí)連心線過切點(diǎn),垂直于過切點(diǎn)的切線。

  兩圓相交時(shí),連心線垂直于公共弦,并且平分公共弦。

  3.圓與圓的位置關(guān)系:

  (1).掌握?qǐng)A與圓的五種位置關(guān)系,類比于點(diǎn)與圓,直線與圓的位置關(guān)系,能通過兩圓半徑r1,r2及圓心距d三者的數(shù)量關(guān)系,判斷兩圓位置關(guān)系,或通過位置關(guān)系,判斷數(shù)量關(guān)系。

  (2).在數(shù)軸上表示當(dāng)d在不同位置時(shí),兩圓的位置關(guān)系。

  (3).在證明兩圓的或多圓的圖形時(shí),常加的`輔助線:公共弦、公切線;圓心距,連心線。

  (4).當(dāng)兩圓相交時(shí),連心線垂直平分公共弦。當(dāng)兩圓內(nèi)切時(shí),連心線垂直于公切線。當(dāng)兩圓外切時(shí),連心線垂直于內(nèi)公切線。

  (5).公切線是指兩個(gè)圓公共的切線,如果兩圓在公切線同旁則稱外公切線,如果兩圓在公切線兩旁則稱內(nèi)切線。公切線上兩切點(diǎn)間線段的長(zhǎng)叫公切線長(zhǎng)。(Rr)(外離時(shí))

  (6).如圖內(nèi)公切線長(zhǎng)d(Rr)(外離、外切、相交時(shí))外公切線長(zhǎng)dd圓心距

  R大圓半徑

  r小圓半徑

  R≥r

  2222

  內(nèi)公切線Rr夾角一半sin

  d的正弦值

  外公切線Rr夾角一半sin

  d的正弦值

  (7).公切線條數(shù)①內(nèi)含0條0dRr②內(nèi)切1條dRr③相交2條RrdRr④外切3條dRr⑤外離4條dRr4,定理

  (1)垂徑定理及推論:過圓心;垂直弦;平分弦(非直徑);平分優(yōu)弧;平分劣;知2求3。

 。2)圓心角,弦,弦心距,弧之間關(guān)系:同圓等圓中知1得3。

 。3)與圓有關(guān)的角:圓心角,圓周角,弦切角,圓內(nèi)角,圓外角,圓內(nèi)接四邊形外角,內(nèi)對(duì)角,對(duì)角

  1.一條弧所對(duì)圓周角等于它所對(duì)的圓心角的一它所對(duì)弧度數(shù)的一半半,圓周角的度數(shù)等于角相等;

  2.同弧或等弧所對(duì)的圓周圓周角的性質(zhì)相等的圓周角所對(duì)的弧也相等

  3.直徑所對(duì)的圓周角是直角,90的圓周角所對(duì)的弦是直角

  (4)切線的判定、性質(zhì):

  ①判定:常見的證法連半徑,證垂直,判斷切線,“連垂切”或作垂直證d=r

  ②性質(zhì):若一條直線滿足過圓心、過切點(diǎn),垂直于切線中任意兩條,可得另外一條。常見“切連垂”

 。5)和圓有關(guān)的比例線段:

  相交弦定理及推論,切割線定理及推論,圓冪定理

  5.和圓有關(guān)的計(jì)算

 。1)求線段

  ①直徑、半徑

 、诖箯蕉ɡ恚呵笙议L(zhǎng)、弦心距、拱高

 、矍芯長(zhǎng)、公切線長(zhǎng)(外公切線長(zhǎng),內(nèi)公切線長(zhǎng))

 、苤苯侨切蝺(nèi)切圓半徑

 、萑我馊切蝺(nèi)切圓半徑與面積、周長(zhǎng)的關(guān)系

 、薜冗吶切蝺(nèi)切圓半徑:外接圓半徑=1:2

  ⑦與圓有關(guān)的比例線段、弦長(zhǎng)、切線長(zhǎng)等

  (2)求角

  圓心角,圓周角,弦切角,兩切線夾角,公切線夾角

  6.常見輔助線

  半徑、直徑、弦心距、“切連垂”、連心線、公共弦、公切線

  7.圓中常見圖形

  直角三角形等腰三角形圓內(nèi)接四邊形相似三角形

  8.正多邊形和圓

  (n2)180正n邊形的內(nèi)角和為(n2)180有n個(gè)相等的內(nèi)角,每個(gè)內(nèi)角的度數(shù)為

  n注意:正多邊形的外交和始終為3609.弧長(zhǎng)公式:lnR

  180nR210.扇形面積公式:3