高考數(shù)學(xué)第一輪復(fù)習(xí)圓的方程知識(shí)點(diǎn)
1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。
2、圓的方程
。1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
(2)一般方程
當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為
當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,
若利用圓的'標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。
3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:
。1)設(shè)直線,圓圓心到l的距離為則有
。2)設(shè)直線,圓,先將方程聯(lián)立消元,得到一個(gè)一元二次方程之后,令其中的判別式為,則有;;
注:如圓心的位置在原點(diǎn),可使用公式去解直線與圓相切的問(wèn)題,其中表示切點(diǎn)坐標(biāo),r表示半徑。
(3)過(guò)圓上一點(diǎn)的切線方程:
、賵Ax2+y2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(課本命題)。
②圓(x—a)2+(y—b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0—a)(x—a)+(y0—b)(y—b)=r2(課本命題的推廣)。
4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。
設(shè)圓,兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。
當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;
當(dāng)時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;
當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。
【高考數(shù)學(xué)第一輪復(fù)習(xí)圓的方程知識(shí)點(diǎn)】相關(guān)文章:
高考數(shù)學(xué)直線與方程復(fù)習(xí)知識(shí)點(diǎn)09-11
高考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn):軌跡方程的求解09-28
高三數(shù)學(xué)復(fù)習(xí)直線和圓的方程知識(shí)點(diǎn)07-21
高考第一輪復(fù)習(xí)數(shù)學(xué)知識(shí)點(diǎn)09-26
高考數(shù)學(xué)圓的知識(shí)點(diǎn)07-31
高二數(shù)學(xué)下冊(cè)《圓方程》知識(shí)點(diǎn)01-27
必修二數(shù)學(xué)圓與方程知識(shí)點(diǎn)總結(jié)02-10