- 相關(guān)推薦
GMAT數(shù)學(xué)考試的必備思維
GMAT數(shù)學(xué)思維1.換元思想
換元法又稱變量替換法,即根據(jù)所要求解的式子的結(jié)構(gòu)特征,巧妙地設(shè)置新的變量來替代原來表達(dá)式中的某些式子或變量,對新的變量求出結(jié)果后,返回去再求出原變量的結(jié)果.換元法通過引入新的變量,將分散的條件聯(lián)系起來,使超越式化為有理式、高次式化為低次式、隱性關(guān)系式化為顯性關(guān)系式,從而達(dá)到化繁為簡、變未知為已知的目的.
GMAT數(shù)學(xué)思維2.數(shù)形結(jié)合思想
數(shù)形結(jié)合的思想,其實(shí)質(zhì)是將抽象的數(shù)學(xué)語言與直觀的圖形結(jié)合起來,使抽象思維和形象思維結(jié)合,通過對圖形的認(rèn)識,數(shù)形結(jié)合的轉(zhuǎn)化,可以培養(yǎng)思維的靈活性,形象性,使問題化難為易,化抽象為具體. 通過“形”往往可以解決用“數(shù)”很難解決的問題.
GMAT數(shù)學(xué)思維3.轉(zhuǎn)化與化歸思想
所謂轉(zhuǎn)化與化歸思想方法,就是在研究和解決有關(guān)數(shù)學(xué)問題時,采用某種手段將問題通過變換使之轉(zhuǎn)化,進(jìn)而達(dá)到解決的一種方法.一般總是將復(fù)雜的問題通過轉(zhuǎn)化為簡單的問題,將難解的問題通過變換轉(zhuǎn)化為容易的問題,將未解決的問題變換轉(zhuǎn)化為已解決的問題.
轉(zhuǎn)化與化歸的思想方法是數(shù)學(xué)中最基本的思想方法.數(shù)學(xué)中一切問題的解決都離不開轉(zhuǎn)化與化歸,數(shù)形結(jié)合思想體現(xiàn)了數(shù)與形的相互轉(zhuǎn)化;函數(shù)與方程思想體現(xiàn)了函數(shù)、方程、不等式間的相互轉(zhuǎn)化;分類討論思想體現(xiàn)了局部與整體的相互轉(zhuǎn)化,以上三種思想方法都是轉(zhuǎn)化與化歸思想的具體體現(xiàn).各種變換法、分析法、反證法、待定系數(shù)法、構(gòu)造法等都是轉(zhuǎn)化的手段.所以說轉(zhuǎn)化與化歸是數(shù)學(xué)思想方法的靈魂.
GMAT數(shù)學(xué)思維4.函數(shù)與方程思想
函數(shù)思想指運(yùn)用函數(shù)的概念和性質(zhì),通過類比、聯(lián)想、轉(zhuǎn)化、合理地構(gòu)造函數(shù),然后去分析、研究問題,轉(zhuǎn)化問題和解決問題.方程思想是通過對問題的觀察、分析、判斷等一系列的思維過程中,具備標(biāo)新立異、獨(dú)樹一幟的深刻性、獨(dú)創(chuàng)性思維,將問題化歸為方程的問題,利用方程的性質(zhì)、定理,實(shí)現(xiàn)問題與方程的互相轉(zhuǎn)化接軌,達(dá)到解決問題的目的.
GMAT數(shù)學(xué)思維5.分類討論思想
所謂分類討論,就是當(dāng)問題所給的對象不能進(jìn)行統(tǒng)一研究時,我們就需要對研究的對象進(jìn)行分類,然后對每一類分別研究,得出每一類的結(jié)論,最后綜合各類的結(jié)果得到整個問題的解答.實(shí)質(zhì)上分類討論是 “化整為零,各個擊破,再積零為整”的策略. 分類討論時應(yīng)注重理解和掌握分類的原則、方法與技巧、做到“確定對象的全體,明確分類的標(biāo)準(zhǔn),分層別類不重復(fù)、不遺漏的分析討論.”
換元思路,數(shù)形結(jié)合思路,轉(zhuǎn)化與化歸思路,函數(shù)以及方程思路以及分類討論思路就是GMAC想考察的五大GMAT數(shù)學(xué)思維,可以看出,雖然題目本身的難度不大,但是對于基本思維的方式的考察卻非常的全面,最后祝大家都能考出好成績。
以上內(nèi)容給考生詳細(xì)接介紹了GMAT數(shù)學(xué)考試的必備的思維能力,對考生來說,了解以上內(nèi)容是考生順利考試的前提,最后,培臻教育祝考生能取得滿意的考試成績,早日圓自己的出國留學(xué)夢想。
【GMAT數(shù)學(xué)考試的思維】相關(guān)文章:
GMAT數(shù)學(xué)考試內(nèi)容詳解08-13
2015年gmat報考指南:gmat退考06-22
2015年gmat報考指南:gmat轉(zhuǎn)考05-22
GRE/GMAT的區(qū)別09-19
GMAT閱讀技巧10-04
GMAT考試詳解05-29
GMAT閱讀技巧11-07
GMAT報名技巧10-31