- 相關(guān)推薦
《一元二次不等式解法》高中數(shù)學(xué)教案(通用7篇)
教案是教師為順利而有效地開展教學(xué)活動,根據(jù)課程標(biāo)準(zhǔn),教學(xué)大綱和教科書要求及學(xué)生的實(shí)際情況,以課時或課題為單位,對教學(xué)內(nèi)容、教學(xué)步驟、教學(xué)方法等進(jìn)行的具體設(shè)計和安排的一種實(shí)用性教學(xué)文書。下面是小編整理的《一元二次不等式解法》高中數(shù)學(xué)教案,歡迎大家分享。
《一元二次不等式解法》高中數(shù)學(xué)教案 篇1
下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計、效果評價六方面進(jìn)行說課。
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
。ǘ┙虒W(xué)內(nèi)容
本節(jié)內(nèi)容分2課時學(xué)習(xí)。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。
二、教學(xué)目標(biāo)分析
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識目標(biāo)——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標(biāo)——創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。
三、重難點(diǎn)分析
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。
要把握這個重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識方程的解,不等式的`解集與函數(shù)圖象上對應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個二次”的關(guān)系。要突破這個難點(diǎn),讓學(xué)生歸納“三個一次”的關(guān)系作鋪墊。
四、教法與學(xué)法分析
。ㄒ唬⿲W(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
。ǘ┙谭ǚ治
本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。
五、課堂設(shè)計
本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。
。ㄒ唬﹦(chuàng)設(shè)情景,引出“三個一次”的關(guān)系
本節(jié)課開始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。
為此,我設(shè)計了以下幾個問題:
1、請同學(xué)們解以下方程和不等式:
①2x-7=0;②2x-70;③2x-70
學(xué)生回答,我板書。
2、我指出:2x-70和2x-70的解實(shí)際上只需利用不等式基本性質(zhì)就容易得到。
3、接著我提出:我們能否利用不等式的基本性質(zhì)來解一元二次不等式呢?學(xué)生可能感到很困惑。
4、為此,我引入一次函數(shù)y=2x-7,借助動畫從圖象上直觀認(rèn)識方程和不等式的解,得出以下三組重要關(guān)系:
、2x-7=0的解恰是函數(shù)y=2x-7的圖象與x軸
交點(diǎn)的橫坐標(biāo)。
、2x-70的解集正是函數(shù)y=2x-7的圖象
在x軸的上方的點(diǎn)的橫坐標(biāo)的集合。
、2x-70的解集正是函數(shù)y=2x-7的圖象
在x軸的下方的點(diǎn)的橫坐標(biāo)的集合。
三組關(guān)系的得出,實(shí)際上讓學(xué)生找到了利用“一次函數(shù)的圖象”來解一元一次方程和一元一次不等式的方法。讓學(xué)生看到了解決一元二次不等式的希望,大大激發(fā)了學(xué)生解決新問題的興趣。此時,學(xué)生很自然聯(lián)想到利用函數(shù)y=x2-x-6的圖象來求不等式x2-x-60的解集。
(二)比舊悟新,引出“三個二次”的關(guān)系
為此我引導(dǎo)學(xué)生作出函數(shù)y=x2-x-6的圖象,按照“看一看說一說問一問”的思路進(jìn)行探究。
看函數(shù)y=x2-x-6的圖象并說出:
、俜匠蘹2-x-6=0的解是
x=-2或x=3;
、诓坏仁絰2-x-60的解集是
{x|x-2,或x3};
、鄄坏仁絰2-x-60的解集是
{x|-23}。
此時,學(xué)生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來解一元二次不等式的方法。
學(xué)生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關(guān)系又怎樣呢?(學(xué)生回答:△0時,圖象與x軸有兩個交點(diǎn);△=0時,圖象與x軸只有一個交點(diǎn);△0時,圖象與x輛沒有交點(diǎn)。)請同學(xué)們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關(guān)系?
。ㄈw納提煉,得出“三個二次”的關(guān)系
1、引導(dǎo)學(xué)生根據(jù)圖象與x軸的相對位置關(guān)系,寫出相關(guān)不等式的解集。
2、此時提出:若a0時,怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學(xué)生得出:將二次項(xiàng)系數(shù)由負(fù)化正,轉(zhuǎn)化為上述模式求解,教師應(yīng)予以強(qiáng)調(diào);也有的學(xué)生提出畫出相應(yīng)的二次函數(shù)圖象,根據(jù)圖象寫出解集,教師應(yīng)給予肯定。)
。ㄋ模⿷(yīng)用新知,熟練掌握一元二次不等式的解集
借助二次函數(shù)的圖象,得到一元二次不等式的解集,學(xué)生形成了感性認(rèn)識,為鞏固所學(xué)知識,我們一起來完成以下例題:
例1、解不等式2x2-3x-20
解:因?yàn)棣?,方程2x2-3x-2=0的解是
x1=,x2=2
所以,不等式的解集是
{x|x,或x2}
例1的解決達(dá)到了兩個目的:一是鞏固了一元二次不等式解集的應(yīng)用;二是規(guī)范了一元二次不等式的解題格式。
下面我們接著學(xué)習(xí)課本例2。
例2解不等式-3x2+6x2
課本例2的出現(xiàn)恰當(dāng)好處,一方面突出了“對于二次項(xiàng)系數(shù)是負(fù)數(shù)(即a0)的一元二次不等式,可以先把二次項(xiàng)系數(shù)化為正數(shù),再求解”;另一方面,學(xué)生對此例的解答極易出現(xiàn)寫錯解集(如出現(xiàn)“或”與“且”的錯誤)。
通過例1、例2的解決,學(xué)生與我一起總結(jié)了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。
例3解不等式4x2-4x+10
例4解不等式-x2+2x-30
分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學(xué)生練習(xí),教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予熱情表揚(yáng)。
4道例題,具有典型性、層次性和學(xué)生的可接受性。為了避免學(xué)生學(xué)后“一團(tuán)亂麻”、“一盤散沙”的局面,我和學(xué)生一起總結(jié)。
。ㄎ澹┛偨Y(jié)
解一元二次不等式的“四部曲”:
(1)把二次項(xiàng)的系數(shù)化為正數(shù)
(2)計算判別式Δ
(3)解對應(yīng)的一元二次方程
(4)根據(jù)一元二次方程的根,結(jié)合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集
。┳鳂I(yè)布置
為了使所有學(xué)生鞏固所學(xué)知識,我布置了“必做題”;又為學(xué)有余力者留有自由發(fā)展的空間,我布置了“探究題”。
。1)必做題:習(xí)題1.5的1、3題
。2)探究題:①若a、b不同時為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實(shí)數(shù)k的取值范圍。
。ㄆ撸┌鍟O(shè)計
一元二次不等式解法(1)
五、教學(xué)效果評價
本節(jié)課立足課本,著力挖掘,設(shè)計合理,層次分明。以“三個一次關(guān)系→三個二次關(guān)系→一元二次不等式解法”為主線,以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點(diǎn),突破難點(diǎn)。在教學(xué)思想上既注重知識形成過程的教學(xué),還特別突出學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,創(chuàng)新精神的培養(yǎng),引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗(yàn)求知的樂趣。
《一元二次不等式解法》高中數(shù)學(xué)教案 篇2
教學(xué)內(nèi)容
3.2一元二次不等式及其解法
三維目標(biāo)
一、知識與技能
1.鞏固一元二次不等式的解法和解法與二次函數(shù)的關(guān)系、一元二次不等式解法的步驟、解法與二次函數(shù)的關(guān)系兩者之間的區(qū)別與聯(lián)系;
2.能熟練地將分式不等式轉(zhuǎn)化為整式不等式(組),正確地求出分式不等式的解集;
3.會用列表法,進(jìn)一步用數(shù)軸標(biāo)根法求解分式及高次不等式;
4.會利用一元二次不等式,對給定的與一元二次不等式有關(guān)的問題,嘗試用一元二次不等式解法與二次函數(shù)的有關(guān)知識解題.
二、過程與方法
1.采用探究法,按照思考、交流、實(shí)驗(yàn)、觀察、分析得出結(jié)論的方法進(jìn)行啟發(fā)式教學(xué);
2.發(fā)揮學(xué)生的主體作用,作好探究性教學(xué);
3.理論聯(lián)系實(shí)際,激發(fā)學(xué)生的學(xué)習(xí)積極性.
三、情感態(tài)度與價值觀
1.進(jìn)一步提高學(xué)生的`運(yùn)算能力和思維能力;
2.培養(yǎng)學(xué)生分析問題和解決問題的能力;
3.強(qiáng)化學(xué)生應(yīng)用轉(zhuǎn)化的數(shù)學(xué)思想和分類討論的數(shù)學(xué)思想.
教學(xué)重點(diǎn)
1.從實(shí)際問題中抽象出一元二次不等式模型.
2.圍繞一元二次不等式的解法展開,突出體現(xiàn)數(shù)形結(jié)合的思想.
教學(xué)難點(diǎn)
1.深入理解二次函數(shù)、一元二次方程與一元二次不等式的關(guān)系.
教學(xué)方法
啟發(fā)、探究式教學(xué)
教學(xué)過程
復(fù)習(xí)引入
師:上一節(jié)課我們通過具體的問題情景,體會到現(xiàn)實(shí)世界存在大量的不等量關(guān)系,并且研究了用不等式或不等式組來表示實(shí)際問題中的不等關(guān)系;仡櫹碌缺葦(shù)列的性質(zhì)。
生:略
師:某同學(xué)要把自己的計算機(jī)接入因特網(wǎng),現(xiàn)有兩種ISP公司可供選擇,公司A每小時收費(fèi)1.5元(不足1小時按1小時計算),公司B的收費(fèi)原則是第1小時內(nèi)(含恰好1小時,下同)收費(fèi)1.7元,第2小時內(nèi)收費(fèi)1.6元以后每小時減少0.1元(若用戶一次上網(wǎng)時間超過17小時,按17小時計算)那么,一次上網(wǎng)在多少時間以內(nèi)能夠保證選擇公司A的上網(wǎng)費(fèi)用小于等于選擇公司B所需費(fèi)用。
學(xué)生自己討論
點(diǎn)題,板書課題
新課學(xué)習(xí)
1.一元二次不等式
只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式。
2.三個“二次”之間的關(guān)系及一元二次不等式的解法
師在前面我們已經(jīng)學(xué)習(xí)過一元二次不等的解法,發(fā)現(xiàn)一元二次方程及對應(yīng)的二次函數(shù)有關(guān)系,那么同學(xué)們課本打開到p77填表格。
生略
師學(xué)生討論歸納出解一元二次不等式的步驟
一看:看二次項(xiàng)系數(shù)的正負(fù),并且變形為
二算:,判斷正負(fù),有根則求并畫出對應(yīng)的函數(shù)圖象
三寫:寫出原不等式的解集
練習(xí)反饋
。劾}剖析]
例1解下列不等式
。1)(2)
。3)(4)
(5)(6)
課本80頁練習(xí)
例2已知不等式的解集為試解不等式
變式:
已知
課堂
小結(jié)
1.三個“二次的關(guān)系”
2.解二次不等式的步驟
作業(yè)布置
課本第80頁習(xí)題3.2A組第1.2.4題B組1
練習(xí)調(diào)配
設(shè)計42頁全做,43頁例1例2隨堂練習(xí)2.3,4,5測評1、3、4、5、6、7、8、
《一元二次不等式解法》高中數(shù)學(xué)教案 篇3
教學(xué)目標(biāo):
(1)透徹理解、掌握一元二次方程、一元二次不等式與二次函數(shù)的內(nèi)在聯(lián)系,會解一元二次不等式;
(2)培養(yǎng)學(xué)生數(shù)學(xué)的數(shù)形結(jié)合思想和轉(zhuǎn)化能力,學(xué)會主動探求問題和尋找解決問題的方法。
教學(xué)重點(diǎn):一元二次不等式的解法(圖象法)
教學(xué)難點(diǎn):
(1)一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系;
(2)數(shù)形結(jié)合思想的滲透
教學(xué)方法與教學(xué)手段:
嘗試探索教學(xué)法、歸納概括。
教學(xué)過程:
一、復(fù)習(xí)引入
1.復(fù)習(xí)一元一次方程、一元一次不等式與一次函數(shù)的關(guān)系
[師]前面我們已經(jīng)學(xué)習(xí)了絕對值不等式的解法,今天開始研究一元二次不等式的解法。(板書課題)記得在初中我們已學(xué)習(xí)了一元一次不等式的解法,還記得是用什么方法解的嗎?
學(xué)生可能回答是代數(shù)方法,也可能說是利用直線圖象。
[師]初中學(xué)習(xí)了一次函數(shù)的圖象,使得我們對一元一次不等式的解法有了更深入的了解。首先請同學(xué)們畫出y=2x-7
[師]請同學(xué)們畫出圖象,并回答問題。
一次函數(shù)y=2x-7的圖象如下:
填表:
當(dāng)x時,y=0,即2x-70;
當(dāng)x時,y<0,即2x-70;
當(dāng)x時,y>0,即2x-70;
注:(1)引導(dǎo)學(xué)生由圖象得出結(jié)論(數(shù)形結(jié)合)
(2)由學(xué)生填空(一邊演示y<0,y>0部分圖象)
從上例的特殊情形,你能得出什么結(jié)論?
注:教師引導(dǎo)下學(xué)生發(fā)現(xiàn)其結(jié)論,并由學(xué)生嘗試敘述:一元一次方程ax+b=0的根實(shí)質(zhì)上就是直線y=ax+b與x軸交點(diǎn)的橫坐標(biāo);一元一次不等式ax+b>0(或ax+b<0)的解集實(shí)質(zhì)上就是使得函數(shù)的.圖象在x軸上方還是下方時x的取值范圍。
2.新課導(dǎo)入
[師]我們可以利用一次函數(shù)的圖象快速準(zhǔn)確地求出一元一次不等式的解集,那能否也可以借助二次函數(shù)的圖象來解一元二次不等式呢?
二、講解新課
1、一元二次不等式解法的探索
[師]你知道二次函數(shù)的草圖是怎樣畫出的嗎?(用"特殊點(diǎn)法"而非課本上的"列表描點(diǎn)法")你能回答以下問題嗎?二次函數(shù)y=x2-4x+3的圖象如下:
填表:方程x2-4x+3=0(即y=0)的解是
不等式x2-4x+3>0(即y>0)的解集是
不等式x2-4x+3<0(即y<0)的解集是
注:學(xué)生類比前面的知識,能根據(jù)二次函數(shù)的圖象確定與x軸的交點(diǎn),確定對應(yīng)的一元二次方程的根,從而確定一元二次不等式的解集。(邊說邊畫y>0,y<0部分圖象)
[師]現(xiàn)在如果我變動這條拋物線,請大家觀察拋物線與x軸的交點(diǎn)有何變化?
注:引導(dǎo)學(xué)生發(fā)現(xiàn)一元二次方程的根有三種情況,其對應(yīng)的二次函數(shù)圖象與x軸的位置關(guān)系也有三種情況,是由>0,=0,<0來確定的。
2、講解例題
[師]接下來請同學(xué)們再來分析幾個具體例子
(板書)例:解下列各不等式
(1)2x2-3x-2>0;
(2)-3x2+6x>2;
(3)4x2-4x+1>0;
(4)-x2+2x-3>0.
注:跟學(xué)生共同詳細(xì)分析(1),強(qiáng)調(diào)解題規(guī)范性,其余(2)(3)(4)由學(xué)生完成,并小組討論。
解:(1)方程2x2-3x-2=0的兩根為x1=-或x2=2,(畫草圖,結(jié)合圖象)
所以原不等式的解集是{x|x<-x="">2}
四、課后作業(yè):書P21/習(xí)題1.5/1.3.5.6
五、教學(xué)設(shè)計說明:
1、本節(jié)課教學(xué)設(shè)計力圖體現(xiàn)以學(xué)生發(fā)展為本,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)循序漸進(jìn)的教學(xué)原則,通過對原有知識的復(fù)習(xí),引導(dǎo)學(xué)生類比探索新的知識,激發(fā)學(xué)生的求知欲望,調(diào)動學(xué)生的積極性。
2、本節(jié)課采用在教師引導(dǎo)下啟發(fā)學(xué)生探索發(fā)現(xiàn),體會解題過程中形結(jié)合思想方法,使之獲得內(nèi)心感受。
3、本節(jié)課的重點(diǎn)是利用圖象解一元二次不等式,讓學(xué)生明確一元二次方程、一元二次不等式與二次函數(shù)之間的聯(lián)系。在思維訓(xùn)練方面,注重從特殊到一般,從具體到抽象思維的培養(yǎng)。歸納總結(jié)可以訓(xùn)練學(xué)生的收斂思維,有助于完善學(xué)生的思維結(jié)構(gòu)。
4、本節(jié)課的例題及課堂練習(xí)是課本上的習(xí)題,其目的在于落實(shí)基礎(chǔ),提高運(yùn)算能力。
《一元二次不等式解法》高中數(shù)學(xué)教案 篇4
一、教學(xué)目標(biāo)
【知識與技能】
掌握求解一元二次不等式的簡單方法,能正確求解一元二次不等式的解集。
【過程與方法】
在探究一元二次不等式的.解法的過程中,提升邏輯推理能力。
【情感、態(tài)度與價值觀】
感受數(shù)學(xué)知識的前后聯(lián)系,提升學(xué)習(xí)數(shù)學(xué)的熱情。
二、教學(xué)重難點(diǎn)
【重點(diǎn)】一元二次不等式的解法。
【難點(diǎn)】一元二次不等式的解法的探究過程。
三、教學(xué)過程
(一)導(dǎo)入新課
回顧一元二次不等式的一般形式,組織學(xué)生舉例一些簡單的一元二次不等式。
提問:如何求解?引出課題。
(二)講解新知
結(jié)合課前回顧的一元二次不等式的一般形式,對比之前所學(xué)內(nèi)容,引導(dǎo)學(xué)生發(fā)現(xiàn)其與一元二次方程和二次函數(shù)的共同特點(diǎn)。
《一元二次不等式解法》高中數(shù)學(xué)教案 篇5
一、教材簡析
1、地位和價值
一元二次不等式解法是高中數(shù)學(xué)新教材第一冊(上)第一章第5節(jié)的內(nèi)容。在此之前,學(xué)生在初中已學(xué)習(xí)了一元一次不等式,一元一次不等式組,一元二次方程,二次函數(shù),絕對值不等式(高中),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。一元二次不等式解法是解不等式的基礎(chǔ)和核心,它在高中代數(shù)中起著廣泛應(yīng)用的工具作用,蘊(yùn)藏著“數(shù)與形結(jié)合”的重要思想方法,它已成為代數(shù)、三角、解析幾何交匯綜合的重要部分,是高考綜合題的熱點(diǎn)。
2、教材結(jié)構(gòu)簡介
教材首先以一個一次函數(shù)圖象的應(yīng)用解一元一次不等式,引出圖象法,然后給出一個二次函數(shù),通過具體畫圖象,提出問題。再一般地給出了二次函數(shù)圖象解二次不等式的結(jié)論。課本精選了四個解不等式的例題,并配有相應(yīng)的練習(xí)和習(xí)題。它的后一小節(jié)為解可轉(zhuǎn)化為一元二次不等式的分式不等式。
二、教育教學(xué)觀
1、學(xué)生為主體,重學(xué)生參與學(xué)習(xí)活動。
2、重過程。按照認(rèn)知規(guī)律及學(xué)生認(rèn)知特點(diǎn),由淺入深,由表及里,設(shè)計一系列教學(xué)活動過程。體現(xiàn)由“實(shí)踐……觀察……歸納……猜想……結(jié)論……驗(yàn)證應(yīng)用”的循環(huán)往復(fù)的認(rèn)知過程。
3、重能力與態(tài)度的培養(yǎng),在活動中培養(yǎng)學(xué)生自主、交流合作、探究、發(fā)現(xiàn)的能力。重科學(xué)嚴(yán)謹(jǐn)?shù)膫性品質(zhì)。重參與學(xué)習(xí)的興趣和體驗(yàn)。
4、重指導(dǎo)點(diǎn)撥。在學(xué)生自主探究、實(shí)踐的基礎(chǔ)上,相機(jī)啟發(fā),恰當(dāng)點(diǎn)撥,促進(jìn)學(xué)生知識由感性向理性提升,由具體到概括抽象,形成師生間的有效互動。
三、教學(xué)目標(biāo)
基于上述認(rèn)識,及不等式的基本知識,同時學(xué)生在初中已學(xué)過二次函數(shù),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制訂如下教學(xué)目標(biāo):
1、知識目標(biāo):一元二次方程,一元二次不等式及二次函數(shù)間的聯(lián)系,及利用二次函數(shù)的圖象求解一元二次不等式。
2、能力目標(biāo):數(shù)形結(jié)合的思想(應(yīng)用二次函數(shù)圖象解不等式)
3、情感態(tài)度目標(biāo):通過問題解決,培養(yǎng)學(xué)生自主參與學(xué)習(xí),以及嚴(yán)謹(jǐn)求實(shí)的態(tài)度。
四、教與學(xué)重點(diǎn)、難點(diǎn)
1、重點(diǎn):用圖象解一元二次不等式。
2、難點(diǎn):圍繞二次函數(shù)圖象、性質(zhì)這一主線,解決三個“二次”的`聯(lián)系和應(yīng)用。
五、教法與學(xué)法
1、學(xué)情分析及學(xué)法:函數(shù)與圖象應(yīng)用是初中生數(shù)學(xué)的薄弱之處,同時剛進(jìn)入高中的學(xué)生,對高中學(xué)習(xí)還很不適應(yīng),需要加強(qiáng)主動學(xué)習(xí)的指導(dǎo);诖耍趯W(xué)生初中知識經(jīng)驗(yàn)的基礎(chǔ)上,以舊探新;以一系列問題,促進(jìn)主體的學(xué)習(xí)活動(如畫圖象、讀圖等),建構(gòu)知識;以問題情景激勵學(xué)生參與,在恰當(dāng)時機(jī)進(jìn)行點(diǎn)撥啟發(fā),練、導(dǎo)結(jié)合,講練結(jié)合;通過學(xué)生自己做數(shù)學(xué),教師啟發(fā)指導(dǎo),以及學(xué)生領(lǐng)悟,實(shí)現(xiàn)學(xué)生對知識的再創(chuàng)造和主動建構(gòu);具體通過教材中的問題及設(shè)計的問題情景,給予學(xué)生活動的空間,通過這些問題(“腳手架”)的解決,使學(xué)生逐步攀升,達(dá)到知識與能力的目標(biāo)。
2、教法:數(shù)學(xué)教學(xué)是數(shù)學(xué)教與學(xué)活動過程的教學(xué),學(xué)生是在探究與發(fā)現(xiàn)中建構(gòu)知識,發(fā)展能力的,因而確定以“問題解決”為教法。實(shí)現(xiàn)學(xué)生在教師指導(dǎo)下的發(fā)現(xiàn)探索。同時所學(xué)內(nèi)容適宜用“計算機(jī)高中數(shù)學(xué)問題處理系統(tǒng)”輔助教學(xué)。
六、教學(xué)手段及工具:
多媒體教學(xué)手段,高中數(shù)學(xué)問題處理系統(tǒng)。
七、教學(xué)設(shè)計及教學(xué)過程
1、復(fù)習(xí)設(shè)問,引入新課
高中數(shù)學(xué)新教材第一冊(上)《一元二次不等式解法》(第一課時)說課稿.rar
《一元二次不等式解法》高中數(shù)學(xué)教案 篇6
一、教材分析
1.地位和作用。本課是五年制高等師范教材南京大學(xué)出版社《數(shù)學(xué)》教材第一冊第二章第二節(jié)的教學(xué)內(nèi)容,從知識結(jié)構(gòu)看:它是一元一次不等式的延續(xù)和拓展,又是以后研究函數(shù)的定義域、值域等問題的重要工具,起到承前啟后的作用;
從思想層次上看:它涉及到數(shù)形結(jié)合、分類轉(zhuǎn)化等數(shù)學(xué)思想方法,在整個教材中有很強(qiáng)的基礎(chǔ)性。
2.教材內(nèi)容剖析。本節(jié)課的主要內(nèi)容是通過二次函數(shù)的圖像探究一元二次不等式的解法。教材中首先復(fù)習(xí)引入了“三個一次”的關(guān)系,然后依舊帶新,揭示“三個二次”的關(guān)系,其次通過變式例題討論了△=0和△<0的兩種情況,最后推廣一般情況的討論,教材的內(nèi)容編排由具體到抽象、由特殊到一般,符合人的認(rèn)知規(guī)律。
3.重難點(diǎn)剖析。重點(diǎn):一元二次不等式的解法。難點(diǎn):一元二次方程、一元二次不等式、二次函數(shù)的關(guān)系。難點(diǎn)突破:
。1)教師引導(dǎo),學(xué)生自主探究,分組討論。
。2)借助多媒體直觀展示,數(shù)形結(jié)合。
。3)采用由簡單到復(fù)雜,由特殊到一般的教學(xué)策略。
二、目的分析
知識目標(biāo):掌握一元二次不等式的解法,理解“三個二次”之間的`關(guān)系
能力目標(biāo):培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,由具體到抽象再到具體,從特殊到一般的歸納概括能力。
情感目標(biāo):在自主探究與討論交流過程中,培養(yǎng)學(xué)生的合作意識。
三、教法分析
教法:“問題串”解決教學(xué)法
以“一串問題”為出發(fā)點(diǎn),指導(dǎo)學(xué)生“動腦、動手、動眼、動口”,參與知識的形成過程,注重學(xué)生的內(nèi)在發(fā)展。
學(xué)法:合作學(xué)習(xí):
。1)以問題為依托,分組探究,合作交流學(xué)習(xí)。
。2)以現(xiàn)有認(rèn)知結(jié)構(gòu)為依托,指導(dǎo)學(xué)生用類比方法建構(gòu)新知,用化歸思想解決問題。
四、過程分析
本節(jié)課的教學(xué),設(shè)計了四個教學(xué)環(huán)節(jié):
創(chuàng)設(shè)情景、提出問題
問題1.用一根長為10m的繩子能圍成一個面積大于6m2的矩形嗎?“數(shù)學(xué)來源于生活,應(yīng)用于生活”,首先,以生活中的一個實(shí)際問題為背景切入,通過建立簡單的數(shù)學(xué)模型,抽象出一個一元二次不等式,引入課題。
設(shè)計意圖:激發(fā)學(xué)生學(xué)習(xí)興趣,體現(xiàn)數(shù)學(xué)的科學(xué)價值和使用價值。
自主探究,發(fā)現(xiàn)規(guī)律
問題2.解下列方程和不等式。①2x-4=0②2x-4>0③2x-4<0
歸納、類比法是我們發(fā)現(xiàn)問題、尋求規(guī)律,揭示問題本質(zhì)最常用的方法之一。尋求一元二次不等式的解法,首先從一元一次不等式的解法著手。展示問題2。學(xué)生:用等式和不等式的基本性質(zhì)解題。教師:還有其他的解決方法嗎?展示問題3。
問題3.畫出一次函數(shù)y=2x-4的圖像,觀察圖像,縱坐標(biāo)y=0、y>0、y<0所對應(yīng)的橫坐標(biāo)x取哪些數(shù)呢?
學(xué)生:發(fā)現(xiàn)可以借用圖像解題。此問題揭示了“三個一次”的關(guān)系。
設(shè)計意圖:為后面學(xué)習(xí)二次不等式的解法提供鋪墊。
問題4用圖像法能不能解決一元二次不等式的解呢?已知二次函數(shù)y=x2-2x-8.
。1)求出此函數(shù)與x軸的交點(diǎn)坐標(biāo)。
(2)畫出這個二次函數(shù)的草圖。
。3)在拋物線上找到縱坐標(biāo)y>0的點(diǎn)。
。4)縱坐標(biāo)y>0(即:x2-2x-8>0)的點(diǎn)所對應(yīng)的橫坐標(biāo)x取哪些數(shù)呢?
。5)二次函數(shù)、二次方程、二次不等式的關(guān)系是什幺?
教師:展示問題4。此環(huán)節(jié),要注意下面幾個問題:
(1)啟發(fā)引導(dǎo)學(xué)生運(yùn)用歸納、類比的方法,組織學(xué)生分組討論,自主探究。(2)及時解決學(xué)生的疑點(diǎn),實(shí)現(xiàn)師生合作。(3)先讓學(xué)生自己思考,最后教師和學(xué)生一起歸納步驟。(求根—畫圖—找解),抓住問題本質(zhì),畫圖可省去y軸。教師抓住時機(jī),展示例題1,鞏固方法(△>0的情況),規(guī)范步驟,板書做題步驟,起到示范的作用。設(shè)計意圖:運(yùn)用“解決問題”的教學(xué)方法,使每位學(xué)生參與知識的形成過程,體現(xiàn)了教師主導(dǎo)學(xué)生主體的地位。
變式提問,啟發(fā)誘導(dǎo)
方程:ax2+bx+c=0的解情況函數(shù):y=ax2+bx+c的圖象
不等式的解集
ax2+bx+c>0ax2+bx+c<0
⊿>0
⊿=0
⊿<0
教師:展示例題2(1).-x2+x+6≥0(2).x2-4x+4<0(3).x2-x+3>0。學(xué)生:嘗試通過畫圖求解。此環(huán)節(jié)要注意:引導(dǎo)學(xué)生把不熟悉的問題轉(zhuǎn)化為熟悉的問題解決;對于△=0,△<0的情況,啟發(fā)學(xué)生用數(shù)形結(jié)合的思想方法關(guān)鍵在于畫好圖像,貴在“結(jié)合”。設(shè)計意圖:通過探索、嘗試的過程,培養(yǎng)了學(xué)生大膽猜想,勇于探索的精神。
自我嘗試,反饋小結(jié)。
教師:展示練習(xí)題,把學(xué)生分成兩個小組,要求當(dāng)堂完成,看哪個組做的好做的快。教師對出現(xiàn)的問題及時反饋。同時,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體問題的結(jié)論推廣到一般化。展示表格,學(xué)生:填寫內(nèi)容。
學(xué)生理解了“三個二次”的關(guān)系,得到一般結(jié)論應(yīng)該是水到渠成。最后,教師做本節(jié)課的小結(jié),布置作業(yè)。設(shè)計意圖:激發(fā)了學(xué)生的求知欲,培養(yǎng)了學(xué)生的主動參與意識。
五、評價分析
1.重視學(xué)生學(xué)習(xí)的結(jié)果評價,更重視過程評價。2.本節(jié)課貫徹了新課程的理念,教學(xué)形式開放,體現(xiàn)了“教師主導(dǎo),學(xué)生主體”的教學(xué)關(guān)系。以上是我對本節(jié)課的粗淺認(rèn)識,如有不妥之處,懇求各位專家、各位同仁批評指正。
《一元二次不等式解法》高中數(shù)學(xué)教案 篇7
一.教材內(nèi)容分析:
1.本節(jié)課內(nèi)容在整個教材中的地位和作用。
概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。
2.教學(xué)目標(biāo)定位。
根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認(rèn)知特征,我確定了四個層面的教學(xué)目標(biāo)。第一層面是面向全體學(xué)生的知識目標(biāo):熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與等價轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力。第三層面是德育目標(biāo),通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。
3.教學(xué)重點(diǎn)、難點(diǎn)確定。
本節(jié)課是在復(fù)習(xí)了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節(jié)課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。
二.教法學(xué)法分析:
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅強(qiáng)的意志品質(zhì)、形成良好的道德情感。為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動。我設(shè)計了①創(chuàng)設(shè)情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導(dǎo)——形成結(jié)論,④練習(xí)小結(jié)——深化鞏固,⑤思維拓展——提高能力,五個環(huán)環(huán)相扣、層層深入的.教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個過程和全體學(xué)生,充分調(diào)動學(xué)生積極參與教學(xué)過程的每個環(huán)節(jié)。
三.教學(xué)過程分析:
1.創(chuàng)設(shè)情景——引入新課。我們常說“興趣是最好的老師”,長期以來,學(xué)生對學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習(xí)的情感體驗(yàn),教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)的樂趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識切入,設(shè)置一個練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗(yàn),然后以2004年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點(diǎn),相信學(xué)生畫出圖象應(yīng)該不成問題,只要教師適當(dāng)點(diǎn)撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實(shí)實(shí)在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。
2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會有太大的問題。在這個過程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對比兩題的異同,組織引導(dǎo)學(xué)生展開交流討論,探討第(2)題能不能先把二次項(xiàng)系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達(dá)成共識,如果二次項(xiàng)系數(shù)為負(fù)數(shù)時,先做等價轉(zhuǎn)化,把二次項(xiàng)系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時我及時提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應(yīng)方程都有兩個不等實(shí)根,例3對應(yīng)方程有兩相等實(shí)根,例4對應(yīng)方程無實(shí)根)。兩個題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。
3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就△>0,△<0,△=0c="">0或ax2+bx+c<0a="">0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項(xiàng)系數(shù)化為正數(shù),②求解二次方程ax2+bx+c=0的根。③根據(jù)①后的二次不等式的符號寫出解集即可,必要時也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為“三步曲”法)。
4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學(xué)生進(jìn)行課堂練習(xí),完成課本21頁練習(xí)1-4題。本環(huán)節(jié)請不同層次的學(xué)生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。
5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個體差異。體現(xiàn)分類推進(jìn),分層教學(xué)的原則。為此,我又設(shè)計了一個提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。
四.課堂意外預(yù)案:
新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個性發(fā)展,鼓勵學(xué)生勇于提出問題,培養(yǎng)學(xué)生思維的批評性。在課堂上學(xué)生往往會提出讓老師感到“意外”的問題,我在平時的教學(xué)中重視對“課堂意外預(yù)案”的探索和思考,備課時盡量設(shè)想課堂中可能會出現(xiàn)的各種情況,做到有備無患,以免在課堂中學(xué)生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結(jié)合以往經(jīng)驗(yàn),在本節(jié)課,我提出兩個“意外預(yù)案”。
1.學(xué)生在做課本練習(xí)1(x+2)(x-3)>0時,可能會問到轉(zhuǎn)化為不等式組{或{求解對不對。學(xué)生提出的問題,想法非常好,應(yīng)給予肯定和鼓勵,這與下節(jié)簡單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價轉(zhuǎn)化法,不在本節(jié)課之列。
2.根據(jù)以往的經(jīng)驗(yàn),在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會出現(xiàn)將不等式轉(zhuǎn)化為不等式組{來求解的錯誤做法,教師要關(guān)注學(xué)生,及時發(fā)現(xiàn)問題并給予糾正,指出上面的轉(zhuǎn)化不是等價轉(zhuǎn)化。
【《一元二次不等式解法》高中數(shù)學(xué)教案】相關(guān)文章:
一元二次方程數(shù)學(xué)教案10-08
一元二次方程解法(配方法)教學(xué)設(shè)計(通用16篇)06-02
二次函數(shù)和一元二次方程的關(guān)系精品教案07-22
一元二次方程教學(xué)設(shè)計11-02
《實(shí)際問題與一元一次不等式》教學(xué)設(shè)計09-25
一元一次不等式組教學(xué)設(shè)計(通用10篇)08-17
初中數(shù)學(xué)一元一次不等式組教學(xué)設(shè)計05-12
一元二次方程教案教學(xué)計劃08-21