- 相關(guān)推薦
七年級上冊數(shù)學(xué)期末考試卷及答案
期末考試是指每個學(xué)期快結(jié)束時,學(xué)校往往以試卷的形式對各門學(xué)科進行該學(xué)期知識掌握的檢測,對上一學(xué)期知識的查漏補缺,一般由區(qū)或市統(tǒng)考,也可能是幾個學(xué)校進行聯(lián)考。以下是小編為大家整理的七年級上冊數(shù)學(xué)期末考試卷及答案,歡迎閱讀,希望大家能夠喜歡。
一、選擇題(每小題2分,共16分)
1.﹣2的倒數(shù)是()
A. ﹣2 B. 2 C. ﹣ D.
2.在數(shù)﹣32、|﹣2.5|、﹣(﹣2 )、(﹣3)3中,負數(shù)的個數(shù)是()
A. 1 B. 2 C. 3 D. 4
3.一個點從數(shù)軸上的﹣3表示的點開始,先向右移動2個單位長度,再向左移動4個單位長度,這時該點所對應(yīng)的數(shù)是()
A. 3 B. ﹣5 C. ﹣1 D. ﹣9
4.下列說法中,正確的是()
A. 符號不 同的兩個數(shù)互為相反數(shù)
B. 兩個有理數(shù)和一定大于每一個加數(shù)
C. 有理數(shù)分為正數(shù)和負數(shù)
D. 所有的有理數(shù)都能用數(shù)軸上的點來表示
5.若2x﹣5y=3,則4x﹣10y﹣3的值是()
A. ﹣3 B. 0 C. 3 D. 6
6.直線l外一點P與直線l上兩點的連線段長分別為4cm,6cm,則點P到直線l的距離是()
A. 不超過4cm B. 4cm C. 6cm D. 不少于6cm
7.某小組計劃做一批中國結(jié),如果每人做6個,那么比計劃多做了9個,如果每人做4個,那么比計劃少7個.設(shè)計劃做x個中國結(jié),可列方程()
A. = B. = C. = D. =
8.紙板上有10個無陰影的正方形,從中選1個,使得它與5個有陰影的正方形一起能折疊成一個正方體的紙盒,選法應(yīng)該有()
A. 4種 B. 5種 C. 6種 D. 7種
二、填空題(每小題2分,共20分)
9.在﹣5.3和6.2之間所有整數(shù)之和為.
10.京滬高鐵全長約1318公里,將1318公里用科學(xué)記數(shù)法表示為公里.
11.若關(guān)于x的方程2x+a=0的解為﹣3,則a的值為.
12.已知兩個單項式﹣3a2bm與na2b的和為0,則m+n的值是.
13.固定一根木條至少需要兩根鐵釘,這是根據(jù).
14.若A=68,則A的余角是.
15.在數(shù)軸上,與﹣3表示的點相距4個單位的點所對應(yīng)的數(shù)是.
16.若|a|=3,|b|=2,且a+b0,那么a﹣b的值是.
17.一個長方體的主視圖與俯視圖,則這個長方體的表面積是.
18.BOC與AOC互為補角,OD平分AOC,BOC=n,則DOB=.(用含n的代數(shù)式表示)
三、解答題(共64分)
19.計算:40[(﹣2)4+3(﹣2)].
20.計算:[(﹣1)3+(﹣3)2]﹣[(﹣2)3﹣2(﹣5)].
21.化簡:3x+5(x2﹣x+3)﹣2(x2﹣x+3).
22.先化簡,再求值:3mn﹣[6(mn﹣m2)﹣4(2mn﹣m2)],其中m=﹣2,n= .
23.解方程:3(x﹣1)﹣2(1﹣x)+5=0.
24.解方程: .
25.在所示的方格紙中,每一個正方形的面積為1,按要求畫圖,并回答問題.
(1)將線段AB平移,使得點A與點C重合得到線段CD,畫出線段CD;
(2)連接AD、BC交于點O,并用符號語言描述AD與BC的位置關(guān)系;
(3)連接AC、BD,并用符號語言描述AC與BD的位置關(guān)系.
26.將長方形紙片的一角折疊,使頂點A落在點A處,折痕CB;再將長方形紙片的另一角折疊,使頂點D落在點D處,D在BA的延長線上,折痕EB.
(1)若ABC=65,求DBE的度數(shù);
(2)若將點B沿AD方向滑動(不與A、D重合),CBE的大小發(fā)生變化嗎?并說明理由.
27.已知,點A、B、C、D四點在一條直線上,AB=6cm,DB=1cm,點C是線段AD的中點,請畫出相應(yīng)的示意圖,并求出此時線段BC的長度.
28.為一個無蓋長方體盒子的展開圖(重疊部分不計),設(shè)高為xcm,根據(jù)圖中數(shù)據(jù).
(1)該長方體盒子的寬為,長為;(用含x的代數(shù)式表示)
(2)若長比寬多2cm,求盒子的容積.
29.目前節(jié)能燈在城市已基本普及,今年南京市面向農(nóng)村地區(qū)推廣,為相應(yīng)號召,某商場計劃購進甲、乙兩種節(jié)能燈共1000只,這兩種節(jié)能燈的進價、售價如下表:
進價(元/只)售價(元/只)
甲型2030
乙型4060
(1)如何進貨,進貨款恰好為28000元?
(2)如何進貨,能確保售完這1000只燈后,獲得利潤為15000元?
30.已知點A 、B在數(shù)軸上,點A表示的數(shù)為a,點B表示的數(shù)為b.
(1)若a=7,b=3,則AB的長度為;若a=4,b=﹣3,則AB的長度為;若a=﹣4,b=﹣7,則AB的長度為.
(2)根據(jù)(1)的啟發(fā),若A在B的右側(cè),則AB的長度為;(用含a,b的代數(shù)式表示),并說明理由.
(3)根據(jù)以上探究,則AB的長度為(用含a,b的代數(shù)式表示).
參考答案與試題解析
一、選擇題(每小題2分,共16分)
1.﹣2的倒數(shù)是()
A. ﹣2 B. 2 C. ﹣ D.
考點: 倒數(shù).
專題:計算題.
分析: 根據(jù)倒數(shù)的定義:乘積是1的兩數(shù)互為倒數(shù). 一般地,a =1 (a0),就說a(a0)的倒數(shù)是 .
2.在數(shù)﹣32、|﹣2.5|、﹣(﹣2 )、(﹣3)3中,負數(shù)的個數(shù)是()
A. 1 B. 2 C. 3 D. 4
考點: 正數(shù)和負數(shù).
分析: 根據(jù)乘方、相反數(shù)及絕對值,可化簡各數(shù),根據(jù)小于零的數(shù)是負數(shù),可得答案.
解答: 解:﹣32=﹣90,|﹣2.5|=2.50,﹣(﹣2 )=2 0,(﹣3)3=﹣27,
3.一個點從數(shù)軸上的﹣3表示的點開始,先向右移動2個單位長度,再向左移動4個單位長度,這時該點所對應(yīng)的數(shù)是()
A. 3 B. ﹣5 C.﹣1 D. ﹣9
考點: 數(shù)軸.
分析: 根據(jù)數(shù)軸是以向右為正方向,故數(shù)的大小變化和平移變化之間的規(guī)律:左減右加,即可求解.
解答: 解:由題意得:向右移動2個單位長度可表示為+2,再向左移動4個單位長度可表示為﹣4,
4.下列說法中,正確的是()
A. 符號不同的兩個數(shù)互為相反數(shù)
B. 兩個有理數(shù)和一定大于每一個加數(shù)
C. 有理數(shù)分為正數(shù)和負數(shù)
D. 所有的有理數(shù)都能用數(shù)軸上的點來表示
考點: 有理數(shù)的加法;有理數(shù);數(shù)軸;相反數(shù).
分析: A、根據(jù)有相反數(shù)的定義判斷.B、利用有理數(shù)加法法則推斷.C、按照有理數(shù)的分類判斷:
有理數(shù) D、根據(jù)有理數(shù)與數(shù)軸上的點的關(guān)系判斷.
解答: 解:A、+2與﹣1符號不同,但不是互為相反數(shù),錯誤;
B、兩個負有理數(shù)的和小于每一個加數(shù),錯誤;
C、有理數(shù)分為正有理數(shù)、負有理數(shù)和0,錯誤;
D、所有的有理數(shù)都能用數(shù)軸上的點來表示,正確.
5.若2x﹣5y=3,則4x﹣10y﹣3的值是()
A. ﹣3 B. 0 C. 3 D. 6
考點: 代數(shù)式求值.
專題:計算題.
分析: 原式前兩項提取2變形后,把已知等式代入計算即可求出值.
解答: 解:∵2x﹣5y=3,
6.直線l外一點P與直線l上兩點的連線段長分別為4cm,6cm,則點P到直線l的距離是()
A. 不超過4cm B. 4cm C. 6cm D. 不少于6cm
考點: 點到直線的距離.
分析: 根據(jù)點到直線的距離是直線外的點與直線上垂足間線段的長度,垂線段最短,可得答案.
解答: 解:直線l外一點P與直線l上兩點的連線段長分別為4cm,6cm,則點P到直線l的距離是小于或等于4,
7.某小組計劃做一批中國結(jié),如果每人做6個,那么比計劃多做了9個,如果每人做4個,那么比計劃少7個.設(shè)計劃做x個中國結(jié),可列方程()
A. = B. = C. = D. =
考點: 由實際問題抽象出一元一次方程.
分析: 設(shè)計劃做x個中國結(jié),根據(jù)每人做6個,那么比計劃多做了9個,每人做4個,那么比計劃少7個,列方程即可.
解答: 解:設(shè)計劃做x個中國結(jié),
8紙板上有10個無陰影的正方形,從中選1個,使得它與圖中5個有陰影的正方形一起能折疊成一個正方體的紙盒,選法應(yīng)該有()
A. 4種 B. 5種 C. 6種 D. 7種
考點: 展開圖折疊成幾何體.
分析: 利用正方體的展開圖即可解決問題,共四種.
二、填空題(每小題2分,共20分)
9.在﹣5.3和6.2之間所有整數(shù)之和為 6 .
考點: 有理數(shù)的加法;有理數(shù)大小比較.
專題: 計算題.
分析: 找出在﹣5.3和6.2之間所有整數(shù),求出之和即可.
解答: 解:在﹣5.3和6.2之間所有整數(shù)為﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,
10.京滬高鐵全長約1318公里,將1318公里用科學(xué)記數(shù)法表示為 1.318103 公里.
考點: 科學(xué)記數(shù)法表示較大的數(shù).
分析: 科學(xué)記數(shù)法的表示形式為a10n的形式,其中110,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值1時,n是正數(shù);當(dāng)原數(shù)的絕對值1時,n是負數(shù).
11.若關(guān)于x的方程2x+a=0的解為﹣3,則a的值為 6 .
考點: 一元一次方程的解.
專題: 計算題.
分析: 把x=﹣3代入方程計算即可求出a的值.
解答: 解:把x=﹣3代入方程得:﹣6+a=0,
12.已知兩個單項式﹣3a2bm與na2b的和為0,則m+n的值是 4 .
考點: 合并同類項.
分析: 根據(jù)合并同類項,可得方程組,根據(jù)解方程組,kedem、n的值,根據(jù) 有理數(shù)的加法,可得答案.
解答: 解:由單項式﹣3a2bm與na2b的和為0,得
13.固定一根木條至少需要兩根鐵釘,這是根據(jù) 兩點確定一條直線 .
考點: 直線的性質(zhì):兩點確定一條直線.
分析: 根據(jù)直線的性質(zhì):兩點確定一條直線進行解答.
解答: 解:固定一根木條至少需要兩根鐵釘,這是根據(jù):兩點確定一條直線,
14.若A=68,則A的余角是 22 .
考點: 余角和補角.
分析: A的余角為90﹣A.
解答: 解:根據(jù)余角的定義得:
15.在數(shù)軸上,與﹣3表示的點相距4個單位的點所對應(yīng)的數(shù)是 1或﹣7 .
考點: 數(shù)軸.
分析: 根據(jù)題 意得出兩種情況:當(dāng)點在表示﹣3的點的左邊時,當(dāng)點在表示﹣3的點的右邊時,列出算式求出即可.
解答: 解:分為兩種情況:①當(dāng)點在表示﹣3的點的左邊時,數(shù)為﹣3﹣4=﹣7;
、诋(dāng)點在表示﹣3的點的右邊時,數(shù)為﹣3+4=1;
16.若|a|=3,|b|=2,且a+b0,那么a﹣b的值是 5,1 .
考點: 有理數(shù)的減法;絕對值.
分析: 根據(jù)絕對值的性質(zhì).
解答: 解:∵|a|=3,|b|=2,且a+b0,
a=3,b=2或a=3,b=﹣2;
17.一個長方體的主視圖與俯視圖如圖所示,則這個長方體的表面積是 88 .
考點: 由三視圖判斷幾何體.
分析: 根據(jù)給出的長方體的主視圖和俯視圖可得,長方體的長是6,寬是2,高是4,進而可根據(jù)長方體的表面積公式求出其表面積.
解答: 解:由主視圖可得長方體的長為6,高為4,
由俯視圖可得長方體的寬為2,
則這個長方體的表面積是
(62+64+42)2
=(12+24+8)2
=442
=88.
18.BOC與AOC互為補角,OD平分AOC,BOC=n,則DOB= (90+ ) .(用含n的代數(shù)式表示)
考點: 余角和補角;角平分線的定義.
分析: 先求出AOC=180﹣n,再求出COD,即可求出DOB.
解答: 解:∵BOC+AOD=180,
AOC=180﹣n,
∵OD平分AOC,
COD= ,
三、解答題(共64分)
19.計算:40[(﹣2)4+3(﹣2)].
考點: 有理數(shù)的混合運算.
專題: 計算題.
分析 : 原式先計算中括號中的乘方及乘法運算,再計算除法運算即可得到結(jié)果.
20.計算:[(﹣1)3+(﹣3)2]﹣[(﹣2)3﹣2(﹣5)].
考點: 有理數(shù)的混合運算.
分析: 先算乘方和和乘法,再算括號里面的,最后算減法,由此順序計算即可.
21.化簡:3x+5(x2﹣x+3)﹣2(x2﹣x+3).
考點: 整式的加減.
專題: 計算題.
分析: 原式去括號合并即可得到結(jié)果.
22.先化簡,再求值:3mn﹣[6(mn﹣m2)﹣4(2mn﹣m2)],其中m=﹣2,n= .
考點: 整式的加減化簡求值.
專題: 計算題.
分析: 原式去括號合并得到最簡結(jié)果,把m與n的值代入計算即可求出值.
解答: 解:原式=3mn﹣6mn+6m2+8mn﹣4m2=2m2+5mn,
23.解方程:3(x﹣1)﹣2(1﹣x)+5=0.
考點: 解一元一次方程.
專題: 計算題.
分析: 方程去括號,移項合并,把x系數(shù)化為1,即可求出解.
解答: 解:去括號得:3x﹣3﹣2+2x+5=0,
24.解方程: .
考點: 解一元一次方程.
專題: 計算題.
分析: 先把等式兩邊的項合并后再去分母得到不含分母的一元一次方程,然后移項求值即可.
解答: 解:原方程可轉(zhuǎn)化為: =
25.在方格紙中 ,每一個正方形的面積為1,按要求畫圖,并回答問題.
(1)將線段AB平移,使得點A與點C重合得到線段CD,畫出線段CD;
(2)連接AD、BC交于點O,并用符號語言描述AD與BC的位置關(guān)系;
(3)連接AC、BD,并用符號語言描述AC與BD的位置關(guān)系.
考點: 作圖-平移變換.
分析: (1)根據(jù)圖形平移的性質(zhì)畫出線段CD即可;
(2)連接AD、BC交于點O,根據(jù)勾股定理即可得出結(jié)論;
(3)連接AC、BD,根據(jù)平移的性質(zhì)得出四邊形ABDC是平形四邊形,由此可得出結(jié)論.
解答: 解:(1)
(2)連接AD、BC交于點O,
BCAD且OC=OB,OA=OD;
(3)∵線段CD由AB平移而成,
CD∥AB,CD=AB,
26.將長方形紙片的一角折疊,使頂點A落在點A處,折痕CB;再將長方形紙片的另一角折疊,使頂點D落在點D處,D在BA的延長線上,折痕EB.
(1)若ABC=65,求DBE的度數(shù);
(2)若將點B沿AD方向滑動(不與A、D重合),CBE的大小發(fā)生變化嗎?并說明理由.
考點: 角的計算;翻折變換(折疊問題).
分析: (1)由折疊的性質(zhì)可得ABC=ABC=65,DBE=DBE,又因為ABC+ABC+DBE+DBE=180從而可求得
(2)根據(jù)題意,可得CBE=ABC+DBE=90,故不會發(fā)生變化.
解答: 解:(1)由折疊的性質(zhì)可得ABC=ABC=65,DBE=DBE
DBE+DBE=180﹣65﹣65=50,
DBE=25
(2)∵ABC=ABC,DBE=DBE,ABC+ABC+DBE+DBE=180,
ABC+DBE=90,
27.已知,點A、B、C、D四點在一條直線上,AB=6cm,DB=1cm,點C是線段AD的中點,請畫出相應(yīng)的示意圖,并求出此時線段BC的長度.
考點: 兩點間的距離.
分析: 分類討論:點D在線段AB上,點D在線段AB的延長線上,根據(jù)線段的和差,可 得AD的長,根據(jù)線段中點的性質(zhì),可得AC的長,再根據(jù)線段的和差,可得答案.
解答: 解:當(dāng)點D在線段AB上時
由線段的和差,得
AD=AB﹣BD=6﹣1=5cm,
由C是線段AD的中點,得
AC= AD= 5= cm,
由線段的和差,得
BC=AB﹣AC=6﹣ = cm;
當(dāng)點D在線段AB的延長線上時
由線段的和差,得
AD=AB+BD=6+1=7cm,
由C是線段AD的中點,得
AC= AD= 7= cm,
28.為一個無蓋長方體盒子的展開圖(重疊部分不計),設(shè)高為xcm,根據(jù)圖中數(shù)據(jù) .
(1)該長方體盒子的寬為 (6﹣x)cm ,長為 (4+x)cm ;(用含x的代數(shù)式表示)
(2)若長比寬多2cm,求盒子的容積.
考點: 一元一次方程的應(yīng)用;展開圖折疊成幾何體.
專題: 幾何圖形問題.
分析: (1)根據(jù)圖形即可求出這個長方體盒子的長和寬;
(2)根據(jù)長方體的體積公式=長寬高,列式計算即可.
解答: 解:(1)長方體的高是xcm,寬是(6﹣x)cm,長是10﹣(6﹣x)=(4+x)cm;
(2)由題意得(4+x)﹣(6﹣x)=2,
解得x=2,
所以長方體的高是2cm,寬是4cm,長是6cm;
則盒子的容積為:642=48(cm3).
29.目前節(jié)能燈在城市已基本普及,今年南京市面向農(nóng)村地區(qū)推廣,為相應(yīng)號召,某商場計劃購進甲、乙兩種節(jié)能燈共1000只,這兩種節(jié)能燈的進價、售價如下表:
進價(元/只)售價(元/只)
甲型2030
乙型4060
(1)如何進貨,進貨款恰好為28000元?
(2)如何進貨,能確保售完這1000只燈后,獲得利潤為15000元?
考點: 一元一次方程的應(yīng)用.
分析: (1)設(shè)商場購進甲種節(jié)能燈x只,則購進乙種節(jié)能燈(1000﹣x)只,根據(jù)兩種節(jié)能燈的總價為28000元建立方程求出其解即可;
(2)設(shè)商場購進甲種節(jié)能燈a只,則購進乙種節(jié)能燈(1000﹣a)只,根據(jù)售完這1000只燈后,獲得利潤為15000元建立方程求出其解即可.
解答: 解:(1)設(shè)商場購進甲種節(jié)能燈x只,則購進乙種節(jié)能燈(1000﹣x)只,由題意得
20x+40(1000﹣x)=28000,
解得:x=600.
則購進乙種節(jié)能燈1000﹣600=400(只).
答:購進甲種節(jié)能燈600只,購進乙種節(jié)能燈400只,進貨款恰好為28000元;
(2)設(shè)商場購進甲種節(jié)能燈a只,則購進乙種節(jié)能燈(1000﹣a)只,根據(jù)題意得
(30﹣20)a+(60﹣40)(1000﹣a)=15000,
解得a=500.
則購進乙種節(jié)能燈1000﹣500=500(只).
答:購進甲種節(jié)能燈500只,購進乙種節(jié)能燈500只,能確保售完這1000只燈后,獲得利潤為15000元.
30.已知點A、B在數(shù)軸上,點A表示的數(shù)為a,點B表示的數(shù)為b.
(1)若a=7,b=3,則AB的長度為 4 ;若a=4,b=﹣3,則AB的長度為 7 ;若a=﹣4,b=﹣7,則AB的長度為 3 .
(2)根據(jù)(1)的啟發(fā),若A在B的右側(cè),則AB的長度為 a﹣b ;(用含a,b的代數(shù)式表示),并說明理由.
(3)根據(jù)以上探究,則AB的長度為 a﹣b或b﹣a (用含a,b的代數(shù)式表示).
考點: 數(shù)軸;列代數(shù)式;兩點間的距離.
分析: (1)線段AB的長等于A點表示的數(shù)減去B點表示的數(shù);
(2)由(1)可知若A在B的右側(cè),則AB的長度是a﹣b;
(3)由(1)(2)可得AB的長度應(yīng)等于點A表示的數(shù)a與 點B表示的數(shù)b的差表示,應(yīng)是右邊的數(shù)減去坐標(biāo)左邊的數(shù),故可得答案.
解答: 解:(1)AB=7﹣3=4;4﹣(﹣3)=7;﹣4﹣(﹣7)=3;
(2)AB=a﹣b
(3)當(dāng)點A在點B的右側(cè),則AB=a﹣b;當(dāng)點A在點B的左側(cè),則AB=b﹣a.
【七年級上冊數(shù)學(xué)期末考試卷及答案】相關(guān)文章:
七年級上冊歷史期末考試卷及答案07-05
七年級上冊英語期末考試卷(附答案)03-10
七年級上冊政治期末考試卷試題及答案06-25
初一上冊語文期末考試卷「附答案」11-30
七年級生物期末考試卷及答案04-27