考研數學高等數學備考方法指導
在考研的各門科目中,考研數學考試綜合性強、知識覆蓋面廣、難度大,在此提醒廣大考生一定要及早復習。小編為大家精心準備了考研數學高等數學備考秘訣,歡迎大家前來閱讀。
考研數學高等數學備考技巧
高等數學是考研數學內容最多的一部分,在數一和數三中,高數部分占總分的56%,在數二中,高數部分占78%,所以考研高數無疑是研究生入學考試的重中之重,而高等數學對總體成績的高低也顯得尤為重要了。
首先,考生們要明確的是考研數學主要是考根底,包括基本概念、基本理論、基本運算等,假如概念、基本運算不太清晰,運算不太純熟那你肯定是考不好的。在復習方法中我們應該注意以下幾點:
第一、強調學習而不是復習
對于大部分同學而言,由于高等數學學習的時間比較早,而且原來學習所針對的難度并不是很大,又加上遺忘,現在數學知識恐怕已經所剩無幾了。所以,這一遍強調學習,要拿出重新學習的勁頭親自動手去做,去思考。
第二、注意基本概念、基本方法和基本定理的復習掌握
從歷年真題來看,考研試卷中70%的題目都是對基礎知識,基礎能力的考查。這就要求在復習的時候一定要對教材中的基本概念、基本公式、基本定理以及解題基本方法有一個足夠的重視,切不可似是而非,模模糊糊。怎樣才算完成了基礎階段的學習呢?我們的老師給同學們定的目標是:教材至少過一遍,教材中基礎例題的解題思路要非常清晰,能夠獨立完成。
第三、加強練習,重視總結、歸納
數學考試的所有任務就是解題?而基本概念、公式、結論等也只有在反復練習中才能真正理解和鞏固。試題千變萬化,但其知識結構卻基本相同,題型也相對固定,一般存在相應的解題規(guī)律。通過大量的訓練可以切實提高數學的解題能力,做到面對任何試題都能有條不紊地分析和計算。
第四、不要 依賴答案
學習的過程中一定要力求全部理解和掌握知識點。做題的過程中先不要看答案中,如果題目確實做不出來,可以先看答案,看明白之后再拋棄答案自己把題目獨立地做一遍。不要以為看明白了就會了,只有自己真正做一遍,印象才能深刻。
高等數學在復習過程中考生們對于各個知識點的把握應注意以下幾點:
高數的根底應著重放在極限、導數、不定積分、當然還有定積分、一元微積分的應用,還有中值定理、多元函數微積分、線面積分等內容,這些內容可以看成那三部分內容的聯系和應用。另一部分考查的是分析綜合能力。因為現在高數中的一些考題很少有單純考一個知識點的,一般都是多個知識點的綜合。如果能夠圍繞著這幾個方面進行有針對性地復習,取得高分也就不再是難事了。
第一:要明確考試重點,充分把握重點。
比如高數第一章的不定式的極限,我們要充分把握求不定式極限的各種方法,比如利用極限的四則運算、利用洛必達法則等等,另外兩個重要的極限也是重點內容;對函數的連續(xù)性的探討也是考試的重點,這要求我們需要充分理解函數連續(xù)的定義和掌握判定連續(xù)性的方法。
第二:關于導數和微分
其實考試的重點并不是給一個函數求其導數,而是導數的定義,也就是抽象函數的可導性。還要熟練掌握各類多元函數求偏導的方法以及極值與最值的求解與應用問題。
第三:關于積分部分
定積分、分段函數的積分、帶絕對值的函數的積分等各種積分的求法都是重要的題型。而且求積分的過程中,特別要留意積分的對稱性,利用分段積分去掉絕對值把積分求出來。二重積分的計算,當然數學一里面還包括了三重積分,這里面每年都要考一個題目。另外曲線和曲面積分,這也是必考的重點內容。
第四:微分方程,還有無窮級數,無窮級數的求和等
這兩部分內容相對比較孤立,也是難點,需要記憶的公式、定理比較多。微分方程中需要熟練掌握變量可分離的.方程、齊次微分方程和一階線性微分方程的求解方法,以及二階常系數線性微分方程的求解,對于這些方程要能夠判斷方程類型,利用對應的求解方法,求解公式,能很快的求解。對于無窮級數,要會判斷級數的斂散性,重點掌握冪級數的收斂半徑與收斂域的求解,以及求數項級數的和與冪級數的和函數等。
充分把握住這些重點,根據自己的情況有針對性的復習會達到很不錯的效果。相信經過有計劃有目標的復習,每個考生都可以使自己的綜合解題能力有一個質的提高,從而在最后的考試中考出好的成績。
考研線性代數行列式與矩陣部分重點解析
一、 行列式
行列式是線性代數中的基本運算。該部分單獨出題情況不多,很多時候,考試將其與其它知識點(矩陣、線性方程組、特征值與特征向量等)結合起來考查。行列式的重點是計算,包括數值型行列式、抽象型行列式和含參數行列式的計算。
結合考試分析,建議考生從行列式自身知識、與其它知識的聯系這兩方面來把握該部分內容。具體如下:
1. 行列式自身知識
考生應在理解定義、掌握性質及展開定理的基礎上,熟練掌握各種形式的行列式的計算。行列式計算的基本思路是利用性質化簡,利用展開定理降階。常見的計算方法有:“三角化”法,直接利用展開定理,利用范德蒙行列式結論,逆向運用展開定理。
2. 行列式與其它知識的聯系
行列式與其它知識(線性方程組的克拉默法則、由伴隨矩陣求逆矩陣、證明矩陣可逆、判定n個n維向量線性相關(無關)、計算矩陣特征值、判斷二次型的正定性)有較多聯系?忌鷳獪蚀_把握這些聯系,并靈活運用。
二、 矩陣
矩陣是線性代數的核心,也是考研數學的重點考查內容?荚噯为毧疾楸静糠忠孕☆}為主,平均每年1至2題。但是矩陣是線性代數的“活動基地”,線性代數的考題絕大部分是以矩陣為載體出題的,因此矩陣復習的成敗基本決定了整個線性代數復習的成敗。
該部分的常考題型有:矩陣的運算,逆矩陣,初等變換,矩陣方程,矩陣的秩,矩陣的分塊。其中逆矩陣考得最多。
結合考試分析,建議考生從以下方面把握該部分內容:
矩陣運算中矩陣乘法是核心,要特別注意乘法不滿足交換律和消去律。逆矩陣需注意三方面——定義、與伴隨矩陣的關系、利用初等變換求逆矩陣。伴隨矩陣是難點,需熟記最基本的公式 ,并靈活運用。對于矩陣的秩,著重理解其定義,及其與行列式及矩陣可逆性的關系。
辛勤的汗水必將澆開夢想之花。祝福廣大考生夢想成真。
考研數學高數復習技巧
當然,把握數學高分的前提必須要熟知數學考查內容和具體考些什么。數學主要是考基礎,包括基本概念、基本理論、基本運算,數學本來就是一門基礎的學科,如果基礎、概念、基本運算不太清楚,運算不太熟練那你肯定是考不好的。高數的基礎應著重放在極限、導數、不定積分這三方面,后面當然還有定積分、一元微積分的應用,還有中值定理、多元函數、微分、線面積分等內容,這些內容可以看成那三部分內容的聯系和應用。另一部分考查的是簡單的分析綜合能力。因為現在高數中的一些考題很少有單純考一個知識點的,一般都是多個知識點的綜合。最后就是數學的解應用題能力。解應用題要求的知識面比較廣,包括數學的知識比較要扎實,還有幾何、物理、化學、力學等知識。如果能夠圍繞著這幾個方面進行有針對性地復習,取得高分也就不再是難事了。
與此同時,在具體的復習過程中如何規(guī)劃復習才能取得事半功倍的效果也是考試普遍關注的問題。數學復習要保證熟練度,平時應該多訓練,一天至少保證三個小時。把一些基本概念、定理、公式復習好,牢牢地記住。同時數學還是一種基本技能的訓練,要天天聯系,熟悉,技能才會更熟能生巧,更能夠靈活運用,如果長時間不練習,就會對解題思路生疏,所以經常練習是很重要的,天天做、天天看,一直堅持到最后。這樣,基礎和思路才會久久在大腦中成型,遇到題目不會生疏,解題速度也就相應越來越熟練,越來越快。
如果已經開始高數初級階段的復習,那么在之后的更加細密的復習過程中同樣需要注意些問題。首先要明確考試重點,充分把握重點。比如高數第一章的不定式的極限,我們要充分掌握求不定式極限的各種方法,比如利用極限的四則運算、利用洛必達法則等等,另外兩個重要的極限也是重點內容;對函數的連續(xù)性的探討也是考試的重點,這要求我們需要充分理解函數連續(xù)的定義和掌握判斷連續(xù)性的方法。
其次,對于導數和微分,其實重點不是給一個函數考導數,而重點是導數的定義,也就是抽象函數的可導性。對于積分部分,定積分、分段函數的積分、帶絕對值的函數的積分等各種積分的求法都是重要的題型,總而言之看上不好處理的函數的積分常常是考試的重點。而且求積分的過程中,一定要注意積分的對稱性,我們要利用分段積分去掉絕對值把積分求出來。還有中值定理這個地方一般每年都要考一個題的,多看看以往考試題型,研究一下考試規(guī)律。對于多維函數的微積分部分里,多維隱函數的求導,復合函數的偏導數等是考試的重點。二重積分的計算,當然數學一里面還包括了三重積分,這里面每年都要考一個題目。另外曲線和曲面積分,這也是必考的重點內容。一階微分方程,還有無窮級數,無窮級數的求和等。充分把握住這些重點,同學們在以后的復習強化階段就應該多研究歷年真題,這樣做也能更好地了解命題思路和難易度,從而使整個復習規(guī)劃有條不紊。
扎實的基礎知識復習,合理的自我規(guī)劃和練習,逐步解決高數的重難知識點,同時也對出題者命題思路有了一定的了解,如此,考研學子們定能在自己的數學復習領域看到豐碩的果實,相信最美好的結果來自堅定的自我努力。
【考研數學高等數學備考方法指導】相關文章:
考研高等數學復習方法指導12-07
考研高等數學復習方法的指導11-15
考研數學高等數學備考建議06-26
考研高等數學備考的復習規(guī)劃12-20
解析考研高等數學備考重點07-13
2018考研高等數學復習指導10-23
考研數學備考方法06-20
考研高等數學的復習方法12-20
考研數學備考初期的復習指導12-02