亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

小升初

如何攻克小升初奧數(shù)必考的四大知識(shí)點(diǎn)

時(shí)間:2024-08-30 15:05:31 王娟 小升初 我要投稿
  • 相關(guān)推薦

關(guān)于如何攻克小升初奧數(shù)必考的四大知識(shí)點(diǎn)

  在平時(shí)的學(xué)習(xí)中,大家都背過(guò)各種知識(shí)點(diǎn)吧?知識(shí)點(diǎn)在教育實(shí)踐中,是指對(duì)某一個(gè)知識(shí)的泛稱。為了幫助大家更高效的學(xué)習(xí),下面是小編整理的關(guān)于如何攻克小升初奧數(shù)必考的四大知識(shí)點(diǎn),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

關(guān)于如何攻克小升初奧數(shù)必考的四大知識(shí)點(diǎn)

  如何攻克小升初奧數(shù)必考的四大知識(shí)點(diǎn)

  眾所周知,要實(shí)現(xiàn)“笑勝出”,孩子在重點(diǎn)中學(xué)的數(shù)學(xué)測(cè)驗(yàn)中脫穎而出是十分必要的。從三年級(jí)就開(kāi)始學(xué)習(xí)的奧數(shù)積累到六年級(jí),孩子做過(guò)無(wú)數(shù)的題目,見(jiàn)過(guò)無(wú)數(shù)的題型,但能反映在那張?jiān)嚲砩系,無(wú)非也就那么幾個(gè)知識(shí)點(diǎn)。而在這些知識(shí)點(diǎn)中,重要的無(wú)非也就是這么幾個(gè)——“數(shù)、行、形、算”。

  何謂“數(shù)、行、形、算”,也就是數(shù)論,行程,圖形、計(jì)算四個(gè)問(wèn)題。數(shù)論難在它的抽象,這是區(qū)分尖子生和普通生的關(guān)鍵;行程問(wèn)題復(fù)雜就在其應(yīng)用,孩子在做這類題目的時(shí)候,要求的不僅是其思維,還有其表述;圖形問(wèn)題(幾何問(wèn)題)雜而難,重點(diǎn)要求的是面積的計(jì)算,這是中學(xué)教育的開(kāi)始;計(jì)算是基礎(chǔ),是孩子取得高分的必要保障。

  由于這四個(gè)問(wèn)題,學(xué)生容易入門,但不易熟練,時(shí)常犯錯(cuò)誤,因此成為近年來(lái)重點(diǎn)中學(xué)考試的熱點(diǎn),據(jù)統(tǒng)計(jì)清華附中近年來(lái)的這幾大問(wèn)題的考題占據(jù)全部了80%左右,北師大附屬實(shí)驗(yàn)中學(xué),仁華學(xué)校六年級(jí)等對(duì)這些問(wèn)題的考察也十分偏重,而數(shù)論和行程問(wèn)題的考察更是重中之重,往往占到一張?jiān)嚲淼?0%.如何復(fù)習(xí)這四方面的內(nèi)容呢

  對(duì)于圖形問(wèn)題,我們要說(shuō)的就是培養(yǎng)孩子的形象思維,重點(diǎn)加強(qiáng)的是面積的計(jì)算。計(jì)算的技巧和方法也是在做題的總結(jié)和加強(qiáng)的,這里重點(diǎn)介紹一下數(shù)論和行程問(wèn)題的復(fù)習(xí)方法。

  數(shù)論在數(shù)論學(xué)習(xí)中學(xué)生往往容易犯如下幾個(gè)錯(cuò)誤:

  1、讀題障礙。數(shù)論的題目敘述往往只有幾句話,甚至只有一行,可就這短短的幾句話,卻表達(dá)了很多意思,學(xué)生如果讀不出題中的意思,題目通常會(huì)解錯(cuò)。

  2、知識(shí)僵化。由于數(shù)論問(wèn)題非常抽象,大多數(shù)學(xué)生往往采用死記硬背的方法來(lái)“消化”所學(xué)的內(nèi)容,導(dǎo)致各個(gè)知識(shí)點(diǎn)都似曾相識(shí),但遇到實(shí)際題目卻一籌莫展。例如,說(shuō)起奇偶性都知道怎么回事,馬上就開(kāi)始背:“奇數(shù)+奇數(shù)=偶數(shù)……”可是在做題的時(shí)候就想不到用。

  3、只見(jiàn)樹(shù)木,不見(jiàn)森林。對(duì)于數(shù)論定理的靈活運(yùn)用很欠缺。提起定理都能一字不差的背下來(lái),但是對(duì)各個(gè)概念和性質(zhì)缺乏整體上的認(rèn)識(shí)和把握,更不用說(shuō)理解各知識(shí)點(diǎn)之間的內(nèi)部聯(lián)系了。

  知識(shí)體系:

  整除問(wèn)題:

 。1)數(shù)的整除的特征和性質(zhì)

 。2)位值原理的應(yīng)用

  質(zhì)數(shù)合數(shù):

  (1)質(zhì)數(shù)、合數(shù)的概念和判斷

 。2)分解質(zhì)因數(shù)

  約數(shù)倍數(shù):

 。1)最大公約最小公倍數(shù)

  (2)約數(shù)個(gè)數(shù)決定法則

  余數(shù)問(wèn)題:

 。1)帶余除式的理解和運(yùn)用;

 。2)同余的性質(zhì)和運(yùn)用;

 。3)中國(guó)剩余定理

  奇偶問(wèn)題:

 。1)奇偶與四則運(yùn)算;

 。2)奇偶性質(zhì)在實(shí)際解題過(guò)程中的應(yīng)用

  完全平方數(shù):

 。1)完全平方數(shù)的判斷和性質(zhì)

 。2)完全平方數(shù)的運(yùn)用整數(shù)及分?jǐn)?shù)的分解與分拆

  這四個(gè)問(wèn)題我們需要掌握到什么樣的程度

  近幾年來(lái),我們通過(guò)對(duì)清華附,人大附,北大附,西城實(shí)驗(yàn)等名校的試卷分析發(fā)現(xiàn),雖然他們對(duì)以上的幾個(gè)問(wèn)題考察較多,但是難度通常不大,中等難度題目出現(xiàn)的頻率很高,通常在60%以上,因此我們的同學(xué)只要夯實(shí)基礎(chǔ),對(duì)于這樣的一張?jiān)嚲淼耐瓿蓱?yīng)該是能取得很好的成績(jī)的。對(duì)此,學(xué)校給出建議:如果我們的孩子不是要搞競(jìng)賽,只是為了進(jìn)入重點(diǎn)中學(xué),中等題的掌握絕對(duì)是我們的重點(diǎn),不能盲目追求難度,否則容易適得其反。

  小升初奧數(shù)知識(shí)點(diǎn)總結(jié)

  年齡問(wèn)題的三大特征

  年齡問(wèn)題:已知兩人的年齡,求若干年前或若干年后兩人年齡之間倍數(shù)關(guān)系的應(yīng)用題,叫做年齡問(wèn)題。

  年齡問(wèn)題的三個(gè)基本特征:

  ①兩個(gè)人的年齡差是不變的;

 、趦蓚(gè)人的年齡是同時(shí)增加或者同時(shí)減少的;

  ③兩個(gè)人的年齡的倍數(shù)是發(fā)生變化的;

  解題規(guī)律:抓住年齡差是個(gè)不變的數(shù)(常數(shù)),而倍數(shù)卻是每年都在變化的這個(gè)關(guān)鍵。

  例:父親今年54歲,兒子今年18歲,幾年前父親的年齡是兒子年齡的7倍?父子年齡的差是多少?

  54–18=36(歲)

  幾年前父親年齡比兒子年齡大幾倍?

  7-1=6

  幾年前兒子多少歲?

  36÷6=6(歲)

  幾年前父親年齡是兒子年齡的7倍?

  18–6=12(年)

  答:12年前父親的年齡是兒子年齡的7倍。

  小升初奧數(shù)知識(shí)點(diǎn)(歸一問(wèn)題特點(diǎn))

  歸一問(wèn)題的基本特點(diǎn):

  問(wèn)題中有一個(gè)不變的量,一般是那個(gè)―單一量‖,題目一般用―照這樣的速度‖……等詞語(yǔ)來(lái)表示。

  關(guān)鍵問(wèn)題:根據(jù)題目中的條件確定并求出單一量;

  復(fù)合應(yīng)用題中的某些問(wèn)題,解題時(shí)需先根據(jù)已知條件,求出一個(gè)單位量的數(shù)值,如單位面積的產(chǎn)量、單位時(shí)間的工作量、單位物品的價(jià)格、單位時(shí)間所行的距離等等,然后,再根據(jù)題中的條件和問(wèn)題求出結(jié)果。這樣的應(yīng)用題就叫做歸一問(wèn)題,這種解題方法叫做―歸一法‖。有些歸一問(wèn)題可以采取同類數(shù)量之間進(jìn)行倍數(shù)比較的方法進(jìn)行解答,這種方法叫做倍比法。

  由上所述,解答歸一問(wèn)題的關(guān)鍵是求出單位量的數(shù)值,再根據(jù)題中―照這樣計(jì)算‖、―用同樣的速度‖等句子的含義,抓準(zhǔn)題中數(shù)量的對(duì)應(yīng)關(guān)系,列出算式,求得問(wèn)題的解決。

  植樹(shù)問(wèn)題

  基本類型:

  在直線或者不封閉的曲線上植樹(shù),兩端都植樹(shù)

  在直線或者不封閉的曲線上植樹(shù),兩端都不植樹(shù)

  在直線或者不封閉的曲線上植樹(shù),只有一端植樹(shù)

  封閉曲線上植樹(shù)

  基本公式:

  棵數(shù)=段數(shù)+1

  棵距×段數(shù)=總長(zhǎng)

  棵數(shù)=段數(shù)-1

  棵距×段數(shù)=總長(zhǎng)

  棵數(shù)=段數(shù)

  棵距×段數(shù)=總長(zhǎng)

  關(guān)鍵問(wèn)題:

  確定所屬類型,從而確定棵數(shù)與段數(shù)的關(guān)系

  雞兔同籠問(wèn)題

  基本概念:雞兔同籠問(wèn)題又稱為置換問(wèn)題、假設(shè)問(wèn)題,就是把假設(shè)錯(cuò)的那部分置換出來(lái);

  基本思路:

 、偌僭O(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):

  ②假設(shè)后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少;

 、勖總(gè)事物造成的差是固定的,從而找出出現(xiàn)這個(gè)差的原因;

 、茉俑鶕(jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差。

  基本公式:

  ①把所有雞假設(shè)成兔子:雞數(shù)=(兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(兔腳數(shù)-雞腳數(shù))②把所有兔子假設(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù))關(guān)鍵問(wèn)題:找出總量的差與單位量的差。

  盈虧問(wèn)題

  基本概念:一定量的對(duì)象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于

  分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對(duì)象分組的組數(shù)或?qū)ο蟮目偭浚舅悸罚合葘煞N分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個(gè)關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對(duì)象的總量.

  基本題型:

  ①一次有余數(shù),另一次不足;

  基本公式:總份數(shù)=(余數(shù)+不足數(shù))÷兩次每份數(shù)的差

 、诋(dāng)兩次都有余數(shù);

  基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))÷兩次每份數(shù)的差

 、郛(dāng)兩次都不足;

  基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))÷兩次每份數(shù)的差

  基本特點(diǎn):對(duì)象總量和總的組數(shù)是不變的。

  關(guān)鍵問(wèn)題:確定對(duì)象總量和總的組數(shù)。

  牛吃草問(wèn)題

  基本思路:假設(shè)每頭牛吃草的速度為―1‖份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長(zhǎng)速度和總草量。

  基本特點(diǎn):原草量和新草生長(zhǎng)速度是不變的;

  關(guān)鍵問(wèn)題:確定兩個(gè)不變的量。

  基本公式:

  生長(zhǎng)量=(較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較短時(shí)間×短時(shí)間牛頭數(shù))÷(長(zhǎng)時(shí)間-短時(shí)間);總草量=較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較長(zhǎng)時(shí)間×生長(zhǎng)量

  小升初奧數(shù)知識(shí)點(diǎn)(平均數(shù)問(wèn)題)

  平均數(shù)

  基本公式:

  ①平均數(shù)=總數(shù)量÷總份數(shù)

  總數(shù)量=平均數(shù)×總份數(shù)

  總份數(shù)=總數(shù)量÷平均數(shù)

 、谄骄鶖(shù)=基準(zhǔn)數(shù)+每一個(gè)數(shù)與基準(zhǔn)數(shù)差的和÷總份數(shù)

  基本算法:

 、偾蟪隹倲(shù)量以及總份數(shù),利用基本公式①進(jìn)行計(jì)算.

 、诨鶞(zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個(gè)基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差;再求出所有差的和;再求出這些差的平均數(shù);最后求這個(gè)差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見(jiàn)基本公式②

  周期循環(huán)數(shù)

  周期循環(huán)與數(shù)表規(guī)律

  周期現(xiàn)象:事物在運(yùn)動(dòng)變化的過(guò)程中,某些特征有規(guī)律循環(huán)出現(xiàn)。

  周期:我們把連續(xù)兩次出現(xiàn)所經(jīng)過(guò)的時(shí)間叫周期。

  關(guān)鍵問(wèn)題:確定循環(huán)周期。

  閏年:一年有366天;

 、倌攴菽鼙4整除;②如果年份能被100整除,則年份必須能被400整除;平年:一年有365天。

  ①年份不能被4整除;②如果年份能被100整除,但不能被400整除;

  抽屜原理

  抽屜原則一:如果把(n+1)個(gè)物體放在n個(gè)抽屜里,那么必有一個(gè)抽屜中至少放有2個(gè)物體。

  例:把4個(gè)物體放在3個(gè)抽屜里,也就是把4分解成三個(gè)整數(shù)的和,那么就有以下四種情況:

 、4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1

  觀察上面四種放物體的方式,我們會(huì)發(fā)現(xiàn)一個(gè)共同特點(diǎn):總有那么一個(gè)抽屜里有2個(gè)或多于2個(gè)物體,也就是說(shuō)必有一個(gè)抽屜中至少放有2個(gè)物體。

  抽屜原則二:如果把n個(gè)物體放在m個(gè)抽屜里,其中n>m,那么必有一個(gè)抽屜至少有:

 、賙=[n/m]+1個(gè)物體:當(dāng)n不能被m整除時(shí)。

 、趉=n/m個(gè)物體:當(dāng)n能被m整除時(shí)。

  理解知識(shí)點(diǎn):[X]表示不超過(guò)X的最大整數(shù)。

  例[4.351]=4;[0.321]=0;[2.9999]=2;

  關(guān)鍵問(wèn)題:構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進(jìn)行運(yùn)算。

  定義新運(yùn)算

  基本概念:定義一種新的運(yùn)算符號(hào),這個(gè)新的運(yùn)算符號(hào)包含有多種基本(混合)運(yùn)算。

  基本思路:嚴(yán)格按照新定義的運(yùn)算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運(yùn)算,然后按照基本運(yùn)算過(guò)程、規(guī)律進(jìn)行運(yùn)算。

  關(guān)鍵問(wèn)題:正確理解定義的運(yùn)算符號(hào)的意義。

  注意事項(xiàng):

 、傩碌倪\(yùn)算不一定符合運(yùn)算規(guī)律,特別注意運(yùn)算順序。

 、诿總(gè)新定義的運(yùn)算符號(hào)只能在本題中使用。

  數(shù)列求和

  等差數(shù)列:在一列數(shù)中,任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。

  基本概念:首項(xiàng):等差數(shù)列的第一個(gè)數(shù),一般用a1表示;

  項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n表示;

  公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d表示;

  通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an表示;

  數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.

  基本思路:等差數(shù)列中涉及五個(gè)量:a1,an,d,n,sn,通項(xiàng)公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)。

  基本公式:通項(xiàng)公式:an=a1+(n-1)d;

  通項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)一1)×公差;

  數(shù)列和公式:sn,=(a1+an)×n÷2;

  數(shù)列和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2;

  項(xiàng)數(shù)公式:n=(an+a1)÷d+1;

  項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1;

  公差公式:d=(an-a1))÷(n-1);

  公差=(末項(xiàng)-首項(xiàng))÷(項(xiàng)數(shù)-1);

  關(guān)鍵問(wèn)題:確定已知量和未知量,確定使用的公式;

  二進(jìn)制及其應(yīng)用

  十進(jìn)制:用0~9十個(gè)數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2×102+3×10+4。

  =An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100

  注意:n0=1;n1=n(其中n是任意自然數(shù))

  二進(jìn)制:用0~1兩個(gè)數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。

 。2)=An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7+……+A3×22+A2×21+A1×20

  注意:An不是0就是1。

  十進(jìn)制化成二進(jìn)制:

 、俑鶕(jù)二進(jìn)制滿2進(jìn)1的特點(diǎn),用2連續(xù)去除這個(gè)數(shù),直到商為0,然后把每次所得的余數(shù)按自下而上依次寫(xiě)出即可。

 、谙日页霾淮笥谠摂(shù)的2的n次方,再求它們的差,再找不大于這個(gè)差的2的n次方,依此方法一直找到差為0,按照二進(jìn)制展開(kāi)式特點(diǎn)即可寫(xiě)出。

  加法原理

  加法乘法原理和幾何計(jì)數(shù)

  加法原理:如果完成一件任務(wù)有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+m2.......+mn種不同的方法。

  關(guān)鍵問(wèn)題:確定工作的分類方法。

  基本特征:每一種方法都可完成任務(wù)。

  乘法原理:如果完成一件任務(wù)需要分成n個(gè)步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1×m2.......×mn種不同的方法。

  關(guān)鍵問(wèn)題:確定工作的完成步驟。

  基本特征:每一步只能完成任務(wù)的一部分。

  直線:一點(diǎn)在直線或空間沿一定方向或相反方向運(yùn)動(dòng),形成的軌跡。

  直線特點(diǎn):沒(méi)有端點(diǎn),沒(méi)有長(zhǎng)度。

  線段:直線上任意兩點(diǎn)間的距離。這兩點(diǎn)叫端點(diǎn)。

  線段特點(diǎn):有兩個(gè)端點(diǎn),有長(zhǎng)度。

  射線:把直線的一端無(wú)限延長(zhǎng)。

  射線特點(diǎn):只有一個(gè)端點(diǎn);沒(méi)有長(zhǎng)度。

 、贁(shù)線段規(guī)律:總數(shù)=1+2+3+…+(點(diǎn)數(shù)一1);

 、跀(shù)角規(guī)律=1+2+3+…+(射線數(shù)一1);

 、蹟(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=長(zhǎng)的線段數(shù)×寬的線段數(shù):

 、軘(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=1×1+2×2+3×3+…+行數(shù)×列數(shù)

  質(zhì)數(shù)與合數(shù)

  質(zhì)數(shù):一個(gè)數(shù)除了1和它本身之外,沒(méi)有別的約數(shù),這個(gè)數(shù)叫做質(zhì)數(shù),也叫做素?cái)?shù)。合數(shù):一個(gè)數(shù)除了1和它本身之外,還有別的約數(shù),這個(gè)數(shù)叫做合數(shù)。

  質(zhì)因數(shù):如果某個(gè)質(zhì)數(shù)是某個(gè)數(shù)的約數(shù),那么這個(gè)質(zhì)數(shù)叫做這個(gè)數(shù)的質(zhì)因數(shù)。

  分解質(zhì)因數(shù):把一個(gè)數(shù)用質(zhì)數(shù)相乘的形式表示出來(lái),叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個(gè)合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。

  分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:n=,其中a1、a2、a3……an都是合數(shù)n的質(zhì)因數(shù),且a1

  求約數(shù)個(gè)數(shù)的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)

  互質(zhì)數(shù):如果兩個(gè)數(shù)的最大公約數(shù)是1,這兩個(gè)數(shù)叫做互質(zhì)數(shù)。

  約數(shù)與倍數(shù)

  約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。

  公約數(shù):幾個(gè)數(shù)公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù);其中最大的一個(gè),叫做這幾個(gè)數(shù)的最大公約數(shù)。

  最大公約數(shù)的性質(zhì):

  1、幾個(gè)數(shù)都除以它們的最大公約數(shù),所得的幾個(gè)商是互質(zhì)數(shù)。

  2、幾個(gè)數(shù)的最大公約數(shù)都是這幾個(gè)數(shù)的約數(shù)。

  3、幾個(gè)數(shù)的公約數(shù),都是這幾個(gè)數(shù)的最大公約數(shù)的約數(shù)。

  4、幾個(gè)數(shù)都乘以一個(gè)自然數(shù)m,所得的積的最大公約數(shù)等于這幾個(gè)數(shù)的最大公約數(shù)乘以m。

  例如:12的約數(shù)有1、2、3、4、6、12;

  18的約數(shù)有:1、2、3、6、9、18;

  那么12和18的公約數(shù)有:1、2、3、6;

  那么12和18最大的公約數(shù)是:6,記作(12,18)=6;

  求最大公約數(shù)基本方法:

  1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來(lái)。

  2、短除法:先找公有的約數(shù),然后相乘。

  3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個(gè)余數(shù),就是所求的最大公約數(shù)。

  公倍數(shù):幾個(gè)數(shù)公有的倍數(shù),叫做這幾個(gè)數(shù)的公倍數(shù);其中最小的一個(gè),叫做這幾個(gè)數(shù)的最小公倍數(shù)。

  12的倍數(shù)有:12、24、36、48……;

  18的倍數(shù)有:18、36、54、72……;

  那么12和18的公倍數(shù)有:36、72、108……;

  那么12和18最小的公倍數(shù)是36,記作[12,18]=36;

  最小公倍數(shù)的性質(zhì):

  1、兩個(gè)數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。

  2、兩個(gè)數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個(gè)數(shù)的乘積。

  求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法

  數(shù)的整除

  一、基本概念和符號(hào):

  1、整除:如果一個(gè)整數(shù)a,除以一個(gè)自然數(shù)b,得到一個(gè)整數(shù)商c,而且沒(méi)有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。

  2、常用符號(hào):整除符號(hào)―|‖,不能整除符號(hào)―‖;因?yàn)榉?hào)―∵‖,所以的符號(hào)―∴‖;

  二、整除判斷方法:

  1.能被2、5整除:末位上的數(shù)字能被2、5整除。

  2.能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。

  小升初奧數(shù)知識(shí)點(diǎn)總結(jié),匯總小學(xué)階段奧數(shù)知識(shí)點(diǎn),包括小升初中?嫉念}目類型等。有工程問(wèn)題、行程問(wèn)題、質(zhì)數(shù)合數(shù)問(wèn)題等等

  3.能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。

  4.能被3、9整除:各個(gè)數(shù)位上數(shù)字的和能被3、9整除。

  5.能被7整除:

 、倌┤簧蠑(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。②逐次去掉最后一位數(shù)字并減去末位數(shù)字的2倍后能被7整除。

  6.能被11整除:

 、倌┤簧蠑(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。②奇數(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。

 、壑鸫稳サ糇詈笠晃粩(shù)字并減去末位數(shù)字后能被11整除。

  7.能被13整除:

 、倌┤簧蠑(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。②逐次去掉最后一位數(shù)字并減去末位數(shù)字的9倍后能被13整除。

  三、整除的性質(zhì):

  1.如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。

  2.如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。

  3.如果a能被b整除,b又能被c整除,那么a也能被c整除。

  4.如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。

  余數(shù)及其應(yīng)用

  基本概念:對(duì)任意自然數(shù)a、b、q、r,如果使得a÷b=q……r,且0

  余數(shù)的性質(zhì):

 、儆鄶(shù)小于除數(shù)。

 、谌鬭、b除以c的余數(shù)相同,則c|a-b或c|b-a。

 、踑與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。

 、躠與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)

  余數(shù)問(wèn)題

  余數(shù)、同余與周期

  一、同余的定義:

 、偃魞蓚(gè)整數(shù)a、b除以m的余數(shù)相同,則稱a、b對(duì)于模m同余。

  ②已知三個(gè)整數(shù)a、b、m,如果m|a-b,就稱a、b對(duì)于模m同余,記作a≡b(modm),讀作a同余于b模m。

  二、同余的性質(zhì):

 、僮陨硇裕篴≡a(modm);

 、趯(duì)稱性:若a≡b(modm),則b≡a(modm);

 、蹅鬟f性:若a≡b(modm),b≡c(modm),則a≡c(modm);

 、芎筒钚裕喝鬭≡b(modm),c≡d(modm),則a+c≡b+d(modm),a-c≡b-d(modm);⑤相乘性:若a≡b(modm),c≡d(modm),則a×c≡b×d(modm);

 、蕹朔叫裕喝鬭≡b(modm),則an≡bn(modm);

 、咄缎:若a≡b(modm),整數(shù)c,則a×c≡b×c(modm×c);

  三、關(guān)于乘方的預(yù)備知識(shí):

 、偃鬉=a×b,則MA=Ma×b=(Ma)b

  ②若B=c+d則MB=Mc+d=Mc×Md

  四、被3、9、11除后的余數(shù)特征:

  ①一個(gè)自然數(shù)M,n表示M的各個(gè)數(shù)位上數(shù)字的和,則M≡n(mod9)或(mod3);

 、谝粋(gè)自然數(shù)M,X表示M的各個(gè)奇數(shù)位上數(shù)字的和,Y表示M的各個(gè)偶數(shù)數(shù)位上數(shù)字的和,則M≡Y-X或M≡11-(X-Y)(mod11);

  五、費(fèi)爾馬小定理:如果p是質(zhì)數(shù)(素?cái)?shù)),a是自然數(shù),且a不能被p整除,則ap-1≡1(modp)。

  分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用

  基本概念與性質(zhì):

  分?jǐn)?shù):把單位―1‖平均分成幾份,表示這樣的一份或幾份的數(shù)。

  分?jǐn)?shù)的性質(zhì):分?jǐn)?shù)的分子和分母同時(shí)乘以或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。

  分?jǐn)?shù)單位:把單位―1‖平均分成幾份,表示這樣一份的數(shù)。

  百分?jǐn)?shù):表示一個(gè)數(shù)是另一個(gè)數(shù)百分之幾的數(shù)。

  常用方法:

 、倌嫦蛩季S方法:從題目提供條件的反方向(或結(jié)果)進(jìn)行思考。

 、趯(duì)應(yīng)思維方法:找出題目中具體的量與它所占的率的直接對(duì)應(yīng)關(guān)系。

 、坜D(zhuǎn)化思維方法:把一類應(yīng)用題轉(zhuǎn)化成另一類應(yīng)用題進(jìn)行解答。最常見(jiàn)的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系;把不同的標(biāo)準(zhǔn)(在分?jǐn)?shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見(jiàn)的處理方法是確定不同的標(biāo)準(zhǔn)為一倍量。

 、芗僭O(shè)思維方法:為了解題的方便,可以把題目中不相等的量假設(shè)成相等或者假設(shè)某種情況成立,計(jì)算出相應(yīng)的結(jié)果,然后再進(jìn)行調(diào)整,求出最后結(jié)果。

 、萘坎蛔兯季S方法:在變化的各個(gè)量當(dāng)中,總有一個(gè)量是不變的,不論其他量如何變化,而這個(gè)量是始終固定不變的。有以下三種情況:

  a、分量發(fā)生變化,總量不變。

  b、總量發(fā)生變化,但其中有的分量不變。

  c、總量和分量都發(fā)生變化,但分量之間的差量不變化。

 、尢鎿Q思維方法:用一種量代替另一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。

 、咄堵史ǎ嚎偭亢头至恐g按照同分率變化的規(guī)律進(jìn)行處理。

 、酀舛扰浔确ǎ阂话銘(yīng)用于總量和分量都發(fā)生變化的狀況

  分?jǐn)?shù)大小的比較

  基本方法:

  ①通分分子法:使所有分?jǐn)?shù)的分子相同,根據(jù)同分子分?jǐn)?shù)大小和分母的關(guān)系比較。②通分分母法:使所有分?jǐn)?shù)的分母相同,根據(jù)同分母分?jǐn)?shù)大小和分子的關(guān)系比較。

  ③基準(zhǔn)數(shù)法:確定一個(gè)標(biāo)準(zhǔn),使所有的分?jǐn)?shù)都和它進(jìn)行比較。

  ④分子和分母大小比較法:當(dāng)分子和分母的差一定時(shí),分子或分母越大的分?jǐn)?shù)值越大。

 、荼堵时容^法:當(dāng)比較兩個(gè)分子或分母同時(shí)變化時(shí)分?jǐn)?shù)的大小,除了運(yùn)用以上方法外,可以用同倍率的變化關(guān)系比較分?jǐn)?shù)的大小。(具體運(yùn)用見(jiàn)同倍率變化規(guī)律)

 、揶D(zhuǎn)化比較方法:把所有分?jǐn)?shù)轉(zhuǎn)化成小數(shù)(求出分?jǐn)?shù)的值)后進(jìn)行比較。

  ⑦倍數(shù)比較法:用一個(gè)數(shù)除以另一個(gè)數(shù),結(jié)果得數(shù)和1進(jìn)行比較。

 、啻笮”容^法:用一個(gè)分?jǐn)?shù)減去另一個(gè)分?jǐn)?shù),得出的數(shù)和0比較。

 、岬箶(shù)比較法:利用倒數(shù)比較大小,然后確定原數(shù)的大小。

 、饣鶞(zhǔn)數(shù)比較法:確定一個(gè)基準(zhǔn)數(shù),每一個(gè)數(shù)與基準(zhǔn)數(shù)比較。

  完全平方數(shù)

  完全平方數(shù)特征:

  1.末位數(shù)字只能是:0、1、4、5、6、9;反之不成立。

  2.除以3余0或余1;反之不成立。

  3.除以4余0或余1;反之不成立。

  4.約數(shù)個(gè)數(shù)為奇數(shù);反之成立。

  5.奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。

  6.奇數(shù)平方個(gè)位數(shù)字是奇數(shù);偶數(shù)平方個(gè)位數(shù)字是偶數(shù)。

  7.兩個(gè)相臨整數(shù)的平方之間不可能再有平方數(shù)。

  平方差公式:X2-Y2=(X-Y)(X+Y)

  完全平方和公式:(X+Y)2=X2+2XY+Y2

  完全平方差公式:(X-Y)2=X2-2XY+Y2

  比和比例問(wèn)題

  比:兩個(gè)數(shù)相除又叫兩個(gè)數(shù)的比。比號(hào)前面的數(shù)叫比的前項(xiàng),比號(hào)后面的數(shù)叫比的后項(xiàng)。

  比值:比的前項(xiàng)除以后項(xiàng)的商,叫做比值。

  比的性質(zhì):比的前項(xiàng)和后項(xiàng)同時(shí)乘以或除以相同的數(shù)(零除外),比值不變。比例:表示兩個(gè)比相等的式子叫做比例。a:b=c:d或

  比例的性質(zhì):兩個(gè)外項(xiàng)積等于兩個(gè)內(nèi)項(xiàng)積(交叉相乘),ad=bc。

  正比例:若A擴(kuò)大或縮小幾倍,B也擴(kuò)大或縮小幾倍(AB的商不變時(shí)),則A與B成正比。

  反比例:若A擴(kuò)大或縮小幾倍,B也縮小或擴(kuò)大幾倍(AB的積不變時(shí)),則A與B成反比。

  比例尺:圖上距離與實(shí)際距離的比叫做比例尺。

  按比例分配:把幾個(gè)數(shù)按一定比例分成幾份,叫按比例分配。

  綜合行程問(wèn)題

  基本概念:行程問(wèn)題是研究物體運(yùn)動(dòng)的,它研究的是物體速度、時(shí)間、路程三者之間的關(guān)系.

  基本公式:路程=速度×?xí)r間;路程÷時(shí)間=速度;路程÷速度=時(shí)間

  關(guān)鍵問(wèn)題:確定運(yùn)動(dòng)過(guò)程中的位置和方向。

  相遇問(wèn)題:速度和×相遇時(shí)間=相遇路程(請(qǐng)寫(xiě)出其他公式)

  追及問(wèn)題:追及時(shí)間=路程差÷速度差(寫(xiě)出其他公式)

  流水問(wèn)題:順?biāo)谐?(船速+水速)×順?biāo)畷r(shí)間

  逆水行程=(船速-水速)×逆水時(shí)間

  順?biāo)俣?船速+水速

  逆水速度=船速-水速

  靜水速度=(順?biāo)俣?逆水速度)÷2

  水速=(順?biāo)俣?逆水速度)÷2

  流水問(wèn)題:關(guān)鍵是確定物體所運(yùn)動(dòng)的速度,參照以上公式。

  過(guò)橋問(wèn)題:關(guān)鍵是確定物體所運(yùn)動(dòng)的路程,參照以上公式。

  主要方法:畫(huà)線段圖法

  基本題型:已知路程(相遇路程、追及路程)、時(shí)間(相遇時(shí)間、追及時(shí)間)、速度(速度和、速度差)中任意兩個(gè)量,求第三個(gè)量。

  工程問(wèn)題

  基本公式:

 、俟ぷ骺偭=工作效率×工作時(shí)間

 、诠ぷ餍=工作總量÷工作時(shí)間

 、酃ぷ鲿r(shí)間=工作總量÷工作效率

  基本思路:

  ①假設(shè)工作總量為―1‖(和總工作量無(wú)關(guān));

 、诩僭O(shè)一個(gè)方便的數(shù)為工作總量(一般是它們完成工作總量所用時(shí)間的最小公倍數(shù)),利用上述三個(gè)基本關(guān)系,可以簡(jiǎn)單地表示出工作效率及工作時(shí)間.

  關(guān)鍵問(wèn)題:確定工作量、工作時(shí)間、工作效率間的兩兩對(duì)應(yīng)關(guān)系。

  經(jīng)驗(yàn)簡(jiǎn)評(píng):合久必分,分久必合。

  小升初奧數(shù)知識(shí)點(diǎn)(邏輯推理問(wèn)題)

  邏輯推理

  基本方法簡(jiǎn)介:

 、贄l件分析—假設(shè)法:假設(shè)可能情況中的一種成立,然后按照這個(gè)假設(shè)去判斷,如果有與題設(shè)條件矛盾的情況,說(shuō)明該假設(shè)情況是不成立的,那么與他的相反情況是成立的。例如,假設(shè)a是偶數(shù)成立,在判斷過(guò)程中出現(xiàn)了矛盾,那么a一定是奇數(shù)。

 、跅l件分析—列表法:當(dāng)題設(shè)條件比較多,需要多次假設(shè)才能完成時(shí),就需要進(jìn)行列表來(lái)輔助分析。列表法就是把題設(shè)的條件全部表示在一個(gè)長(zhǎng)方形表格中,表格的行、列分別表示不同的對(duì)象與情況,觀察表格內(nèi)的題設(shè)情況,運(yùn)用邏輯規(guī)律進(jìn)行判斷。

 、蹢l件分析——圖表法:當(dāng)兩個(gè)對(duì)象之間只有兩種關(guān)系時(shí),就可用連線表示兩個(gè)對(duì)象之間的關(guān)系,有連線則表示―是,有‖等肯定的狀態(tài),沒(méi)有連線則表示否定的狀態(tài)。例如A和B兩人之間有認(rèn)識(shí)或不認(rèn)識(shí)兩種狀態(tài),有連線表示認(rèn)識(shí),沒(méi)有表示不認(rèn)識(shí)。④邏輯計(jì)算:在推理的過(guò)程中除了要進(jìn)行條件分析的推理之外,還要進(jìn)行相應(yīng)的計(jì)算,根據(jù)計(jì)算的結(jié)果為推理提供一個(gè)新的判斷篩選條件。

  ⑤簡(jiǎn)單歸納與推理:根據(jù)題目提供的特征和數(shù)據(jù),分析其中存在的規(guī)律和方法,并從特殊情況推廣到一般情況,并遞推出相關(guān)的關(guān)系式,從而得到問(wèn)題的解決

  幾何面積

  基本思路:

  在一些面積的計(jì)算上,不能直接運(yùn)用公式的情況下,一般需要對(duì)圖形進(jìn)行割補(bǔ),平移、旋轉(zhuǎn)、翻折、分解、變形、重疊等,使不規(guī)則的圖形變?yōu)橐?guī)則的圖形進(jìn)行計(jì)算;另外需要掌握和記憶一些常規(guī)的面積規(guī)律。

  常用方法:

  1.連輔助線方法

  2.利用等底等高的兩個(gè)三角形面積相等。

  3.大膽假設(shè)(有些點(diǎn)的設(shè)置題目中說(shuō)的是任意點(diǎn),解題時(shí)可把任意點(diǎn)設(shè)置在特殊位置上)。

  4.利用特殊規(guī)律

 、俚妊苯侨切,已知任意一條邊都可求出面積。(斜邊的平方除以4等于等腰直角三角形的面積)

 、谔菪螌(duì)角線連線后,兩腰部分面積相等。

 、蹐A的面積占外接正方形面積的78.5%

【如何攻克小升初奧數(shù)必考的四大知識(shí)點(diǎn)】相關(guān)文章:

小升初奧數(shù):比例問(wèn)題的知識(shí)點(diǎn)11-12

重慶小升初奧數(shù)重要知識(shí)點(diǎn)的整理04-18

小升初數(shù)學(xué)必考知識(shí)點(diǎn)10-18

44個(gè)小學(xué)奧數(shù)必考公式 02-10

小升初數(shù)學(xué)必考知識(shí)點(diǎn)參考02-07

小升初語(yǔ)文必考知識(shí)點(diǎn)梳理02-13

小升初人教版語(yǔ)文必考知識(shí)點(diǎn)06-07

小升初奧數(shù)行程問(wèn)題之自動(dòng)扶梯知識(shí)點(diǎn)05-25

關(guān)于小升初數(shù)學(xué)必考知識(shí)點(diǎn)大全01-29

小升初數(shù)學(xué)為何偏愛(ài)奧數(shù)內(nèi)容10-29