2016年小學(xué)數(shù)學(xué)應(yīng)用題大全
【數(shù)量關(guān)系】
火車過橋:過橋時間=(車長+橋長)÷車速
火車追及:追及時間=(甲車長+乙車長+距離)
÷(甲車速-乙車速)
火車相遇:相遇時間=(甲車長+乙車長+距離)
÷(甲車速+乙車速)
【解題思路和方法】
大多數(shù)情況可以直接利用數(shù)量關(guān)系的公式。
例1
一座大橋長2400米,一列火車以每分鐘900米的速度通過大橋,從車頭開上橋到車尾離開橋共需要3分鐘。這列火車長多少米?
解
火車3分鐘所行的路程,就是橋長與火車車身長度的和。
(1)火車3分鐘行多少米?900×3=2700(米)
(2)這列火車長多少米?2700-2400=300(米)
列成綜合算式900×3-2400=300(米)
答:這列火車長300米。
例2
一列長200米的火車以每秒8米的速度通過一座大橋,用了2分5秒鐘時間,求大橋的長度是多少米?
解
火車過橋所用的時間是2分5秒=125秒,所走的路程是(8×125)米,這段路程就是(200米+橋長),所以,橋長為
8×125-200=800(米)
答:大橋的長度是800米。
例3
一列長225米的慢車以每秒17米的速度行駛,一列長140米的快車以每秒22米的速度在后面追趕,求快車從追上到追過慢車需要多長時間?
解
從追上到追過,快車比慢車要多行(225+140)米,而快車比慢車每秒多行(22-17)米,因此,所求的時間為
(225+140)÷(22-17)=73(秒)
答:需要73秒。
例4
一列長150米的.列車以每秒22米的速度行駛,有一個扳道工人以每秒3米的速度迎面走來,那么,火車從工人身旁駛過需要多少時間?
解
如果把人看作一列長度為零的火車,原題就相當(dāng)于火車相遇問題。
150÷(22+3)=6(秒)
答:火車從工人身旁駛過需要6秒鐘。
13、時鐘問題
【含義】
就是研究鐘面上時針與分針關(guān)系的問題,如兩針重合、兩針垂直、兩針成一線、兩針夾角為60度等。時鐘問題可與追及問題相類比。
【數(shù)量關(guān)系】
分針的速度是時針的12倍,
二者的速度差為11/12。
通常按追及問題來對待,也可以按差倍問題來計算。
【解題思路和方法】
變通為“追及問題”后可以直接利用公式。
例1
從時針指向4點開始,再經(jīng)過多少分鐘時針正好與分針重合?
解
鐘面的一周分為60格,分針每分鐘走一格,每小時走60格;時針每小時走5格,每分鐘走5/60=1/12格。每分鐘分針比時針多走(1-1/12)=11/12格。4點整,時針在前,分針在后,兩針相距20格。所以
分針追上時針的時間為20÷(1-1/12)≈22(分)
答:再經(jīng)過22分鐘時針正好與分針重合。
例2
四點和五點之間,時針和分針在什么時候成直角?
解
鐘面上有60格,它的1/4是15格,因而兩針成直角的時候相差15格(包括分針在時針的前或后15格兩種情況)。四點整的時候,分針在時針后(5×4)格,如果分針在時針后與它成直角,那么分針就要比時針多走(5×4-15)格,如果分針在時針前與它成直角,那么分針就要比時針多走(5×4+15)格。再根據(jù)1分鐘分針比時針多走(1-1/12)格就可以求出二針成直角的時間。
(5×4-15)÷(1-1/12)≈6(分)
(5×4+15)÷(1-1/12)≈38(分)
答:4點06分及4點38分時兩針成直角。
例3
六點與七點之間什么時候時針與分針重合?
解
六點整的時候,分針在時針后(5×6)格,分針要與時針重合,就得追上時針。這實際上是一個追及問題。
(5×6)÷(1-1/12)≈33(分)
答:6點33分的時候分針與時針重合。
14、盈虧問題
【含義】
根據(jù)一定的人數(shù),分配一定的物品,在兩次分配中,一次有余(盈),一次不足(虧),或兩次都有余,或兩次都不足,求人數(shù)或物品數(shù),這類應(yīng)用題叫做盈虧問題。
【數(shù)量關(guān)系】
一般地說,在兩次分配中,如果一次盈,一次虧,則有:
參加分配總?cè)藬?shù)=(盈+虧)÷分配差
如果兩次都盈或都虧,則有:
參加分配總?cè)藬?shù)=(大盈-小盈)÷分配差
參加分配總?cè)藬?shù)=(大虧-小虧)÷分配差
【解題思路和方法】
大多數(shù)情況可以直接利用數(shù)量關(guān)系的公式。
例1
給幼兒園小朋友分蘋果,若每人分3個就余11個;若每人分4個就少1個。問有多少小朋友?有多少個蘋果?
解
按照“參加分配的總?cè)藬?shù)=(盈+虧)÷分配差”的數(shù)量關(guān)系:
(1)有小朋友多少人?(11+1)÷(4-3)=12(人)
(2)有多少個蘋果?3×12+11=47(個)
答:有小朋友12人,有47個蘋果。
例2
修一條公路,如果每天修260米,修完全長就得延長8天;如果每天修300米,修完全長仍得延長4天。這條路全長多少米?
解
題中原定完成任務(wù)的天數(shù),就相當(dāng)于“參加分配的總?cè)藬?shù)”,按照“參加分配的總?cè)藬?shù)=(大虧-小虧)÷分配差”的數(shù)量關(guān)系,可以得知
原定完成任務(wù)的天數(shù)為
(260×8-300×4)÷(300-260)=22(天)
這條路全長為300×(22+4)=7800(米)
答:這條路全長7800米。
例3
學(xué)校組織春游,如果每輛車坐40人,就余下30人;如果每輛車坐45人,就剛好坐完。問有多少車?多少人?
解
本題中的車輛數(shù)就相當(dāng)于“參加分配的總?cè)藬?shù)”,于是就有
(1)有多少車?(30-0)÷(45-40)=6(輛)
(2)有多少人?40×6+30=270(人)
答:有6輛車,有270人。
15、工程問題
【含義】
工程問題主要研究工作量、工作效率和工作時間三者之間的關(guān)系。這類問題在已知條件中,常常不給出工作量的具體數(shù)量,只提出“一項工程”、“一塊土地”、“一條水渠”、“一件工作”等,在解題時,常常用單位“1”表示工作總量。
【數(shù)量關(guān)系】
解答工程問題的關(guān)鍵是把工作總量看作“1”,這樣,工作效率就是工作時間的倒數(shù)(它表示單位時間內(nèi)完成工作總量的幾分之幾),進(jìn)而就可以根據(jù)工作量、工作效率、工作時間三者之間的關(guān)系列出算式。
工作量=工作效率×工作時間
工作時間=工作量÷工作效率
工作時間=總工作量÷(甲工作效率+乙工作效率)
【解題思路和方法】
變通后可以利用上述數(shù)量關(guān)系的公式。
例1
一項工程,甲隊單獨做需要10天完成,乙隊單獨做需要15天完成,現(xiàn)在兩隊合作,需要幾天完成?
解
題中的“一項工程”是工作總量,由于沒有給出這項工程的具體數(shù)量,因此,把此項工程看作單位“1”。由于甲隊獨做需10天完成,那么每天完成這項工程的1/10;乙隊單獨做需15天完成,每天完成這項工程的1/15;兩隊合做,每天可以完成這項工程的(1/10+1/15)。
由此可以列出算式:1÷(1/10+1/15)=1÷1/6=6(天)
答:兩隊合做需要6天完成。
例2
一批零件,甲獨做6小時完成,乙獨做8小時完成,F(xiàn)在兩人合做,完成任務(wù)時甲比乙多做24個,求這批零件共有多少個?
解一
設(shè)總工作量為1,則甲每小時完成1/6,乙每小時完成1/8,甲比乙每小時多完成(1/6-1/8),二人合做時每小時完成(1/6+1/8)。因為二人合做需要[1÷(1/6+1/8)]小時,這個時間內(nèi),甲比乙多做24個零件,所以
(1)每小時甲比乙多做多少零件?
24÷[1÷(1/6+1/8)]=7(個)
(2)這批零件共有多少個?
7÷(1/6-1/8)=168(個)
答:這批零件共有168個。
解二
上面這道題還可以用另一種方法計算:
兩人合做,完成任務(wù)時甲乙的工作量之比為1/6∶1/8=4∶3
由此可知,甲比乙多完成總工作量的4-3/4+3=1/7
所以,這批零件共有24÷1/7=168(個)
例3
一件工作,甲獨做12小時完成,乙獨做10小時完成,丙獨做15小時完成,F(xiàn)在甲先做2小時,余下的由乙丙二人合做,還需幾小時才能完成?
解
必須先求出各人每小時的工作效率。如果能把效率用整數(shù)表示,就會給計算帶來方便,因此,我們設(shè)總工作量為12、10、和15的某一公倍數(shù),例如最小公倍數(shù)60,則甲乙丙三人的工作效率分別是
60÷12=560÷10=660÷15=4
因此余下的工作量由乙丙合做還需要
(60-5×2)÷(6+4)=5(小時)
答:還需要5小時才能完成。
例4
一個水池,底部裝有一個常開的排水管,上部裝有若干個同樣粗細(xì)的進(jìn)水管。當(dāng)打開4個進(jìn)水管時,需要5小時才能注滿水池;當(dāng)打開2個進(jìn)水管時,需要15小時才能注滿水池;現(xiàn)在要用2小時將水池注滿,至少要打開多少個進(jìn)水管?
解
注(排)水問題是一類特殊的工程問題。往水池注水或從水池排水相當(dāng)于一項工程,水的流量就是工作量,單位時間內(nèi)水的流量就是工作效率。
要2小時內(nèi)將水池注滿,即要使2小時內(nèi)的進(jìn)水量與排水量之差剛好是一池水。為此需要知道進(jìn)水管、排水管的工作效率及總工作量(一池水)。只要設(shè)某一個量為單位1,其余兩個量便可由條件推出。
我們設(shè)每個同樣的進(jìn)水管每小時注水量為1,則4個進(jìn)水管5小時注水量為(1×4×5),2個進(jìn)水管15小時注水量為(1×2×15),從而可知
每小時的排水量為(1×2×15-1×4×5)÷(15-5)=1
即一個排水管與每個進(jìn)水管的工作效率相同。由此可知
一池水的總工作量為1×4×5-1×5=15
又因為在2小時內(nèi),每個進(jìn)水管的注水量為1×2,
所以,2小時內(nèi)注滿一池水
至少需要多少個進(jìn)水管?(15+1×2)÷(1×2)
=8.5≈9(個)
答:至少需要9個進(jìn)水管。
16、正反比例問題
【含義】
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比的比值一定(即商一定),那么這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。正比例應(yīng)用題是正比例意義和解比例等知識的綜合運用。
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。反比例應(yīng)用題是反比例的意義和解比例等知識的綜合運用。
【數(shù)量關(guān)系】
判斷正比例或反比例關(guān)系是解這類應(yīng)用題的關(guān)鍵。許多典型應(yīng)用題都可以轉(zhuǎn)化為正反比例問題去解決,而且比較簡捷。
【解題思路和方法】
解決這類問題的重要方法是:把分率(倍數(shù))轉(zhuǎn)化為比,應(yīng)用比和比例的性質(zhì)去解應(yīng)用題。
正反比例問題與前面講過的倍比問題基本類似。