亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

小學輔導 百分網(wǎng)手機站

小學數(shù)學應用題(5)

時間:2018-03-31 11:12:58 小學輔導 我要投稿

2016年小學數(shù)學應用題大全

  作業(yè)本數(shù)=(69-0.70×45)÷(3.20-0.70)=15(本)

  日記本數(shù)=45-15=30(本)

  答:作業(yè)本有15本,日記本有30本。

  例4

  (第二雞兔同籠問題)雞兔共有100只,雞的腳比兔的腳多80只,問雞與兔各多少只?

  解

  假設100只全都是雞,則有

  兔數(shù)=(2×100-80)÷(4+2)=20(只)

  雞數(shù)=100-20=80(只)

  答:有雞80只,有兔20只。

  例5

  有100個饃100個和尚吃,大和尚一人吃3個饃,小和尚3人吃1個饃,問大小和尚各多少人?

  解

  假設全為大和尚,則共吃饃(3×100)個,比實際多吃(3×100-100)個,這是因為把小和尚也算成了大和尚,因此我們在保證和尚總數(shù)100不變的情況下,以“小”換“大”,一個小和尚換掉一個大和尚可減少饃(3-1/3)個。因此,共有小和尚

  (3×100-100)÷(3-1/3)=75(人)

  共有大和尚100-75=25(人)

  答:共有大和尚25人,有小和尚75人。

  21、方陣問題

  【含義】

  將若干人或物依一定條件排成正方形(簡稱方陣),根據(jù)已知條件求總人數(shù)或總物數(shù),這類問題就叫做方陣問題。

  【數(shù)量關系】

  (1)方陣每邊人數(shù)與四周人數(shù)的關系:

  四周人數(shù)=(每邊人數(shù)-1)×4

  每邊人數(shù)=四周人數(shù)÷4+1

  (2)方陣總人數(shù)的求法:

  實心方陣:總人數(shù)=每邊人數(shù)×每邊人數(shù)

  空心方陣:總人數(shù)=(外邊人數(shù))?-(內邊人數(shù))?

  內邊人數(shù)=外邊人數(shù)-層數(shù)×2

  (3)若將空心方陣分成四個相等的矩形計算,則:

  總人數(shù)=(每邊人數(shù)-層數(shù))×層數(shù)×4

  【解題思路和方法】

  方陣問題有實心與空心兩種。實心方陣的求法是以每邊的數(shù)自乘;空心方陣的變化較多,其解答方法應根據(jù)具體情況確定。

  例1

  在育才小學的運動會上,進行體操表演的同學排成方陣,每行22人,參加體操表演的同學一共有多少人?

  解

  22×22=484(人)

  答:參加體操表演的同學一共有484人。

  例2

  有一個3層中空方陣,最外邊一層有10人,求全方陣的人數(shù)。

  解

  10-(10-3×2)?

  =84(人)

  答:全方陣84人。

  例3

  有一隊學生,排成一個中空方陣,最外層人數(shù)是52人,最內層人數(shù)是28人,這隊學生共多少人?

  解

  (1)中空方陣外層每邊人數(shù)=52÷4+1=14(人)

  (2)中空方陣內層每邊人數(shù)=28÷4-1=6(人)

  (3)中空方陣的總人數(shù)=14×14-6×6=160(人)

  答:這隊學生共160人。

  例4

  一堆棋子,排列成正方形,多余4棋子,若正方形縱橫兩個方向各增加一層,則缺少9只棋子,問有棋子多少個?

  解

  (1)縱橫方向各增加一層所需棋子數(shù)=4+9=13(只)

  (2)縱橫增加一層后正方形每邊棋子數(shù)=(13+1)÷2=7(只)

  (3)原有棋子數(shù)=7×7-9=40(只)

  答:棋子有40只。

  例5

  有一個三角形樹林,頂點上有1棵樹,以下每排的樹都比前一排多1棵,最下面一排有5棵樹。這個樹林一共有多少棵樹?

  解

  第一種方法:1+2+3+4+5=15(棵)

  第二種方法:(5+1)×5÷2=15(棵)

  答:這個三角形樹林一共有15棵樹。

【2016年小學數(shù)學應用題大全】相關文章:

1.小學數(shù)學應用題大全

2.小學數(shù)學應用題大全及答案

3.小學數(shù)學應用題及解析大全

4.小學數(shù)學應用題的解法

5.小學數(shù)學應用題

6.小學數(shù)學應用題練習

7.小學數(shù)學應用題教案

8.小學數(shù)學應用題總結