- 相關推薦
小學六年級數(shù)學應用題知識點歸納
1 簡單應用題
(1) 簡單應用題:只含有一種基本數(shù)量關系,或用一步運算解答的應用題,通常叫做簡單應用題。
(2) 解題步驟:
a 審題理解題意:了解應用題的內容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫助理解題意。
b選擇算法和列式計算:這是解答應用題的中心工作。從題目中告訴什么,要求什么著手,逐步根據(jù)所給的條件和問題,聯(lián)系四則運算的含義,分析數(shù)量關系,確定算法,進行解答并標明正確的單位名稱。
C檢驗:就是根據(jù)應用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發(fā)現(xiàn)錯誤,馬上改正。
2 復合應用題
(1)有兩個或兩個以上的基本數(shù)量關系組成的,用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。
(2)含有三個已知條件的兩步計算的應用題。
求比兩個數(shù)的和多(少)幾個數(shù)的應用題。
比較兩數(shù)差與倍數(shù)關系的應用題。
(3)含有兩個已知條件的兩步計算的應用題。
已知兩數(shù)相差多少(或倍數(shù)關系)與其中一個數(shù),求兩個數(shù)的和(或差)。
已知兩數(shù)之和與其中一個數(shù),求兩個數(shù)相差多少(或倍數(shù)關系)。
(4)解答連乘連除應用題。
(5)解答三步計算的應用題。
(6)解答小數(shù)計算的應用題:小數(shù)計算的加法、減法、乘法和除法的應用題,他們的數(shù)量關系、結構、和解題方式都與正式應用題基本相同,只是在已知數(shù)或未知數(shù)中間含有小數(shù)。
(7)常見的數(shù)量關系:
總價= 單價×數(shù)量
路程= 速度×時間
工作總量=工作時間×工效
總產量=單產量×數(shù)量
3、典型應用題
具有獨特的結構特征的和特定的解題規(guī)律的復合應用題,通常叫做典型應用題。
(1)平均數(shù)問題:平均數(shù)是等分除法的發(fā)展。
解題關鍵:在于確定總數(shù)量和與之相對應的總份數(shù)。
算術平均數(shù):已知幾個不相等的同類量和與之相對應的份數(shù),求平均每份是多少。數(shù)量關系式:數(shù)量之和÷數(shù)量的個數(shù)=算術平均數(shù)。
(2) 歸一問題:已知相互關聯(lián)的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。
數(shù)量關系式:單一量×份數(shù)=總數(shù)量(正歸一)
總數(shù)量÷單一量=份數(shù)(反歸一)
(7)行程問題:
關于走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、速度和、速度差等概念,了解他們之間的關系,再根據(jù)這類問題的規(guī)律解答。
(13)雞兔問題:已知“雞兔”的總頭數(shù)和總腿數(shù)。求“雞”和“兔”各多少只的一類應用題。通常稱為“雞兔問題”又稱雞兔同籠問題
解題關鍵:解答雞兔問題一般采用假設法,假設全是一種動物(如全是“雞”或全是“兔”,然后根據(jù)出現(xiàn)的腿數(shù)差,可推算出某一種的頭數(shù)。
解題規(guī)律:(總腿數(shù)-雞腿數(shù)×總頭數(shù))÷一只雞兔腿數(shù)的差=兔子只數(shù)
兔子只數(shù)=(總腿數(shù)-2×總頭數(shù))÷2
如果假設全是兔子,可以有下面的式子:
雞的只數(shù)=(4×總頭數(shù)-總腿數(shù))÷2
兔的頭數(shù)=總頭數(shù)-雞的只數(shù)
例 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只?
兔子只數(shù) ( 170-2 × 50 )÷ 2 =35 (只)
雞的只數(shù) 50-35=15 (只)
【小學六年級數(shù)學應用題知識點歸納】相關文章:
小學數(shù)學知識點歸納總結03-06
小學英語的主要知識點歸納總結03-30
小學數(shù)學閱讀應用題07-06
物態(tài)變化知識點歸納02-14
小學六年級數(shù)學應用題09-14
小學六年級數(shù)學應用題04-07
小學數(shù)學和差應用題08-03
小學數(shù)學應用題(精選270道)01-09
小學數(shù)學關于比例的應用題07-07
小學的數(shù)學應用題(精選80題)07-06