- 相關(guān)推薦
高一的數(shù)學(xué)手抄報(bào)資料
高一試題約占高考得分的60%,一學(xué)年要學(xué)五本書,只要把高一的數(shù)學(xué)掌握牢靠,高二,高三則只是對(duì)高一的復(fù)習(xí)與補(bǔ)充。為大家分享了高一的數(shù)學(xué)手抄報(bào)資料,歡迎借鑒!
高一數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)
高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié):立體幾何初步
1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征
(1)棱柱:
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。
幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺(tái):
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等
表示:用各頂點(diǎn)字母,如五棱臺(tái)
幾何特征:
、偕舷碌酌媸窍嗨频钠叫卸噙呅
②側(cè)面是梯形
、蹅(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。
幾何特征:
①底面是全等的圓;
、谀妇與軸平行;
、圯S與底面圓的半徑垂直;
④側(cè)面展開圖是一個(gè)矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。
幾何特征:
、俚酌媸且粋(gè)圓;
、谀妇交于圓錐的頂點(diǎn);
③側(cè)面展開圖是一個(gè)扇形。
(6)圓臺(tái):
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:
、偕舷碌酌媸莾蓚(gè)圓;
、趥(cè)面母線交于原圓錐的頂點(diǎn);
③側(cè)面展開圖是一個(gè)弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:
、偾虻慕孛媸菆A;
②球面上任意一點(diǎn)到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測(cè)畫法
斜二測(cè)畫法特點(diǎn):
①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;
、谠瓉(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。
高一數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)匯總
轉(zhuǎn)變觀念
初中階段,特別是初中三年級(jí),老師會(huì)通過(guò)大量的練習(xí),學(xué)生自己也會(huì)查找很多資料,這樣就會(huì)把自己的數(shù)學(xué)成績(jī)得到明顯的提高,這樣的學(xué)習(xí)方式是一種被動(dòng)式的學(xué)習(xí)也叫題海戰(zhàn)術(shù),學(xué)生只是簡(jiǎn)單的接受數(shù)學(xué)知識(shí),并且初中數(shù)學(xué)的知識(shí)相對(duì)比較淺顯,學(xué)生很快就能掌握知識(shí)。
可是到了高中以后通過(guò)題海戰(zhàn)術(shù)是能提高一些對(duì)數(shù)學(xué)知識(shí)的掌握,可是對(duì)于這個(gè)知識(shí)中的為什么就不能說(shuō)出其所以然,就不能對(duì)相關(guān)的知識(shí)進(jìn)行創(chuàng)新。所以高中數(shù)學(xué)的學(xué)習(xí)不只是單純的做題就可以掌握其知識(shí),而是要弄得其所以然才行,這樣就需要學(xué)生自己去主動(dòng)發(fā)掘知識(shí)的內(nèi)涵,在老師的指導(dǎo)下把數(shù)學(xué)知識(shí)進(jìn)行擴(kuò)展,達(dá)到觸類旁通。要做到這樣就需要學(xué)生本身更加主動(dòng)的學(xué)習(xí),這樣才能更加的發(fā)現(xiàn)數(shù)學(xué)中的樂趣。
學(xué)會(huì)聽課
1、做好預(yù)習(xí),提出問(wèn)題,進(jìn)行多次閱讀課本,查閱相關(guān)資料,回答自己提出的問(wèn)題,力爭(zhēng)在老師講新課前盡可能的掌握更多的知識(shí),如果不能回答的問(wèn)題可以在老師講課中去解決。
2、學(xué)會(huì)聽課,在初中的教學(xué)中老師經(jīng)常會(huì)把一個(gè)知識(shí)點(diǎn)進(jìn)行多次的講解和通過(guò)大量的練習(xí)讓學(xué)生去掌握,可是到高中以后,老師對(duì)于一個(gè)知識(shí)點(diǎn)就不會(huì)再通過(guò)大量的練習(xí)來(lái)讓學(xué)生去掌握,而是通過(guò)一些相關(guān)知識(shí)的講解去引導(dǎo)學(xué)生明白這個(gè)知識(shí)是怎么來(lái)的,又如何用這個(gè)知識(shí)解答一些相關(guān)的疑惑,如果學(xué)生能明白的話就能在自己的知識(shí)下通過(guò)課后的練習(xí)去鞏固這些知識(shí),同時(shí)學(xué)生也可以根據(jù)老師的引導(dǎo)去擴(kuò)展知識(shí)。
當(dāng)然,對(duì)于自己在聽課過(guò)程中一下子不能明白的知識(shí),可以通過(guò)舉手讓老師再進(jìn)行一次分析講解,也同時(shí)做好相關(guān)的記錄,以備在課后去進(jìn)一步弄明白;對(duì)于自己在預(yù)習(xí)中提出的問(wèn)題,如果老師沒有解決的話,可以利用課余時(shí)間請(qǐng)教老師解答,這樣學(xué)習(xí)就可能學(xué)習(xí)到更多的知識(shí)。
3、敢于發(fā)表自己的想法,在高中數(shù)學(xué)學(xué)習(xí)中,學(xué)生會(huì)遇到很多解題技巧,可能這種方法你知道,另外的人不是很熟悉。那么就需要學(xué)生敢于發(fā)表自己的想法,這樣就能讓大家掌握更多的技巧。也同樣能激發(fā)同學(xué)學(xué)習(xí)的興趣,如果一節(jié)課都是老師講的話,課堂氣氛也是很悶的,學(xué)生學(xué)習(xí)的效率也是很低的。
4、聽好每一分鐘,尤其是老師講課的開頭和結(jié)束
老師講課開頭,一般是概括前節(jié)課的要點(diǎn)指出本節(jié)課要講的內(nèi)容,是把舊知識(shí)和新知識(shí)聯(lián)系起來(lái)的環(huán)節(jié),結(jié)尾常常是對(duì)一節(jié)課所講知識(shí)的歸納總結(jié),具有高度的概括性,是在理解的基礎(chǔ)上掌握本節(jié)知識(shí)方法的綱要。
人教版高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)復(fù)習(xí)
圓的方程定義:
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關(guān)系:
1.直線和圓位置關(guān)系的判定方法一是方程的觀點(diǎn),即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來(lái)討論位置關(guān)系.
、佴>0,直線和圓相交.
、讦=0,直線和圓相切.
、郐<0,直線和圓相離.
方法二是幾何的觀點(diǎn),即把圓心到直線的距離d和半徑R的大小加以比較.
①dR,直線和圓相離.
2.直線和圓相切,這類問(wèn)題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點(diǎn)兩種情況,而已知直線上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況.
3.直線和圓相交,這類問(wèn)題主要是求弦長(zhǎng)以及弦的中點(diǎn)問(wèn)題.
切線的性質(zhì)
、艌A心到切線的距離等于圓的半徑;
、七^(guò)切點(diǎn)的半徑垂直于切線;
、墙(jīng)過(guò)圓心,與切線垂直的直線必經(jīng)過(guò)切點(diǎn);
⑷經(jīng)過(guò)切點(diǎn),與切線垂直的直線必經(jīng)過(guò)圓心;
當(dāng)一條直線滿足
(1)過(guò)圓心;
(2)過(guò)切點(diǎn);
(3)垂直于切線三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿足.
切線的判定定理
經(jīng)過(guò)半徑的外端點(diǎn)并且垂直于這條半徑的直線是圓的切線.
切線長(zhǎng)定理
從圓外一點(diǎn)作圓的兩條切線,兩切線長(zhǎng)相等,圓心與這一點(diǎn)的連線平分兩條切線的夾角.
圓錐曲線性質(zhì):
一、圓錐曲線的定義
1.橢圓:到兩個(gè)定點(diǎn)的距離之和等于定長(zhǎng)(定長(zhǎng)大于兩個(gè)定點(diǎn)間的距離)的動(dòng)點(diǎn)的軌跡叫做橢圓.
2.雙曲線:到兩個(gè)定點(diǎn)的距離的差的絕對(duì)值為定值(定值小于兩個(gè)定點(diǎn)的距離)的動(dòng)點(diǎn)軌跡叫做雙曲線.即.
3.圓錐曲線的統(tǒng)一定義:到定點(diǎn)的距離與到定直線的距離的比e是常數(shù)的點(diǎn)的軌跡叫做圓錐曲線.當(dāng)01時(shí)為雙曲線.
二、圓錐曲線的方程
1.橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)
2.雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)
3.拋物線:y2=±2px(p>0),x2=±2py(p>0)
三、圓錐曲線的性質(zhì)
1.橢圓:+=1(a>b>0)
(1)范圍:|x|≤a,|y|≤b(2)頂點(diǎn):(±a,0),(0,±b)(3)焦點(diǎn):(±c,0)(4)離心率:e=∈(0,1)(5)準(zhǔn)線:x=±
2.雙曲線:-=1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點(diǎn):(±a,0)(3)焦點(diǎn):(±c,0)(4)離心率:e=∈(1,+∞)(5)準(zhǔn)線:x=±(6)漸近線:y=±x
3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點(diǎn):(0,0)(3)焦點(diǎn):(,0)(4)離心率:e=1(5)準(zhǔn)線:x=-
數(shù)列
一、 等差數(shù)列
如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。
等差數(shù)列的通項(xiàng)公式為:
an=a1+(n-1)d (1)
前n項(xiàng)和公式為:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
從(1)式可以看出,an是n的一次數(shù)函(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0。
在等差數(shù)列中,等差中項(xiàng):一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項(xiàng)。
且任意兩項(xiàng)am,an的關(guān)系為:
an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項(xiàng)公式。
等差數(shù)列的應(yīng)用:
日常生活中,人們常常用到等差數(shù)列如:在給各種產(chǎn)品的尺寸劃分級(jí)別
時(shí),當(dāng)其中的最大尺寸與最小尺寸相差不大時(shí),常按等差數(shù)列進(jìn)行分級(jí)。
若為等差數(shù)列,且有an=m,am=n.則a(m+n)=0。
等比數(shù)列
如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等比數(shù)列。這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示。
。1)等比數(shù)列的通項(xiàng)公式是:An=A1*q^(n-1)
若通項(xiàng)公式變形為an=a1/q*q^n(n∈N*),當(dāng)q>0時(shí),則可把a(bǔ)n看作自變量n的函數(shù),點(diǎn)(n,an)是曲線y=a1/q*q^x上的一群孤立的點(diǎn)。
。2)求和公式:Sn=nA1(q=1)
Sn=A1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n)
(前提:q不等于 1)
任意兩項(xiàng)am,an的關(guān)系為an=am·q^(n-m)
。3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
。4)等比中項(xiàng):aq·ap=ar*2,ar則為ap,aq等比中項(xiàng)。
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底數(shù)數(shù)后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個(gè)意義下,我們說(shuō):一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。
集合的含義與表示
1、集合的含義
一般地,我們把研究對(duì)象統(tǒng)稱為元素,把一些元素組成的總體叫做集合。
2、集合的中元素的三個(gè)特性
。1)元素的確定性;
。2)元素的互異性;
。3)元素的無(wú)序性
2、“屬于”的概念
我們通常用大寫的拉丁字母A,B,C, ??表示集合,用小寫拉丁字母a,b,c, ??表示元素 如:如果a是集合A的元素,就說(shuō)a屬于集合A 記作 a∈A,如果a不屬于集合A 記作 a?A
3、常用數(shù)集及其記法 非負(fù)整數(shù)集(即自然數(shù)集)記作:N;正整數(shù)集記作:N*或 N+ ;整數(shù)集記作:Z;有理數(shù)集記作:Q;實(shí)數(shù)集記作:R
4、集合的表示法
(1)列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。
。2)描述法:用集合所含元素的公共特征表示集合的方法稱為描述法。
①語(yǔ)言描述法:例:{不是直角三角形的三角形} ②數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}
。3)圖示法(Venn圖)
【高一的數(shù)學(xué)手抄報(bào)資料】相關(guān)文章:
數(shù)學(xué)的手抄報(bào)內(nèi)容資料08-23
關(guān)于數(shù)學(xué)的手抄報(bào)資料的內(nèi)容10-08
簡(jiǎn)單又好看的數(shù)學(xué)手抄報(bào)圖片資料07-20
整潔又好看的數(shù)學(xué)手抄報(bào)圖片資料07-20
簡(jiǎn)單的初中數(shù)學(xué)手抄報(bào)圖片資料07-18
整潔好看的數(shù)學(xué)手抄報(bào)圖片資料07-18
簡(jiǎn)單的數(shù)學(xué)手抄報(bào)邊框圖片資料07-19