學(xué)年高一數(shù)學(xué)空間幾何體的結(jié)構(gòu)的知識(shí)點(diǎn)
考點(diǎn)要求:
1.幾何體的展開圖、幾何體的三視圖仍是高考的熱點(diǎn).
2.三視圖和其他的知識(shí)點(diǎn)結(jié)合在一起命題是新教材中考查學(xué)生三視圖及幾何量計(jì)算的趨勢.
3.重點(diǎn)掌握以三視圖為命題背景,研究空間幾何體的結(jié)構(gòu)特征的題型.
4.要熟悉一些典型的幾何體模型,如三棱柱、長(正)方體、三棱錐等幾何體的三視圖.
知識(shí)結(jié)構(gòu):
1.多面體的結(jié)構(gòu)特征
(1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。
正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形.
(2)棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共頂點(diǎn)的三角形.
正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心.
(3)棱臺(tái)可由平行于底面的'平面截棱錐得到,其上下底面是相似多邊形.
2.旋轉(zhuǎn)體的結(jié)構(gòu)特征
(1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到.
(2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到.
(3)圓臺(tái)可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到.
(4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到.
3.空間幾何體的三視圖
空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖.
三視圖的長度特征:長對正,寬相等,高平齊,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實(shí)、虛線的畫法.
4.空間幾何體的直觀圖
空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:
(1)畫幾何體的底面
在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫直觀圖時(shí),把它們畫成對應(yīng)的x軸、y軸,兩軸相交于點(diǎn)O,且使xOy=45或135,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x軸、y軸.已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话?
(2)畫幾何體的高
在已知圖形中過O點(diǎn)作z軸垂直于xOy平面,在直觀圖中對應(yīng)的z軸,也垂直于xOy平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z軸且長度不變.
【學(xué)年高一數(shù)學(xué)空間幾何體的結(jié)構(gòu)的知識(shí)點(diǎn)】相關(guān)文章:
高一數(shù)學(xué)第一單元空間幾何體的結(jié)構(gòu)的知識(shí)點(diǎn)整理12-13
高一數(shù)學(xué)空間幾何體知識(shí)點(diǎn)歸納01-18
高一數(shù)學(xué)必修二第一單元空間幾何體的結(jié)構(gòu)知識(shí)點(diǎn)12-13
高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)-空間幾何體03-10
高一下冊數(shù)學(xué)《空間幾何體的結(jié)構(gòu)》復(fù)習(xí)要點(diǎn)08-23
高一數(shù)學(xué)空間幾何體的三視圖知識(shí)點(diǎn)歸納01-20
高考數(shù)學(xué)空間幾何體柱錐臺(tái)球的知識(shí)點(diǎn)09-04