數(shù)學(xué)專項(xiàng)旋轉(zhuǎn)體的知識(shí)點(diǎn)
1.在中學(xué)我們只研直圓柱、直圓錐和直圓臺(tái)。所以對(duì)圓柱、圓錐、圓臺(tái)的旋轉(zhuǎn)定義、實(shí)際上是直圓柱、直圓錐、直圓臺(tái)的定義。
這樣定義直觀形象,便于理解,而且對(duì)它們的性質(zhì)也易推導(dǎo)。
對(duì)于球的定義中,要注意區(qū)分球和球面的概念,球是實(shí)心的。
等邊圓柱和等邊圓錐是特殊圓柱和圓錐,它是由其軸截面來(lái)定義的,在實(shí)踐中運(yùn)用較廣,要注意與一般圓柱、圓錐的區(qū)分。
2.圓柱、圓錐、圓和球的性質(zhì)
。1)圓柱的性質(zhì),要強(qiáng)調(diào)兩點(diǎn):一是連心線垂直圓柱的底面;二是三個(gè)截面的性質(zhì)平行于底面的截面是與底面全等的圓;軸截面是一個(gè)以上、下底面圓的直徑和母線所組成的矩形;平行于軸線的截面是一個(gè)以上、下底的圓的弦和母線組成的矩形。
。2)圓錐的性質(zhì),要強(qiáng)調(diào)三點(diǎn)
、倨叫杏诘酌娴慕孛鎴A的性質(zhì):
截面圓面積和底面圓面積的比等于從頂點(diǎn)到截面和從頂點(diǎn)到底面距離的平方比。
②過(guò)圓錐的頂點(diǎn),且與其底面相交的截面是一個(gè)由兩條母線和底面圓的弦組成的等腰三角形,其面積為:
易知,截面三角形的`頂角不大于軸截面的頂角(如圖10-20),事實(shí)上,由BCAB,VC=VB=VA可得BVC.
由于截面三角形的頂角不大于軸截面的頂角。
所以,當(dāng)軸截面的頂角90,有0<90,即有
當(dāng)軸截面的頂角>90時(shí),軸截面的面積卻不是最大的,這是因?yàn),?0<<180時(shí),1sin>sin>0.
③圓錐的母線l,高h(yuǎn)和底面圓的半徑組成一個(gè)直徑三角形,圓錐的有關(guān)計(jì)算問(wèn)題,一般都要?dú)w結(jié)為解這個(gè)直角三角形,特別是關(guān)系式
l2=h2+R2
(3)圓臺(tái)的性質(zhì),都是從圓臺(tái)為截頭圓錐這個(gè)事實(shí)推得的,但仍要強(qiáng)調(diào)下面幾點(diǎn):
、賵A臺(tái)的母線共點(diǎn),所以任兩條母線確定的截面為一等腰梯形,但是,與上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。
、谄叫杏诘酌娴慕孛嫒魧A臺(tái)的高分成距上、下兩底為兩段的截面面積為S,則
其中S1和S2分別為上、下底面面積。
的截面性質(zhì)的推廣。
③圓臺(tái)的母線l,高h(yuǎn)和上、下兩底圓的半徑r、R,組成一個(gè)直角梯形,且有
l2=h2+(R-r)2
圓臺(tái)的有關(guān)計(jì)算問(wèn)題,常歸結(jié)為解這個(gè)直角梯形。
。4)球的性質(zhì),著重掌握其截面的性質(zhì)。
、儆萌我馄矫娼厍蛩玫慕孛媸且粋(gè)圓面,球心和截面圓圓心的連線與這個(gè)截面垂直。
、谌绻肦和r分別表示球的半徑和截面圓的半徑,d表示球心到截面的距離,則
R2=r2+d2
即,球的半徑,截面圓的半徑,和球心到截面的距離組成一個(gè)直角三角形,有關(guān)球的計(jì)算問(wèn)題,常歸結(jié)為解這個(gè)直角三角形。
【數(shù)學(xué)專項(xiàng)旋轉(zhuǎn)體的知識(shí)點(diǎn)】相關(guān)文章:
數(shù)學(xué)專項(xiàng)輔導(dǎo)旋轉(zhuǎn)體的知識(shí)點(diǎn)11-15
高二數(shù)學(xué)旋轉(zhuǎn)體知識(shí)點(diǎn)02-21
高二數(shù)學(xué)旋轉(zhuǎn)體的知識(shí)點(diǎn)11-23
高二數(shù)學(xué)知識(shí)點(diǎn):旋轉(zhuǎn)體03-08
數(shù)學(xué)集合專項(xiàng)知識(shí)點(diǎn)01-26
小升初語(yǔ)文知識(shí)點(diǎn)專項(xiàng)總結(jié)12-19
小考數(shù)學(xué)專項(xiàng)練習(xí)試題10-31