二次函數(shù)的數(shù)學(xué)知識點(diǎn)
一、 基本概念
1.方程、方程的解(根)、方程組的解、解方程(組)
2. 分類:
二、 解方程的依據(jù)等式性質(zhì)
1.a=ba+c=b+c
2.a=bac=bc (c0)
三、 解法
1.一元一次方程的解法:去分母去括號移項(xiàng)合并同類項(xiàng)
系數(shù)化成1解。
2. 元一次方程組的解法:⑴基本思想:消元⑵方法:①代入法
、诩訙p法
四、 一元二次方程
1.定義及一般形式:
2.解法:⑴直接開平方法(注意特征)
⑵配方法(注意步驟推倒求根公式)
、枪椒ǎ
⑷因式分解法(特征:左邊=0)
3.根的判別式:
4.根與系數(shù)頂?shù)腵關(guān)系:
逆定理:若 ,則以 為根的一元二次方程是: 。
5.常用等式:
五、 可化為一元二次方程的方程
1.分式方程
、哦x
⑵基本思想:
、腔窘夥ǎ孩偃シ帜阜á趽Q元法(如, )
、闰(yàn)根及方法
2.無理方程
、哦x
⑵基本思想:
、腔窘夥ǎ孩俪朔椒(注意技巧!!)②換元法(例, )⑷驗(yàn)根及方法
3.簡單的二元二次方程組
由一個(gè)二元一次方程和一個(gè)二元二次方程組成的二元二次方程組都可用代入法解。
初三數(shù)學(xué)知識點(diǎn) 六、 列方程(組)解應(yīng)用題
一概述
列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實(shí)際的一個(gè)重要方面。其具體步驟是:
、艑忣}。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。
⑵設(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。
、怯煤粗獢(shù)的代數(shù)式表示相關(guān)的量。
、葘ふ蚁嗟汝P(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個(gè)數(shù)與方程個(gè)數(shù)是相同的。
、山夥匠碳皺z驗(yàn)。
、蚀鸢。
綜上所述,列方程(組)解應(yīng)用題實(shí)質(zhì)是先把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題(設(shè)元、列方程),在由數(shù)學(xué)問題的解決而導(dǎo)致實(shí)際問題的解決(列方程、寫出答案)。在這個(gè)過程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。
二常用的相等關(guān)系
1. 行程問題(勻速運(yùn)動)
基本關(guān)系:s=vt
⑴相遇問題(同時(shí)出發(fā)):
+ = ;
、谱芳皢栴}(同時(shí)出發(fā)):
若甲出發(fā)t小時(shí)后,乙才出發(fā),而后在B處追上甲,則
、撬泻叫校 ;
2. 配料問題:溶質(zhì)=溶液濃度
溶液=溶質(zhì)+溶劑
3.增長率問題:
4.工程問題:基本關(guān)系:工作量=工作效率工作時(shí)間(常把工作量看著單位1)。
5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關(guān)比例性質(zhì)等。
【二次函數(shù)的數(shù)學(xué)知識點(diǎn)】相關(guān)文章:
初中數(shù)學(xué)知識點(diǎn):二次函數(shù)03-05
數(shù)學(xué)二次函數(shù)知識點(diǎn)總結(jié)11-30
高考數(shù)學(xué)復(fù)習(xí)知識點(diǎn):二次函數(shù)03-06
高一數(shù)學(xué):二次函數(shù)知識點(diǎn)歸納01-19
高一數(shù)學(xué)知識點(diǎn)二次函數(shù)02-24
高一數(shù)學(xué)二次函數(shù)知識點(diǎn)02-25
二次函數(shù)的初三數(shù)學(xué)知識點(diǎn)歸納05-20