亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

數(shù)學(xué) 百文網(wǎng)手機站

八年級上冊數(shù)學(xué)第4章知識點復(fù)習(xí)

時間:2022-11-01 08:46:48 數(shù)學(xué) 我要投稿

八年級上冊數(shù)學(xué)第4章知識點復(fù)習(xí)

  漫長的學(xué)習(xí)生涯中,說起知識點,應(yīng)該沒有人不熟悉吧?知識點在教育實踐中,是指對某一個知識的泛稱。想要一份整理好的知識點嗎?以下是小編整理的八年級上冊數(shù)學(xué)第4章知識點復(fù)習(xí),希望對大家有所幫助。

八年級上冊數(shù)學(xué)第4章知識點復(fù)習(xí)

  八年級上冊數(shù)學(xué)第4章知識點復(fù)習(xí)1

  1、函數(shù)

  一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

  2、自變量取值范圍

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負數(shù))、實際意義幾方面考慮。

  3、函數(shù)的三種表示法及其優(yōu)缺點

  關(guān)系式(解析)法

  兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做關(guān)系式(解析)法。

  列表法

  把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

  圖象法

  用圖象表示函數(shù)關(guān)系的方法叫做圖象法。

  4、由函數(shù)關(guān)系式畫其圖像的.一般步驟

  列表:列表給出自變量與函數(shù)的一些對應(yīng)值。

  描點:以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點。

  連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

  5、正比例函數(shù)和一次函數(shù)

 、僬壤瘮(shù)和一次函數(shù)的概念

  一般地,若兩個變量x,y間的關(guān)系可以表示成y=kx+b (k,b為常數(shù),k不等于 0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。

  特別地,當(dāng)一次函數(shù)y=kx+b中的b=0時(k為常數(shù),k 不等于0),稱y是x的正比例函數(shù)。

  ②一次函數(shù)的圖像:

  所有一次函數(shù)的圖像都是一條直線。

 、垡淮魏瘮(shù)、正比例函數(shù)圖像的主要特征

  一次函數(shù)y=kx+b的圖像是經(jīng)過點(0,b)的直線;

  正比例函數(shù)y=kx的圖像是經(jīng)過原點(0,0)的直線。

 、苷壤瘮(shù)的性質(zhì)

  一般地,正比例函數(shù) 有下列性質(zhì):

  當(dāng)k>0時,圖像經(jīng)過第一、三象限,y隨x的增大而增大;

  當(dāng)k<0時,圖像經(jīng)過第二、四象限,y隨x的增大而減小。

  ⑤一次函數(shù)的性質(zhì)

  一般地,一次函數(shù) 有下列性質(zhì):

  當(dāng)k>0時,y隨x的增大而增大;

  當(dāng)k<0時,y隨x的增大而減小。

 、拚壤瘮(shù)和一次函數(shù)解析式的確定

  確定一個正比例函數(shù),就是要確定正比例函數(shù)定義式y(tǒng)=kx(k 不等于0)中的常數(shù)k。

  確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k 不等于0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法.

 、咭淮魏瘮(shù)與一元一次方程的關(guān)系

  任何一個一元一次方程都可轉(zhuǎn)化為:kx+b=0(k、b為常數(shù),k≠0)的形式。而一次函數(shù)解析式形式正是y=kx+b(k、b為常數(shù),k≠0)。當(dāng)函數(shù)值為0時,即kx+b=0就與一元一次方程完全相同。

  結(jié)論:由于任何一元一次方程都可轉(zhuǎn)化為kx+b=0(k、b為常數(shù),k≠0)的形式。所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)一次函數(shù)值為0時,求相應(yīng)的自變量的值。

  從圖象上看,這相當(dāng)于已知直線y=kx+b確定它與x軸交點的橫坐標(biāo)值。

  八年級上冊數(shù)學(xué)第4章知識點復(fù)習(xí)2

  一、變量與函數(shù)

  [變量和常量]

  在一個變化過程中,數(shù)值發(fā)生變化的量,我們稱之為變量,而數(shù)值始終保持不變的量,我們稱之為常量。

  [函數(shù)]

  一般地,在一個變化過程中,如果有兩個變量 與 ,并且對于 的每一個確定的值, 都有唯一確定的值與其對應(yīng),那么我們就說 是自變量, 是 的函數(shù)。如果當(dāng) 時 ,那么 叫做當(dāng)自變量的值為 時的函數(shù)值。

  [自變量取值范圍的確定方法]

  1、 自變量的取值范圍必須使解析式有意義。

  當(dāng)解析式為整式時,自變量的取值范圍是全體實數(shù);當(dāng)解析式為分?jǐn)?shù)形式時,自變量的取值范圍是使分母不為0的所有實數(shù);當(dāng)解析式中含有二次根式時,自變量的取值范圍是使被開方數(shù)大于等于0的所有實數(shù)。

  2、自變量的取值范圍必須使實際問題有意義。

  [函數(shù)的圖像]

  一般來說,對于一個函數(shù),如果把自變量與函數(shù)的每對對應(yīng)值分別作為點的橫、縱坐標(biāo),那么坐標(biāo)平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖象.

  [描點法畫函數(shù)圖形的一般步驟]

  第一步:列表(表中給出一些自變量的值及其對應(yīng)的函數(shù)值);

  第二步:描點(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對應(yīng)的各點);

  第三步:連線(按照橫坐標(biāo)由小到大的順序把所描出的各點用平滑曲線連接起來)。

  [函數(shù)的表示方法]

  列表法:一目了然,使用起來方便,但列出的對應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對應(yīng)規(guī)律。

  解析式法:簡單明了,能夠準(zhǔn)確地反映整個變化過程中自變量與函數(shù)之間的相依關(guān)系,但有些實際問題中的函數(shù)關(guān)系,不能用解析式表示。

  圖象法:形象直觀,但只能近似地表達兩個變量之間的函數(shù)關(guān)系。

  [正比例函數(shù)]

  一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù)(proportional function),其中k叫做比例系數(shù).

  [正比例函數(shù)圖象和性質(zhì)]

  一般地,正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經(jīng)過原點和(1,k)的直線.我們稱它為直線y=kx.當(dāng)k>0時,直線y=kx經(jīng)過三、一象限,從左向右上升,即隨x的增大y也增大;當(dāng)k<0時,直線y=kx經(jīng)過二、四象限,從左向右下降,即隨x增大y反而減小.

  (1) 解析式:y=kx(k是常數(shù),k≠0)

  (2) 必過點:(0,0)、(1,k)

  (3) 走向:k>0時,圖像經(jīng)過一、三象限;k<0時,圖像經(jīng)過二、四象限

  (4) 增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小

  (5) 傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸

  [正比例函數(shù)解析式的確定]——待定系數(shù)法

  1. 設(shè)出含有待定系數(shù)的函數(shù)解析式y(tǒng)=kx(k≠0)

  2. 把已知條件(一個點的坐標(biāo))代入解析式,得到關(guān)于k的一元一次方程

  3. 解方程,求出系數(shù)k

  4. 將k的值代回解析式

  二、一次函數(shù)

  [一次函數(shù)]

  一般地,形如y=kx+b(k、b是常數(shù),k 0)函數(shù),叫做一次函數(shù). 當(dāng)b=0時,y=kx+b即y=kx,所以正比例函數(shù)是一種特殊的一次函數(shù).

  [一次函數(shù)的圖象及性質(zhì)]

  一次函數(shù)y=kx+b的圖象是經(jīng)過(0,b)和(- ,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個單位長度得到.(當(dāng)b>0時,向上平移;當(dāng)b<0時,向下平移)

  (1)解析式:y=kx+b(k、b是常數(shù),k 0)

  (2)必過點:(0,b)和(- ,0)

  (3)走向: k>0,圖象經(jīng)過第一、三象限;k<0,圖象經(jīng)過第二、四象限

  b>0,圖象經(jīng)過第一、二象限;b<0,圖象經(jīng)過第三、四象限

  直線經(jīng)過第一、二、三象限

  直線經(jīng)過第一、三、四象限

  直線經(jīng)過第一、二、四象限

  直線經(jīng)過第二、三、四象限

  (4)增減性: k>0,y隨x的增大而增大;k<0,y隨x增大而減小.

  (5)傾斜度:|k|越大,圖象越接近于y軸;|k|越小,圖象越接近于x軸.

  (6)圖像的平移: 當(dāng)b>0時,將直線y=kx的圖象向上平移b個單位;

  當(dāng)b<0時,將直線y=kx的圖象向下平移b個單位.

  [直線y=k1x+b1與y=k2x+b2的位置關(guān)系]

  (1)兩直線平行:k1=k2且b1 b2

  (2)兩直線相交:k1 k2

  (3)兩直線重合:k1=k2且b1=b2

  [確定一次函數(shù)解析式的方法]

  (1)根據(jù)已知條件寫出含有待定系數(shù)的函數(shù)解析式;

  (2)將x、y的幾對值或圖象上的幾個點的坐標(biāo)代入上述函數(shù)解析式中得到以待定系數(shù)為未知數(shù)的方程;

  (3)解方程得出未知系數(shù)的值;

  (4)將求出的待定系數(shù)代回所求的函數(shù)解析式中得出結(jié)果.

  [一次函數(shù)建模]

  函數(shù)建模的關(guān)鍵是將實際問題數(shù)學(xué)化,從而解決最佳方案、最佳策略等問題. 建立一次函數(shù)模型解決實際問題,就是要從實際問題中抽象出兩個變量,再尋求出兩個變量之間的關(guān)系,構(gòu)建函數(shù)模型,從而利用數(shù)學(xué)知識解決實際問題.

  正比例函數(shù)的圖象和一次函數(shù)的圖象在賦予實際意義時,其圖象大多為線段或射線. 這是因為在實際問題中,自變量的取值范圍是有一定的限制條件的,即自變量必須使實際問題有意義.

  從圖象中獲取的信息一般是:(1)從函數(shù)圖象的形狀判定函數(shù)的類型;

  (2)從橫、縱軸的實際意義理解圖象上點的坐標(biāo)的實際意義.

  解決含有多個變量的問題時,可以分析這些變量的關(guān)系,選取其中某個變量作為自變量,再根據(jù)問題的條件尋求可以反映實際問題的函數(shù).

  三、用函數(shù)觀點看方程(組)與不等式

  [一元一次方程與一次函數(shù)的關(guān)系]

  任何一元一次方程到可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個一次函數(shù)的值為0時,求相應(yīng)的自變量的值. 從圖象上看,相當(dāng)于已知直線y=ax+b確定它與x軸的交點的橫坐標(biāo)的值.

  [一次函數(shù)與一元一次不等式的關(guān)系]

  任何一個一元一次不等式都可以轉(zhuǎn)化為ax+b>0或ax+b<0(a,b為常數(shù),a≠0)的形式,所以解一元一次不等式可以看作:當(dāng)一次函數(shù)值大(小)于0時,求自變量的取值范圍.

  [一次函數(shù)與二元一次方程組]

  (1)以二元一次方程ax+by=c的解為坐標(biāo)的點組成的圖象與一次函數(shù)y= 的圖象相同.

  (2)二元一次方程組 的解可以看作是兩個一次函數(shù)y= 和y= 的圖象交點.

  三個重要的數(shù)學(xué)思想

  1.方程的思想。數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中數(shù)學(xué)最重要的就是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是方程。

  2.數(shù)形結(jié)合的思想。任何一道題,只要與形沾邊,就應(yīng)該根據(jù)題意中的草圖分析一番。這樣做,不但直觀,而且全面,整體性強。

  3.對應(yīng)的思想。

  初中生數(shù)學(xué)成績的提高,需要靠自己勤加練習(xí)和腳踏實地的去接受數(shù)學(xué)。

  合數(shù)的概念

  合數(shù)指自然數(shù)中除了能被1和本身整除外,還能被其他數(shù)(0除外)整除的數(shù)。與之相對的是質(zhì)數(shù),而1既不屬于質(zhì)dao數(shù)也不屬于合數(shù)。最小的合數(shù)是4。其中,完全數(shù)與相親數(shù)是以它為基礎(chǔ)的。

  八年級上冊數(shù)學(xué)第4章知識點復(fù)習(xí)3

  一定要做好預(yù)習(xí)

  初二學(xué)生想要學(xué)好數(shù)學(xué),一定要學(xué)會提前預(yù)習(xí)。將老師要將的內(nèi)容提前預(yù)習(xí)一下,對于自己在預(yù)習(xí)中會出現(xiàn)的不理解的概念或者不懂的知識點,要做好標(biāo)記和記錄,這樣初二學(xué)生在數(shù)學(xué)課堂上才會注意力集中,這樣在聽課的過程中才能夠跟上老師的講課思路,自己的思維才能夠集中。帶著問題去聽老師講課,這樣會將被動的學(xué)習(xí)變?yōu)橹鲃,可以有效的提高初二新生在?shù)學(xué)課堂上的學(xué)習(xí)效率。

  課下要學(xué)會及時復(fù)習(xí)

  當(dāng)初二學(xué)生在課上認(rèn)真聽講后,那么對于初二數(shù)學(xué)的學(xué)習(xí)課后也是需要及時復(fù)習(xí)的。當(dāng)老師講完初二數(shù)學(xué)一節(jié)課的內(nèi)容之后,初中生一定要聽明白,不要留下任何的疑點,有不懂的地方要及時的問同學(xué)或者老師。這樣在課后復(fù)習(xí)的時候才能夠自己獨立的去完成作業(yè)。每一次的初二數(shù)學(xué)課后,初中生都應(yīng)該將這節(jié)課學(xué)習(xí)的知識點進行歸納和整理。

  初中數(shù)學(xué)有理數(shù)知識點

 。ㄒ唬┒x

  有理數(shù)為整數(shù)(正整數(shù)、0、負整數(shù))和分?jǐn)?shù)的統(tǒng)稱,正整數(shù)和正分?jǐn)?shù)合稱為正有理數(shù),負整數(shù)和負分?jǐn)?shù)合稱為負有理數(shù)。因而有理數(shù)集的數(shù)可分為正有理數(shù)、負有理數(shù)和零。

 。ǘ┯欣頂(shù)的性質(zhì)

 。1)順序性

 。2)封閉性

 。3)稠密性

 。ㄈ┯欣頂(shù)的加法運算法則

  1、同號兩數(shù)相加,取與加數(shù)相同的符號,并把絕對值相加。

  2、異號兩數(shù)相加,若絕對值相等則互為相反數(shù)的兩數(shù)和為0;若絕對值不相等,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  3、互為相反數(shù)的兩數(shù)相加得0。

  4、一個數(shù)同0相加仍得這個數(shù)。

  5、互為相反數(shù)的兩個數(shù),可以先相加。

  6、符號相同的數(shù)可以先相加。

  7、分母相同的數(shù)可以先相加。

  8、幾個數(shù)相加能得整數(shù)的可以先相加。

  9、減去一個數(shù),等于加上這個數(shù)的相反數(shù),即把有理數(shù)的減法利用數(shù)的相反數(shù)變成加法進行運算。

  八年級上冊數(shù)學(xué)第4章知識點復(fù)習(xí)4

  形如函數(shù)y=k/x(k為常數(shù)且k≠0)叫做反比例函數(shù),其中k叫做比例系數(shù),x是自變量,y是自變量x的函數(shù),x的取值范圍是不等于0的一切實數(shù)。

  反比例函數(shù)表達式

  x是自變量,y是x的函數(shù)

  y=k/x=k·1/x

  xy=k

  y=k·x^(-1) (即:y等于x的負一次方,此處x必須為一次方)

  y=k/x(k為常數(shù)且k≠0,x≠0)

  若y=k/nx此時比例系數(shù)為:k/n

  自變量的取值范圍

  ① 在一般的情況下 , 自變量 x 的取值范圍可以是 不等于0的任意實數(shù);

 、诤瘮(shù) y 的取值范圍也是任意非零實數(shù)。

  解析式 y=k/x 其中x是自變量,y是x的函數(shù),其定義域是不等于0的一切實數(shù),即 {x|x≠0,x∈R}。下面是一些常見的形式:

  y=k/x=k·1/x

  xy=k

  y=k·x^(-1)

  y=kx(k為常數(shù)(k≠0),x不等于0)

  反比例函數(shù)圖象

  反比例函數(shù)的圖像屬于以原點為對稱中心的中心對稱的雙曲線(hyperbola),

  知識拓展:反比例函數(shù)圖像中每一象限的每一支曲線會無限接近X軸Y軸但不會與坐標(biāo)軸相交(y≠0)。

  初中數(shù)學(xué)冪的乘方知識點

  1、冪的乘方是指幾個相同的'冪相乘。(am)n表示n個am相乘。

  2、冪的乘方運算法則:冪的乘方,底數(shù)不變,指數(shù)相乘。(am)n=amn。

  3、此法則也可以逆用,即:amn=(am)n=(an)m。

  初中數(shù)學(xué)有理數(shù)的運算知識點

  1.加法:

  ①同號相加,取相同的符號,把絕對值相加。

 、诋愄栂嗉樱^對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

 、垡粋數(shù)與0相加不變。

  2.減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  3.乘法:

  ①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。

 、谌魏螖(shù)與0相乘得0。

 、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。

  4.除法:

 、俪砸粋數(shù)等于乘以一個數(shù)的倒數(shù)

  ②0不能作除數(shù)。

  5.乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。

  6.混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  八年級上冊數(shù)學(xué)第4章知識點復(fù)習(xí)5

  一.定義

  1.全等形:形狀大小相同,能完全重合的兩個圖形

  2.全等三角形:能夠完全重合的兩個三角形

  二.重點

  1.平移,翻折,旋轉(zhuǎn)前后的圖形全等

  2.全等三角形的性質(zhì):全等三角形的對應(yīng)邊相等,全等三角形的對應(yīng)角相等

  3.全等三角形的判定:

  SSS三邊對應(yīng)相等的兩個三角形全等[邊邊邊]

  SAS兩邊和它們的夾角對應(yīng)相等的兩個三角形全等[邊角邊]

  ASA兩角和它們的夾邊對應(yīng)相等的兩個三角形全等[角邊角]

  AAS兩個角和其中一個角的對邊開業(yè)相等的兩個三角形全等[邊角邊]

  HL斜邊和一條直角邊對應(yīng)相等的兩個三角形全等[斜邊,直角邊]

  4.角平分線的性質(zhì):角的平分線上的點到角的兩邊的距離相等

  5.角平分線的判定:角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上

  八年級上冊數(shù)學(xué)第4章知識點復(fù)習(xí)6

  作法

  (1)列表:表中給出一些自變量的值及其對應(yīng)的函數(shù)值。

  (2)描點:在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對應(yīng)的各點。

  一般地,y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點即可畫出。

  正比例函數(shù)y=kx(k≠0)的圖象是過坐標(biāo)原點的一條直線,一般取(0,0)和(1,k)兩點畫出即可。

  (3)連線: 按照橫坐標(biāo)由小到大的順序把描出的各點用平滑曲線連接起來。

  性質(zhì)

  (1)在一次函數(shù)圖像上的任取一點P(x,y),則都滿足等式:y=kx+b(k≠0)。

  (2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總交于(-b/k,0)。正比例函數(shù)的圖像都經(jīng)過原點。

  k,b決定函數(shù)圖像的位置:

  y=kx時,y與x成正比例:

  當(dāng)k>0時,直線必通過第一、三象限,y隨x的增大而增大;

  當(dāng)k<0時,直線必通過第二、四象限,y隨x的增大而減小。

  y=kx+b時:

  當(dāng) k>0,b>0, 這時此函數(shù)的圖象經(jīng)過第一、二、三象限;

  當(dāng) k>0,b<0,這時此函數(shù)的圖象經(jīng)過第一、三、四象限;

  當(dāng) k<0,b>0,這時此函數(shù)的圖象經(jīng)過第一、二、四象限;

  當(dāng) k<0,b<0,這時此函數(shù)的圖象經(jīng)過第二、三、四象限。

  當(dāng)b>0時,直線必通過第一、三象限;

  當(dāng)b<0時,直線必通過第二、四象限。

  特別地,當(dāng)b=0時,直線經(jīng)過原點O(0,0)。

  這時,當(dāng)k>0時,直線只通過第一、三象限,不會通過第二、四象限。當(dāng)k<0時,直線只通過第二、四象限,不會通過第一、三象限。

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

  平面直角坐標(biāo)系的要素:

 、僭谕黄矫

 、趦蓷l數(shù)軸

  ③互相垂直

 、茉c重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

  ②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。

  點的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。

  一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素

 、俳Y(jié)果必須是整式

  ②結(jié)果必須是積的形式

 、劢Y(jié)果是等式

 、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法

 、傧禂(shù)是整數(shù)時取各項最大公約數(shù)。

  ②相同字母取最低次冪

 、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

 、俅_定公因式。

 、诖_定商式

 、酃蚴脚c商式寫成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

 、诓粶(zhǔn)丟常數(shù)項注意查項數(shù)

 、垭p重括號化成單括號

 、芙Y(jié)果按數(shù)單字母單項式多項式順序排列

 、菹嗤蚴綄懗蓛绲男问

  ⑥首項負號放括號外

 、呃ㄌ杻(nèi)同類項合并。

  八年級上冊數(shù)學(xué)第4章知識點復(fù)習(xí)7

  我們稱數(shù)值變化的量為變量(variable)。

  有些量的數(shù)值是始終不變的,我們稱它們?yōu)槌A?constant)。

  在一個變化過程中,如果有兩個變量x與y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么我們說x是自變量(independentvariable),y是x的函數(shù)(function)。

  如果當(dāng)x=a時y=b,那么b叫做當(dāng)自變量的值為a時的函數(shù)值。

  形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù)(proportionalfunction),其中k叫做比例系數(shù)。

  形如y=kx+b(k,b是常數(shù),k≠0)的函數(shù),叫做一次函數(shù)(linearfunction)。正比例函數(shù)是一種特殊的一次函數(shù)。

  當(dāng)k>0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減小。

  每個二元一次方程組都對應(yīng)兩個一次函數(shù),于是也對應(yīng)兩條直線。從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點的坐標(biāo)。

  八年級上冊數(shù)學(xué)第4章知識點復(fù)習(xí)8

  一次函數(shù)的表達式是=x+b (≠b 、b是常數(shù)),其中是x自變量,是因變量,讀作是x的一次函數(shù),當(dāng)x取一個值時,有且只有一個值與x對應(yīng),如果有兩個或兩個以上的值與x對應(yīng),那么這個函數(shù)就不是一次函數(shù)。

  一次函數(shù)表達式求解:

  一次函數(shù)也叫做線性函數(shù),一般在X,坐標(biāo)軸中用一條直線來表示,當(dāng)一次函數(shù)中的一個變量的值確定的情況下,可以用一元一次方程來解答出另一個變量的值。

  一次函數(shù)的表達方式一般都為=x+b的函數(shù),叫做是X的一次函數(shù),當(dāng)常數(shù)項為零時的一次函數(shù),可表示為=x(≠0),這時的常數(shù)也叫比例系數(shù)。常用來表示一次函數(shù)的方法有解析法,圖像法和列表法。一次函數(shù)的解析式一般分為點斜式,兩點式,截距式。

  解答一次函數(shù)的作法最簡單的就是列表法,取一個滿足一次函數(shù)表達式的兩個點的坐標(biāo),來確定另一個未知數(shù)的值。還有一個描點法。一般取兩個點,根據(jù)“兩點確定一條直線”的道理,也可叫“兩點法”。通常情況下=x+b(≠0)的圖象過(0,b)和(-b/,0)兩點即可畫出。

  一次函數(shù)與一次方程之間的關(guān)系:

  一次函數(shù)、方程和不等式是初中數(shù)學(xué)的主要內(nèi)容之一,也是中考的必考知識點,新課程標(biāo)準(zhǔn)把三部分的關(guān)系提到了十分明朗化的程度。因此,應(yīng)該重視這部分內(nèi)容的教學(xué)在教學(xué)中,可以從以下幾個知識點進行辨析。

  任何一個一元一次方程都可以轉(zhuǎn)化成ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個一次函數(shù)的值為0時,求相應(yīng)的自變量的值(從數(shù)的角度);從圖像上來看,就相當(dāng)于已知直線=ax+b,確定它與x軸的交點橫坐標(biāo)的值(從形的角度)。

  利用函數(shù)圖像解方程:-2x+2=0,可以轉(zhuǎn)化為求一次函數(shù)=-2x+2與x軸交點的橫坐標(biāo)。而=-2x+2與x軸交點的橫坐標(biāo)為1,所以方程-2x+2=0的解為x=1。

  注意:解一元一次方程ax+b=0(a≠0)與求函數(shù)=ax+b(a≠0)的圖像與x軸交點的橫坐標(biāo)是同一個問題。不同的是前者從數(shù)的角度來解決問題,后者從形的角度來解決問題。

  每個二元一次方程組都對應(yīng)兩個一次函數(shù),從數(shù)的角度來看,解方程組相當(dāng)于考慮自變量為何值時兩個函數(shù)的值相等,以及這個函數(shù)是何值;從形的角度來看,解方程組相當(dāng)于確定兩條直線交點的坐標(biāo),從而使方程組得出答案。

  八年級上冊數(shù)學(xué)第4章知識點復(fù)習(xí)9

  一.常量、變量:

  在一個變化過程中,數(shù)值發(fā)生變化的量叫做變量;數(shù)值始終不變的量叫做常量。

  二、函數(shù)的概念:

  函數(shù)的定義:一般的,在一個變化過程中,如果有兩個變量x與y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù)

  三、函數(shù)中自變量取值范圍的求法:

  (1)用整式表示的函數(shù),自變量的取值范圍是全體實數(shù)。

  (2)用分式表示的函數(shù),自變量的取值范圍是使分母不為0的一切實數(shù)。

  (3)用寄次根式表示的函數(shù),自變量的取值范圍是全體實數(shù)。

  用偶次根式表示的函數(shù),自變量的取值范圍是使被開方數(shù)為非負數(shù)的一切實數(shù)。

  (4)若解析式由上述幾種形式綜合而成,須先求出各部分的取值范圍,然后再求其公共范圍,即為自變量的取值范圍。

  (5)對于與實際問題有關(guān)系的,自變量的取值范圍應(yīng)使實際問題有意義。

  四、函數(shù)圖象的定義:一般的,對于一個函數(shù),如果把自變量與函數(shù)的每對對應(yīng)值分別作為點的橫、縱坐標(biāo),那么在坐標(biāo)平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖象

  五、用描點法畫函數(shù)的圖象的.一般步驟

  1、列表(表中給出一些自變量的值及其對應(yīng)的函數(shù)值。)

  注意:列表時自變量由小到大,相差一樣,有時需對稱。

  2、描點:(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對應(yīng)的各點。

  3、連線:(按照橫坐標(biāo)由小到大的順序把所描的各點用平滑的曲線連接起來)。

  六、函數(shù)有三種表示形式:

  (1)列表法(2)圖像法(3)解析式法

  七、正比例函數(shù)與一次函數(shù)的概念:

  一般地,形如y=kx(k為常數(shù),且k≠0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。

  一般地,形如y=kx+b(k,b為常數(shù),且k≠0)的函數(shù)叫做一次函數(shù)

  當(dāng)b=0時,y=kx+b即為y=kx,所以正比例函數(shù),是一次函數(shù)的特例

  八、正比例函數(shù)的圖象與性質(zhì):

  (1)圖象:正比例函數(shù)y=kx(k是常數(shù),k≠0))的圖象是經(jīng)過原點的一條直線,我們稱它為直線y=kx。

  (2)性質(zhì):當(dāng)k>0時,直線y=kx經(jīng)過第三,一象限,從左向右上升,即隨著x的增大y也增大;當(dāng)k<0時,直線y=kx經(jīng)過二,四象限,從左向右下降,即隨著x的增大y反而減小。

  單項式的乘法法則:

  單項式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式

  單項式與多項式的乘法法則:

  單項式與多項式相乘,用單項式和多項式的每一項分別相乘,再把所得的積相加

  多項式與多項式的乘法法則:

  多項式與多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加

  單項式的除法法則:

  單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式

  多項式除以單項式的法則:

  多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加

  2、乘法公式:

 、倨椒讲罟剑(a+b)(a-b)=a2-b2

  文字語言敘述:兩個數(shù)的和與這兩個數(shù)的差相乘,等于這兩個數(shù)的平方差

  ②完全平方公式:(a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  文字語言敘述:兩個數(shù)的和(或差)的平方等于這兩個數(shù)的平方和加上(或減去)這兩個數(shù)的積的2倍

  3、因式分解:

  因式分解的定義

  把一個多項式化成幾個整式的乘積的形式,這種變形叫做把這個多項式因式分解

  掌握其定義應(yīng)注意以下幾點:

  (1)分解對象是多項式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個要素缺一不可;

  (2)因式分解必須是恒等變形;

  (3)因式分解必須分解到每個因式都不能分解為止

  弄清因式分解與整式乘法的內(nèi)在的關(guān)系

  因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式

  九、求函數(shù)解析式的方法:

  待定系數(shù)法:先設(shè)出函數(shù)解析式,再根據(jù)條件確定解析式中未知的系數(shù),從而具體寫出這個式子的方法。

  1.一次函數(shù)與一元一次方程:從“數(shù)”的角度看x為何值時函數(shù)y=ax+b的值為0

  2.求ax+b=0(a,b是常數(shù),a≠0)的解,從“形”的角度看,求直線y=ax+b與x軸交點的橫坐標(biāo)

  3.一次函數(shù)與一元一次不等式:

  解不等式ax+b>0(a,b是常數(shù),a≠0).從“數(shù)”的角度看,x為何值時函數(shù)y=ax+b的值大于0

  4.解不等式ax+b>0(a,b是常數(shù),a≠0).從“形”的角度看,求直線y=ax+b在x軸上方的部分(射線)所對應(yīng)的的橫坐標(biāo)的取值范圍.

  十、一次函數(shù)與正比例函數(shù)的圖象與性質(zhì)

  1.勾股定理的內(nèi)容:如果直角三角形的兩直角邊分別是a、b,斜邊為c,那么a2+b2=c2.即直角三角形中兩直角邊的平方和等于斜邊的平方。

  注:勾——最短的邊、股——較長的直角邊、弦——斜邊。

  勾股定理又叫畢達哥拉斯定理

  2.勾股定理的逆定理:

  如果三角形中兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形。即

  3.勾股數(shù):

  滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).勾股數(shù)擴大相同倍數(shù)后,仍為勾股數(shù).常用勾股數(shù):3、4、5;5、12、13;7、24、25;8、15、17。

  4.勾股定理常常用來算線段長度,對于初中階段的線段的計算起到很大的作用

  例題精講:

  例1:若一個直角三角形三邊的長分別是三個連續(xù)的自然數(shù),則這個三角形的周長為

  解析:可知三邊長度為3,4,5,因此周長為12

  (變式)一個直角三角形的三邊為三個連續(xù)偶數(shù),則它的三邊長分別為

  解析:可知三邊長度為6,8,10,則周長為24

  例2:已知直角三角形的兩邊長分別為3、4,求第三邊長

  解析:第一種情況:當(dāng)直角邊為3和4時,則斜邊為5

  第二種情況:當(dāng)斜邊長度為4時,一條直角邊為3,則另一邊為根號7

  《點評》此題是一道易錯題目,同學(xué)們應(yīng)該認(rèn)真審題!

  例3:一個直角三角形中,兩直角邊長分別為3和4,下列說法正確的是()

  A.斜邊長為25

  B.三角形周長為25

  C.斜邊長為5

  D.三角形面積為20

  解析:根據(jù)勾股定理,可知斜邊長度為5,選擇C

  八年級上冊數(shù)學(xué)第4章知識點復(fù)習(xí)10

  二次函數(shù)是初中數(shù)學(xué)中最精彩的內(nèi)容之一,也是歷年中考的熱點和難點。其中,關(guān)于函數(shù)解析式的確定是非常重要的題型。隨著中考面臨新課程改革,教材的內(nèi)容和學(xué)習(xí)要求變化較大,其中一個突出的變化就是強化了對圖形變換的要求,那么二次函數(shù)和圖形變化的結(jié)合,將是同學(xué)們在學(xué)習(xí)中不可忽視的內(nèi)容。

  圖形變換包含平移、軸對稱、旋轉(zhuǎn)、位似四種變換,那么二次函數(shù)的圖像在其圖形變化(平移、軸對稱、旋轉(zhuǎn))的過程中,如何完成解析式的確定呢?解決此類問題的方法很多,關(guān)鍵在于解決問題的著眼點。筆者認(rèn)為最好的方法是用頂點式的方法。因此解題時,先將二次函數(shù)解析式化為頂點式,確定其頂點坐標(biāo),再根據(jù)具體圖形變換的特點,確定變化后新的頂點坐標(biāo)及a值。

  1、平移:二次函數(shù)圖像經(jīng)過平移變換不會改變圖形的形狀和開口方向,因此a值不變。頂點位置將會隨著整個圖像的平移而變化,因此只要按照點的移動規(guī)律,求出新的頂點坐標(biāo)即可確定其解析式。

  例1.將二次函數(shù)y=x2-2x-3的圖像向上平移2個單位,再向右平移1個單位,得到的新的圖像解析式為_____

  分析:將y=x2-2x-3化為頂點式y(tǒng)=(x-1)2-4,a值為1,頂點坐標(biāo)為(1,-4),將其圖像向上平移2個單位,再向右平移1個單位,那么頂點也會相應(yīng)移動,其坐標(biāo)為(2,-2),由于平移不改變二次函數(shù)的圖像的形狀和開口方向,因此a值不變,故平移后的解析式為y=(x-2)2-2。

  2、軸對稱:此圖形變換包括x軸對稱和關(guān)于y軸對稱兩種方式。

  二次函數(shù)圖像關(guān)于x軸對稱的圖像,其形狀不變,但開口方向相反,因此a值為原來的相反數(shù)。頂點位置改變,只要根據(jù)關(guān)于x軸對稱的點的坐標(biāo)特征求出新的頂點坐標(biāo),即可確定其解析式。

  二次函數(shù)圖像關(guān)于y軸對稱的圖像,其形狀和開口方向都不變,因此a值不變。但是頂點位置會改變,只要根據(jù)關(guān)于y軸對稱的點的坐標(biāo)特征求出新的頂點坐標(biāo),即可確定其解析式。

  例2.求拋物線y=x2-2x-3關(guān)于x軸以及y軸對稱的拋物線的解析式。

  分析:y=x2-2x-3=(x-1)2-4,a值為1,其頂點坐標(biāo)為(1,-4),若關(guān)于x軸對稱,a值為-1,新的頂點坐標(biāo)為(1,4),故解析式為y=-(x-1)2+4;若關(guān)于y軸對稱,a值仍為1,新的頂點坐標(biāo)為(-1,-4),因此解析式為y=(x+1)2-4。

  3、旋轉(zhuǎn):主要是指以二次函數(shù)圖像的頂點為旋轉(zhuǎn)中心,旋轉(zhuǎn)角為180°的圖像變換,此類旋轉(zhuǎn),不會改變二次函數(shù)的圖像形狀,開口方向相反,因此a值會為原來的相反數(shù),但頂點坐標(biāo)不變,故很容易求其解析式。

  例3.將拋物線y=x2-2x+3繞其頂點旋轉(zhuǎn)180°,則所得的拋物線的函數(shù)解析式為________

  分析:y=x2-2x+3=(x-1)2+2中,a值為1,頂點坐標(biāo)為(1,2),拋物線繞其頂點旋轉(zhuǎn)180°后,a值為-1,頂點坐標(biāo)不變,故解析式為y=-(x-1)2+2。

【八年級上冊數(shù)學(xué)第4章知識點復(fù)習(xí)】相關(guān)文章:

八年級上冊數(shù)學(xué)第14章知識點復(fù)習(xí)07-26

數(shù)學(xué)第12章復(fù)習(xí)知識點07-22

精選八年級上冊數(shù)學(xué)第14章知識點復(fù)習(xí):乘法公式07-26

八年級上冊語文第9課復(fù)習(xí)知識點07-05

八年級上冊語文第8課臺階知識點復(fù)習(xí)07-05

精選八年級上冊語文第9課老王知識點復(fù)習(xí)07-05

數(shù)學(xué)第12章復(fù)習(xí)知識點:數(shù)據(jù)的描述06-18

八年級上冊語文第知識點復(fù)習(xí)整理:核舟記07-04

精選初一上冊政治第1課知識點復(fù)習(xí)07-03